TPTP Problem File: SLH0084^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : FO_Theory_Rewriting/0068_Ground_MCtxt/prob_00257_009950__18459348_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1284 ( 653 unt; 80 typ; 0 def)
% Number of atoms : 2916 (1293 equ; 0 cnn)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 9301 ( 218 ~; 70 |; 138 &;7861 @)
% ( 0 <=>;1014 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 6 avg)
% Number of types : 15 ( 14 usr)
% Number of type conns : 283 ( 283 >; 0 *; 0 +; 0 <<)
% Number of symbols : 69 ( 66 usr; 9 con; 0-3 aty)
% Number of variables : 2866 ( 61 ^;2709 !; 96 ?;2866 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 12:01:21.564
%------------------------------------------------------------------------------
% Could-be-implicit typings (14)
thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
produc4471711990508489141at_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc7248412053542808358at_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
produc8199716216217303280at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
set_Pr1261947904930325089at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
set_Pr958786334691620121nt_int: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
product_prod_nat_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
product_prod_int_int: $tType ).
thf(ty_n_t__Ground____MCtxt__Ogmctxt_Itf__a_J,type,
ground_gmctxt_a: $tType ).
thf(ty_n_t__Ground____Terms__Ogterm_Itf__a_J,type,
ground_gterm_a: $tType ).
thf(ty_n_t__Ground____Ctxt__Ogctxt_Itf__a_J,type,
ground_gctxt_a: $tType ).
thf(ty_n_t__String__Ochar,type,
char: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
thf(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (66)
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
comm_s4660882817536571857er_int: int > nat > int ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
comm_s4663373288045622133er_nat: nat > nat > nat ).
thf(sy_c_Fun_Ocomp_001t__Ground____MCtxt__Ogmctxt_Itf__a_J_001t__Ground____MCtxt__Ogmctxt_Itf__a_J_001t__Ground____Terms__Ogterm_Itf__a_J,type,
comp_G3656465168958649678term_a: ( ground_gmctxt_a > ground_gmctxt_a ) > ( ground_gterm_a > ground_gmctxt_a ) > ground_gterm_a > ground_gmctxt_a ).
thf(sy_c_Fun_Ocomp_001t__Ground____MCtxt__Ogmctxt_Itf__a_J_001t__Nat__Onat_001t__Ground____MCtxt__Ogmctxt_Itf__a_J,type,
comp_G4985101524424093169ctxt_a: ( ground_gmctxt_a > nat ) > ( ground_gmctxt_a > ground_gmctxt_a ) > ground_gmctxt_a > nat ).
thf(sy_c_Fun_Ocomp_001t__Ground____MCtxt__Ogmctxt_Itf__a_J_001t__Nat__Onat_001t__Ground____Terms__Ogterm_Itf__a_J,type,
comp_G8049203549856156444term_a: ( ground_gmctxt_a > nat ) > ( ground_gterm_a > ground_gmctxt_a ) > ground_gterm_a > nat ).
thf(sy_c_Fun_Ocomp_001t__Ground____Terms__Ogterm_Itf__a_J_001t__Ground____MCtxt__Ogmctxt_Itf__a_J_001t__Ground____Terms__Ogterm_Itf__a_J,type,
comp_G2980548778298907395term_a: ( ground_gterm_a > ground_gmctxt_a ) > ( ground_gterm_a > ground_gterm_a ) > ground_gterm_a > ground_gmctxt_a ).
thf(sy_c_Fun_Ocomp_001t__Ground____Terms__Ogterm_Itf__a_J_001t__Nat__Onat_001t__Ground____Terms__Ogterm_Itf__a_J,type,
comp_G6116966634693717713term_a: ( ground_gterm_a > nat ) > ( ground_gterm_a > ground_gterm_a ) > ground_gterm_a > nat ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Ground____MCtxt__Ogmctxt_Itf__a_J,type,
comp_n6274738784168413603ctxt_a: ( nat > nat ) > ( ground_gmctxt_a > nat ) > ground_gmctxt_a > nat ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Ground____Terms__Ogterm_Itf__a_J,type,
comp_n8259423687851516650term_a: ( nat > nat ) > ( ground_gterm_a > nat ) > ground_gterm_a > nat ).
thf(sy_c_Ground__Ctxt_Ogctxt_OGHole_001tf__a,type,
ground_GHole_a: ground_gctxt_a ).
thf(sy_c_Ground__Ctxt_Ogctxt_Osize__gctxt_001tf__a,type,
ground_size_gctxt_a: ( a > nat ) > ground_gctxt_a > nat ).
thf(sy_c_Ground__MCtxt_Ogctxt__of__gmctxt_001tf__a,type,
ground5333112502500237606ctxt_a: ground_gmctxt_a > ground_gctxt_a ).
thf(sy_c_Ground__MCtxt_Ogmctxt_OGMHole_001tf__a,type,
ground_GMHole_a: ground_gmctxt_a ).
thf(sy_c_Ground__MCtxt_Ogmctxt_Osize__gmctxt_001tf__a,type,
ground_size_gmctxt_a: ( a > nat ) > ground_gmctxt_a > nat ).
thf(sy_c_Ground__MCtxt_Ogmctxt__of__gctxt_001tf__a,type,
ground5442125528501538874ctxt_a: ground_gctxt_a > ground_gmctxt_a ).
thf(sy_c_Ground__MCtxt_Ogmctxt__of__gterm_001tf__a,type,
ground582559344758063963term_a: ground_gterm_a > ground_gmctxt_a ).
thf(sy_c_Ground__MCtxt_Ogterm__of__gmctxt_001tf__a,type,
ground2297065866753446215ctxt_a: ground_gmctxt_a > ground_gterm_a ).
thf(sy_c_Ground__MCtxt_Onum__gholes_001tf__a,type,
ground_num_gholes_a: ground_gmctxt_a > nat ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
abs_abs_int: int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Ground____Ctxt__Ogctxt_Itf__a_J,type,
one_on2591345007439983481ctxt_a: ground_gctxt_a ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Ground____Ctxt__Ogctxt_Itf__a_J,type,
times_3671199598377387961ctxt_a: ground_gctxt_a > ground_gctxt_a > ground_gctxt_a ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_If_001t__Ground____Ctxt__Ogctxt_Itf__a_J,type,
if_Ground_gctxt_a: $o > ground_gctxt_a > ground_gctxt_a > ground_gctxt_a ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Int__Oint,type,
case_nat_int: int > ( nat > int ) > nat > int ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
case_nat_nat: nat > ( nat > nat ) > nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Ground____Ctxt__Ogctxt_Itf__a_J,type,
size_s4419980032559339720ctxt_a: ground_gctxt_a > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Ground____MCtxt__Ogmctxt_Itf__a_J,type,
size_s9020356940445107890ctxt_a: ground_gmctxt_a > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
size_size_char: char > nat ).
thf(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
neg_nu3811975205180677377ec_int: int > int ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
ord_le2843351958646193337nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
ord_le3146513528884898305at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > $o ).
thf(sy_c_Parity_Ounique__euclidean__semiring__with__nat__division__class_Odivides__aux_001t__Int__Oint,type,
unique5329631941980267465ux_int: product_prod_int_int > $o ).
thf(sy_c_Parity_Ounique__euclidean__semiring__with__nat__division__class_Odivides__aux_001t__Nat__Onat,type,
unique5332122412489317741ux_nat: product_prod_nat_nat > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Ground____Ctxt__Ogctxt_Itf__a_J,type,
power_2735389330962240702ctxt_a: ground_gctxt_a > nat > ground_gctxt_a ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc3209952032786966637at_nat: ( nat > nat > nat ) > produc7248412053542808358at_nat > produc4471711990508489141at_nat ).
thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
produc72220940542539688at_nat: ( nat > nat ) > nat > produc8199716216217303280at_nat ).
thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
product_Pair_int_int: int > int > product_prod_int_int ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
produc487386426758144856at_nat: nat > product_prod_nat_nat > produc7248412053542808358at_nat ).
thf(sy_c_Seq_Oinfinitely__many,type,
infinitely_many: ( nat > $o ) > $o ).
thf(sy_c_Seq_Oinfinitely__many_Oindex,type,
infinitely_index: ( nat > $o ) > nat > nat ).
thf(sy_c_String_Ochar_Osize__char,type,
size_char: char > nat ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
member5262025264175285858nt_int: product_prod_int_int > set_Pr958786334691620121nt_int > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).
% Relevant facts (1196)
thf(fact_0_gctxt__of__gmctxt__gmctxt__of__gctxt,axiom,
! [C: ground_gctxt_a] :
( ( ground5333112502500237606ctxt_a @ ( ground5442125528501538874ctxt_a @ C ) )
= C ) ).
% gctxt_of_gmctxt_gmctxt_of_gctxt
thf(fact_1_gmctxt__of__gctxt_Osimps_I1_J,axiom,
( ( ground5442125528501538874ctxt_a @ ground_GHole_a )
= ground_GMHole_a ) ).
% gmctxt_of_gctxt.simps(1)
thf(fact_2_gmctxt__of__gctxt__GMHole__Hole,axiom,
! [C: ground_gctxt_a] :
( ( ( ground5442125528501538874ctxt_a @ C )
= ground_GMHole_a )
=> ( C = ground_GHole_a ) ) ).
% gmctxt_of_gctxt_GMHole_Hole
thf(fact_3_gmctxt__of__gctxt__num__gholes,axiom,
! [C: ground_gctxt_a] :
( ( ground_num_gholes_a @ ( ground5442125528501538874ctxt_a @ C ) )
= ( suc @ zero_zero_nat ) ) ).
% gmctxt_of_gctxt_num_gholes
thf(fact_4_num__gholes_Osimps_I1_J,axiom,
( ( ground_num_gholes_a @ ground_GMHole_a )
= ( suc @ zero_zero_nat ) ) ).
% num_gholes.simps(1)
thf(fact_5_gctxt__of__gmctxt_Osimps_I1_J,axiom,
( ( ground5333112502500237606ctxt_a @ ground_GMHole_a )
= ground_GHole_a ) ).
% gctxt_of_gmctxt.simps(1)
thf(fact_6_gmctxt__of__gctxt__gctxt__of__gmctxt,axiom,
! [C: ground_gmctxt_a] :
( ( ( ground_num_gholes_a @ C )
= ( suc @ zero_zero_nat ) )
=> ( ( ground5442125528501538874ctxt_a @ ( ground5333112502500237606ctxt_a @ C ) )
= C ) ) ).
% gmctxt_of_gctxt_gctxt_of_gmctxt
thf(fact_7_nat_Oinject,axiom,
! [X2: nat,Y2: nat] :
( ( ( suc @ X2 )
= ( suc @ Y2 ) )
= ( X2 = Y2 ) ) ).
% nat.inject
thf(fact_8_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_9_nat_Odistinct_I1_J,axiom,
! [X2: nat] :
( zero_zero_nat
!= ( suc @ X2 ) ) ).
% nat.distinct(1)
thf(fact_10_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_11_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_12_nat_OdiscI,axiom,
! [Nat: nat,X2: nat] :
( ( Nat
= ( suc @ X2 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_13_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_14_list__decode_Ocases,axiom,
! [X: nat] :
( ( X != zero_zero_nat )
=> ~ ! [N: nat] :
( X
!= ( suc @ N ) ) ) ).
% list_decode.cases
thf(fact_15_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_16_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_17_n__not__Suc__n,axiom,
! [N2: nat] :
( N2
!= ( suc @ N2 ) ) ).
% n_not_Suc_n
thf(fact_18_Suc__inject,axiom,
! [X: nat,Y: nat] :
( ( ( suc @ X )
= ( suc @ Y ) )
=> ( X = Y ) ) ).
% Suc_inject
thf(fact_19_not0__implies__Suc,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ? [M: nat] :
( N2
= ( suc @ M ) ) ) ).
% not0_implies_Suc
thf(fact_20_Zero__not__Suc,axiom,
! [M2: nat] :
( zero_zero_nat
!= ( suc @ M2 ) ) ).
% Zero_not_Suc
thf(fact_21_Zero__neq__Suc,axiom,
! [M2: nat] :
( zero_zero_nat
!= ( suc @ M2 ) ) ).
% Zero_neq_Suc
thf(fact_22_Suc__neq__Zero,axiom,
! [M2: nat] :
( ( suc @ M2 )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_23_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N: nat] :
( ( P @ ( suc @ N ) )
=> ( P @ N ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_24_diff__induct,axiom,
! [P: nat > nat > $o,M2: nat,N2: nat] :
( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
=> ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
=> ( ! [X3: nat,Y3: nat] :
( ( P @ X3 @ Y3 )
=> ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
=> ( P @ M2 @ N2 ) ) ) ) ).
% diff_induct
thf(fact_25_nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N: nat] :
( ( P @ N )
=> ( P @ ( suc @ N ) ) )
=> ( P @ N2 ) ) ) ).
% nat_induct
thf(fact_26_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ zero_zero_nat )
=> ( ? [X_1: nat] : ( P @ X_1 )
=> ? [N: nat] :
( ~ ( P @ N )
& ( P @ ( suc @ N ) ) ) ) ) ).
% exists_least_lemma
thf(fact_27_num__holes__mctxt__of__term,axiom,
! [T: ground_gterm_a] :
( ( ground_num_gholes_a @ ( ground582559344758063963term_a @ T ) )
= zero_zero_nat ) ).
% num_holes_mctxt_of_term
thf(fact_28_gmctxt_Osize__gen_I1_J,axiom,
! [X: a > nat] :
( ( ground_size_gmctxt_a @ X @ ground_GMHole_a )
= zero_zero_nat ) ).
% gmctxt.size_gen(1)
thf(fact_29_triangle__0,axiom,
( ( nat_triangle @ zero_zero_nat )
= zero_zero_nat ) ).
% triangle_0
thf(fact_30_zero__natural_Orsp,axiom,
zero_zero_nat = zero_zero_nat ).
% zero_natural.rsp
thf(fact_31_gmctxt_Osize_I3_J,axiom,
( ( size_s9020356940445107890ctxt_a @ ground_GMHole_a )
= zero_zero_nat ) ).
% gmctxt.size(3)
thf(fact_32_size__neq__size__imp__neq,axiom,
! [X: ground_gmctxt_a,Y: ground_gmctxt_a] :
( ( ( size_s9020356940445107890ctxt_a @ X )
!= ( size_s9020356940445107890ctxt_a @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_33_size__neq__size__imp__neq,axiom,
! [X: ground_gctxt_a,Y: ground_gctxt_a] :
( ( ( size_s4419980032559339720ctxt_a @ X )
!= ( size_s4419980032559339720ctxt_a @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_34_size__neq__size__imp__neq,axiom,
! [X: char,Y: char] :
( ( ( size_size_char @ X )
!= ( size_size_char @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_35_infinitely__many_Oindex_Ocases,axiom,
! [P2: nat > $o,X: nat] :
( ( infinitely_many @ P2 )
=> ( ( X != zero_zero_nat )
=> ~ ! [N: nat] :
( X
!= ( suc @ N ) ) ) ) ).
% infinitely_many.index.cases
thf(fact_36_no__gholes__gmctxt__of__gterm__gterm__of__gmctxt__id,axiom,
! [C: ground_gmctxt_a] :
( ( ( ground_num_gholes_a @ C )
= zero_zero_nat )
=> ( ( ground582559344758063963term_a @ ( ground2297065866753446215ctxt_a @ C ) )
= C ) ) ).
% no_gholes_gmctxt_of_gterm_gterm_of_gmctxt_id
thf(fact_37_num__gholes__o__gmctxt__of__gterm,axiom,
( ( comp_G8049203549856156444term_a @ ground_num_gholes_a @ ground582559344758063963term_a )
= ( ^ [X4: ground_gterm_a] : zero_zero_nat ) ) ).
% num_gholes_o_gmctxt_of_gterm
thf(fact_38_gterm__of__gmctxt__gmctxt__of__gterm__id,axiom,
! [T: ground_gterm_a] :
( ( ground2297065866753446215ctxt_a @ ( ground582559344758063963term_a @ T ) )
= T ) ).
% gterm_of_gmctxt_gmctxt_of_gterm_id
thf(fact_39_cons__chain,axiom,
! [X: int,S: nat > int,R: set_Pr958786334691620121nt_int] :
( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ ( S @ zero_zero_nat ) ) @ R )
=> ( ! [I: nat] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ ( S @ I ) @ ( S @ ( suc @ I ) ) ) @ R )
=> ! [I2: nat] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ ( case_nat_int @ X @ S @ I2 ) @ ( case_nat_int @ X @ S @ ( suc @ I2 ) ) ) @ R ) ) ) ).
% cons_chain
thf(fact_40_cons__chain,axiom,
! [X: nat,S: nat > nat,R: set_Pr1261947904930325089at_nat] :
( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ ( S @ zero_zero_nat ) ) @ R )
=> ( ! [I: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ ( S @ I ) @ ( S @ ( suc @ I ) ) ) @ R )
=> ! [I2: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ ( case_nat_nat @ X @ S @ I2 ) @ ( case_nat_nat @ X @ S @ ( suc @ I2 ) ) ) @ R ) ) ) ).
% cons_chain
thf(fact_41_triangle__Suc,axiom,
! [N2: nat] :
( ( nat_triangle @ ( suc @ N2 ) )
= ( plus_plus_nat @ ( nat_triangle @ N2 ) @ ( suc @ N2 ) ) ) ).
% triangle_Suc
thf(fact_42_less__Suc0,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( N2 = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_43_zero__less__Suc,axiom,
! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).
% zero_less_Suc
thf(fact_44_mult__eq__1__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( times_times_nat @ M2 @ N2 )
= ( suc @ zero_zero_nat ) )
= ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_45_add__left__cancel,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C2 ) )
= ( B = C2 ) ) ).
% add_left_cancel
thf(fact_46_add__left__cancel,axiom,
! [A: int,B: int,C2: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C2 ) )
= ( B = C2 ) ) ).
% add_left_cancel
thf(fact_47_add__right__cancel,axiom,
! [B: nat,A: nat,C2: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C2 @ A ) )
= ( B = C2 ) ) ).
% add_right_cancel
thf(fact_48_add__right__cancel,axiom,
! [B: int,A: int,C2: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C2 @ A ) )
= ( B = C2 ) ) ).
% add_right_cancel
thf(fact_49_not__gr__zero,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_50_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_51_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_52_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_53_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_54_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_55_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_56_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_57_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_58_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_59_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_60_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_61_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_62_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_63_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_64_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_65_add__less__cancel__left,axiom,
! [C2: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_66_add__less__cancel__left,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_67_add__less__cancel__right,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_68_add__less__cancel__right,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_69_Suc__less__eq,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% Suc_less_eq
thf(fact_70_Suc__mono,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N2 ) ) ) ).
% Suc_mono
thf(fact_71_lessI,axiom,
! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).
% lessI
thf(fact_72_less__nat__zero__code,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_73_neq0__conv,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% neq0_conv
thf(fact_74_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_75_add__Suc__right,axiom,
! [M2: nat,N2: nat] :
( ( plus_plus_nat @ M2 @ ( suc @ N2 ) )
= ( suc @ ( plus_plus_nat @ M2 @ N2 ) ) ) ).
% add_Suc_right
thf(fact_76_Nat_Oadd__0__right,axiom,
! [M2: nat] :
( ( plus_plus_nat @ M2 @ zero_zero_nat )
= M2 ) ).
% Nat.add_0_right
thf(fact_77_add__is__0,axiom,
! [M2: nat,N2: nat] :
( ( ( plus_plus_nat @ M2 @ N2 )
= zero_zero_nat )
= ( ( M2 = zero_zero_nat )
& ( N2 = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_78_nat__add__left__cancel__less,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% nat_add_left_cancel_less
thf(fact_79_mult__cancel2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ( times_times_nat @ M2 @ K )
= ( times_times_nat @ N2 @ K ) )
= ( ( M2 = N2 )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_80_mult__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ( times_times_nat @ K @ M2 )
= ( times_times_nat @ K @ N2 ) )
= ( ( M2 = N2 )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_81_mult__0__right,axiom,
! [M2: nat] :
( ( times_times_nat @ M2 @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_82_mult__is__0,axiom,
! [M2: nat,N2: nat] :
( ( ( times_times_nat @ M2 @ N2 )
= zero_zero_nat )
= ( ( M2 = zero_zero_nat )
| ( N2 = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_83_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_84_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_85_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_86_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_87_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_88_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_89_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_90_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_91_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_92_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_93_add__gr__0,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M2 @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M2 )
| ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% add_gr_0
thf(fact_94_one__eq__mult__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M2 @ N2 ) )
= ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_95_mult__less__cancel2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N2 @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M2 @ N2 ) ) ) ).
% mult_less_cancel2
thf(fact_96_nat__0__less__mult__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M2 @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M2 )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% nat_0_less_mult_iff
thf(fact_97_mult__Suc__right,axiom,
! [M2: nat,N2: nat] :
( ( times_times_nat @ M2 @ ( suc @ N2 ) )
= ( plus_plus_nat @ M2 @ ( times_times_nat @ M2 @ N2 ) ) ) ).
% mult_Suc_right
thf(fact_98_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C2: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_99_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C2: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_100_add__mono__thms__linordered__field_I5_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I3 @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_101_add__mono__thms__linordered__field_I5_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I3 @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_102_add__mono__thms__linordered__field_I2_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( I3 = J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_103_add__mono__thms__linordered__field_I2_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( I3 = J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_104_add__mono__thms__linordered__field_I1_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I3 @ J )
& ( K = L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_105_add__mono__thms__linordered__field_I1_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I3 @ J )
& ( K = L ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_106_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C2: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C2 )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C2 ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_107_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C2 )
= ( times_times_int @ A @ ( times_times_int @ B @ C2 ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_108_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( I3 = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I3 @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_109_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( I3 = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I3 @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_110_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_111_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_112_group__cancel_Oadd2,axiom,
! [B2: nat,K: nat,B: nat,A: nat] :
( ( B2
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B2 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_113_group__cancel_Oadd2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B2 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_114_add_Oassoc,axiom,
! [A: nat,B: nat,C2: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).
% add.assoc
thf(fact_115_add_Oassoc,axiom,
! [A: int,B: int,C2: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).
% add.assoc
thf(fact_116_add_Oleft__cancel,axiom,
! [A: int,B: int,C2: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C2 ) )
= ( B = C2 ) ) ).
% add.left_cancel
thf(fact_117_mult_Oassoc,axiom,
! [A: nat,B: nat,C2: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C2 )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C2 ) ) ) ).
% mult.assoc
thf(fact_118_mult_Oassoc,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C2 )
= ( times_times_int @ A @ ( times_times_int @ B @ C2 ) ) ) ).
% mult.assoc
thf(fact_119_add_Oright__cancel,axiom,
! [B: int,A: int,C2: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C2 @ A ) )
= ( B = C2 ) ) ).
% add.right_cancel
thf(fact_120_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_121_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_122_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B3: nat] : ( times_times_nat @ B3 @ A3 ) ) ) ).
% mult.commute
thf(fact_123_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B3: int] : ( times_times_int @ B3 @ A3 ) ) ) ).
% mult.commute
thf(fact_124_add_Oleft__commute,axiom,
! [B: nat,A: nat,C2: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C2 ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).
% add.left_commute
thf(fact_125_add_Oleft__commute,axiom,
! [B: int,A: int,C2: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C2 ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).
% add.left_commute
thf(fact_126_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C2: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C2 ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C2 ) ) ) ).
% mult.left_commute
thf(fact_127_mult_Oleft__commute,axiom,
! [B: int,A: int,C2: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C2 ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C2 ) ) ) ).
% mult.left_commute
thf(fact_128_add__left__imp__eq,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C2 ) )
=> ( B = C2 ) ) ).
% add_left_imp_eq
thf(fact_129_add__left__imp__eq,axiom,
! [A: int,B: int,C2: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C2 ) )
=> ( B = C2 ) ) ).
% add_left_imp_eq
thf(fact_130_add__right__imp__eq,axiom,
! [B: nat,A: nat,C2: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C2 @ A ) )
=> ( B = C2 ) ) ).
% add_right_imp_eq
thf(fact_131_add__right__imp__eq,axiom,
! [B: int,A: int,C2: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C2 @ A ) )
=> ( B = C2 ) ) ).
% add_right_imp_eq
thf(fact_132_add__strict__mono,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C2 @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_133_add__strict__mono,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C2 @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_134_add__strict__left__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) ) ) ).
% add_strict_left_mono
thf(fact_135_add__strict__left__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) ) ) ).
% add_strict_left_mono
thf(fact_136_add__strict__right__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) ) ) ).
% add_strict_right_mono
thf(fact_137_add__strict__right__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) ) ) ).
% add_strict_right_mono
thf(fact_138_add__less__imp__less__left,axiom,
! [C2: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_139_add__less__imp__less__left,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_140_add__less__imp__less__right,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_141_add__less__imp__less__right,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_142_add__lessD1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I3 @ J ) @ K )
=> ( ord_less_nat @ I3 @ K ) ) ).
% add_lessD1
thf(fact_143_nat__neq__iff,axiom,
! [M2: nat,N2: nat] :
( ( M2 != N2 )
= ( ( ord_less_nat @ M2 @ N2 )
| ( ord_less_nat @ N2 @ M2 ) ) ) ).
% nat_neq_iff
thf(fact_144_add__less__mono,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_145_less__not__refl,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_not_refl
thf(fact_146_not__add__less1,axiom,
! [I3: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I3 @ J ) @ I3 ) ).
% not_add_less1
thf(fact_147_not__add__less2,axiom,
! [J: nat,I3: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I3 ) @ I3 ) ).
% not_add_less2
thf(fact_148_add__less__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_149_less__not__refl2,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ N2 @ M2 )
=> ( M2 != N2 ) ) ).
% less_not_refl2
thf(fact_150_less__not__refl3,axiom,
! [S2: nat,T: nat] :
( ( ord_less_nat @ S2 @ T )
=> ( S2 != T ) ) ).
% less_not_refl3
thf(fact_151_less__irrefl__nat,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_irrefl_nat
thf(fact_152_nat__less__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N: nat] :
( ! [M3: nat] :
( ( ord_less_nat @ M3 @ N )
=> ( P @ M3 ) )
=> ( P @ N ) )
=> ( P @ N2 ) ) ).
% nat_less_induct
thf(fact_153_trans__less__add1,axiom,
! [I3: nat,J: nat,M2: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ord_less_nat @ I3 @ ( plus_plus_nat @ J @ M2 ) ) ) ).
% trans_less_add1
thf(fact_154_trans__less__add2,axiom,
! [I3: nat,J: nat,M2: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ord_less_nat @ I3 @ ( plus_plus_nat @ M2 @ J ) ) ) ).
% trans_less_add2
thf(fact_155_add__mult__distrib,axiom,
! [M2: nat,N2: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M2 @ N2 ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).
% add_mult_distrib
thf(fact_156_infinite__descent,axiom,
! [P: nat > $o,N2: nat] :
( ! [N: nat] :
( ~ ( P @ N )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N )
& ~ ( P @ M3 ) ) )
=> ( P @ N2 ) ) ).
% infinite_descent
thf(fact_157_less__add__eq__less,axiom,
! [K: nat,L: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M2 @ L )
= ( plus_plus_nat @ K @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ) ).
% less_add_eq_less
thf(fact_158_add__mult__distrib2,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M2 @ N2 ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) ) ) ).
% add_mult_distrib2
thf(fact_159_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_160_add__neg__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_neg
thf(fact_161_add__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_neg
thf(fact_162_add__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_163_add__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_164_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ! [C3: nat] :
( ( B
= ( plus_plus_nat @ A @ C3 ) )
=> ( C3 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_165_pos__add__strict,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C2 )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).
% pos_add_strict
thf(fact_166_pos__add__strict,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C2 )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).
% pos_add_strict
thf(fact_167_mult__Suc,axiom,
! [M2: nat,N2: nat] :
( ( times_times_nat @ ( suc @ M2 ) @ N2 )
= ( plus_plus_nat @ N2 @ ( times_times_nat @ M2 @ N2 ) ) ) ).
% mult_Suc
thf(fact_168_lift__Suc__mono__less,axiom,
! [F: nat > nat,N2: nat,N3: nat] :
( ! [N: nat] : ( ord_less_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
=> ( ( ord_less_nat @ N2 @ N3 )
=> ( ord_less_nat @ ( F @ N2 ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_169_lift__Suc__mono__less,axiom,
! [F: nat > int,N2: nat,N3: nat] :
( ! [N: nat] : ( ord_less_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
=> ( ( ord_less_nat @ N2 @ N3 )
=> ( ord_less_int @ ( F @ N2 ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_170_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N2: nat,M2: nat] :
( ! [N: nat] : ( ord_less_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
=> ( ( ord_less_nat @ ( F @ N2 ) @ ( F @ M2 ) )
= ( ord_less_nat @ N2 @ M2 ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_171_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N2: nat,M2: nat] :
( ! [N: nat] : ( ord_less_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
=> ( ( ord_less_int @ ( F @ N2 ) @ ( F @ M2 ) )
= ( ord_less_nat @ N2 @ M2 ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_172_less__natE,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ~ ! [Q: nat] :
( N2
!= ( suc @ ( plus_plus_nat @ M2 @ Q ) ) ) ) ).
% less_natE
thf(fact_173_less__add__Suc1,axiom,
! [I3: nat,M2: nat] : ( ord_less_nat @ I3 @ ( suc @ ( plus_plus_nat @ I3 @ M2 ) ) ) ).
% less_add_Suc1
thf(fact_174_less__add__Suc2,axiom,
! [I3: nat,M2: nat] : ( ord_less_nat @ I3 @ ( suc @ ( plus_plus_nat @ M2 @ I3 ) ) ) ).
% less_add_Suc2
thf(fact_175_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M4: nat,N4: nat] :
? [K2: nat] :
( N4
= ( suc @ ( plus_plus_nat @ M4 @ K2 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_176_less__imp__Suc__add,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ? [K3: nat] :
( N2
= ( suc @ ( plus_plus_nat @ M2 @ K3 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_177_less__imp__add__positive,axiom,
! [I3: nat,J: nat] :
( ( ord_less_nat @ I3 @ J )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I3 @ K3 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_178_Suc__mult__less__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M2 ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% Suc_mult_less_cancel1
thf(fact_179_mult__less__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I3 @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_180_mult__less__mono2,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I3 ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_181_n__less__n__mult__m,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M2 )
=> ( ord_less_nat @ N2 @ ( times_times_nat @ N2 @ M2 ) ) ) ) ).
% n_less_n_mult_m
thf(fact_182_n__less__m__mult__n,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M2 )
=> ( ord_less_nat @ N2 @ ( times_times_nat @ M2 @ N2 ) ) ) ) ).
% n_less_m_mult_n
thf(fact_183_one__less__mult,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M2 )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M2 @ N2 ) ) ) ) ).
% one_less_mult
thf(fact_184_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_185_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_186_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_187_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_188_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_189_zero__less__iff__neq__zero,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
= ( N2 != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_190_gr__implies__not__zero,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_191_not__less__zero,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less_zero
thf(fact_192_gr__zeroI,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr_zeroI
thf(fact_193_add__Suc__shift,axiom,
! [M2: nat,N2: nat] :
( ( plus_plus_nat @ ( suc @ M2 ) @ N2 )
= ( plus_plus_nat @ M2 @ ( suc @ N2 ) ) ) ).
% add_Suc_shift
thf(fact_194_add__Suc,axiom,
! [M2: nat,N2: nat] :
( ( plus_plus_nat @ ( suc @ M2 ) @ N2 )
= ( suc @ ( plus_plus_nat @ M2 @ N2 ) ) ) ).
% add_Suc
thf(fact_195_nat__arith_Osuc1,axiom,
! [A2: nat,K: nat,A: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A2 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_196_add__eq__self__zero,axiom,
! [M2: nat,N2: nat] :
( ( ( plus_plus_nat @ M2 @ N2 )
= M2 )
=> ( N2 = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_197_plus__nat_Oadd__0,axiom,
! [N2: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N2 )
= N2 ) ).
% plus_nat.add_0
thf(fact_198_Suc__mult__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M2 )
= ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( M2 = N2 ) ) ).
% Suc_mult_cancel1
thf(fact_199_mult__0,axiom,
! [N2: nat] :
( ( times_times_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% mult_0
thf(fact_200_not__less__less__Suc__eq,axiom,
! [N2: nat,M2: nat] :
( ~ ( ord_less_nat @ N2 @ M2 )
=> ( ( ord_less_nat @ N2 @ ( suc @ M2 ) )
= ( N2 = M2 ) ) ) ).
% not_less_less_Suc_eq
thf(fact_201_strict__inc__induct,axiom,
! [I3: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I3 @ J )
=> ( ! [I: nat] :
( ( J
= ( suc @ I ) )
=> ( P @ I ) )
=> ( ! [I: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( P @ ( suc @ I ) )
=> ( P @ I ) ) )
=> ( P @ I3 ) ) ) ) ).
% strict_inc_induct
thf(fact_202_less__Suc__induct,axiom,
! [I3: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I3 @ J )
=> ( ! [I: nat] : ( P @ I @ ( suc @ I ) )
=> ( ! [I: nat,J2: nat,K3: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( ( ord_less_nat @ J2 @ K3 )
=> ( ( P @ I @ J2 )
=> ( ( P @ J2 @ K3 )
=> ( P @ I @ K3 ) ) ) ) )
=> ( P @ I3 @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_203_less__trans__Suc,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I3 ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_204_Suc__less__SucD,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% Suc_less_SucD
thf(fact_205_less__antisym,axiom,
! [N2: nat,M2: nat] :
( ~ ( ord_less_nat @ N2 @ M2 )
=> ( ( ord_less_nat @ N2 @ ( suc @ M2 ) )
=> ( M2 = N2 ) ) ) ).
% less_antisym
thf(fact_206_Suc__less__eq2,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ ( suc @ N2 ) @ M2 )
= ( ? [M5: nat] :
( ( M2
= ( suc @ M5 ) )
& ( ord_less_nat @ N2 @ M5 ) ) ) ) ).
% Suc_less_eq2
thf(fact_207_All__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
=> ( P @ I4 ) ) )
= ( ( P @ N2 )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ N2 )
=> ( P @ I4 ) ) ) ) ).
% All_less_Suc
thf(fact_208_not__less__eq,axiom,
! [M2: nat,N2: nat] :
( ( ~ ( ord_less_nat @ M2 @ N2 ) )
= ( ord_less_nat @ N2 @ ( suc @ M2 ) ) ) ).
% not_less_eq
thf(fact_209_less__Suc__eq,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
= ( ( ord_less_nat @ M2 @ N2 )
| ( M2 = N2 ) ) ) ).
% less_Suc_eq
thf(fact_210_Ex__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
& ( P @ I4 ) ) )
= ( ( P @ N2 )
| ? [I4: nat] :
( ( ord_less_nat @ I4 @ N2 )
& ( P @ I4 ) ) ) ) ).
% Ex_less_Suc
thf(fact_211_less__SucI,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_nat @ M2 @ ( suc @ N2 ) ) ) ).
% less_SucI
thf(fact_212_less__SucE,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
=> ( ~ ( ord_less_nat @ M2 @ N2 )
=> ( M2 = N2 ) ) ) ).
% less_SucE
thf(fact_213_Suc__lessI,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ( ( suc @ M2 )
!= N2 )
=> ( ord_less_nat @ ( suc @ M2 ) @ N2 ) ) ) ).
% Suc_lessI
thf(fact_214_Suc__lessE,axiom,
! [I3: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I3 ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_215_Suc__lessD,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M2 ) @ N2 )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% Suc_lessD
thf(fact_216_Nat_OlessE,axiom,
! [I3: nat,K: nat] :
( ( ord_less_nat @ I3 @ K )
=> ( ( K
!= ( suc @ I3 ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_217_infinite__descent0,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ~ ( P @ N )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N )
& ~ ( P @ M3 ) ) ) )
=> ( P @ N2 ) ) ) ).
% infinite_descent0
thf(fact_218_gr__implies__not0,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_219_less__zeroE,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_zeroE
thf(fact_220_not__less0,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less0
thf(fact_221_not__gr0,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr0
thf(fact_222_gr0I,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr0I
thf(fact_223_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_224_inf__concat__simple_Ocases,axiom,
! [X: produc8199716216217303280at_nat] :
( ! [F2: nat > nat] :
( X
!= ( produc72220940542539688at_nat @ F2 @ zero_zero_nat ) )
=> ~ ! [F2: nat > nat,N: nat] :
( X
!= ( produc72220940542539688at_nat @ F2 @ ( suc @ N ) ) ) ) ).
% inf_concat_simple.cases
thf(fact_225_one__is__add,axiom,
! [M2: nat,N2: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M2 @ N2 ) )
= ( ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N2 = zero_zero_nat ) )
| ( ( M2 = zero_zero_nat )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_226_add__is__1,axiom,
! [M2: nat,N2: nat] :
( ( ( plus_plus_nat @ M2 @ N2 )
= ( suc @ zero_zero_nat ) )
= ( ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N2 = zero_zero_nat ) )
| ( ( M2 = zero_zero_nat )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_227_less__Suc__eq__0__disj,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
= ( ( M2 = zero_zero_nat )
| ? [J3: nat] :
( ( M2
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N2 ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_228_gr0__implies__Suc,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ? [M: nat] :
( N2
= ( suc @ M ) ) ) ).
% gr0_implies_Suc
thf(fact_229_gr0__conv__Suc,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
= ( ? [M4: nat] :
( N2
= ( suc @ M4 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_230_nat__mult__less__cancel__disj,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M2 @ N2 ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_231_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_232_mult__cancel__right,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ( times_times_nat @ A @ C2 )
= ( times_times_nat @ B @ C2 ) )
= ( ( C2 = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_233_mult__cancel__right,axiom,
! [A: int,C2: int,B: int] :
( ( ( times_times_int @ A @ C2 )
= ( times_times_int @ B @ C2 ) )
= ( ( C2 = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_234_mult__cancel__left,axiom,
! [C2: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C2 @ A )
= ( times_times_nat @ C2 @ B ) )
= ( ( C2 = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_235_mult__cancel__left,axiom,
! [C2: int,A: int,B: int] :
( ( ( times_times_int @ C2 @ A )
= ( times_times_int @ C2 @ B ) )
= ( ( C2 = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_236_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_237_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_238_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_239_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_240_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_241_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_242_sum__squares__gt__zero__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) )
= ( ( X != zero_zero_int )
| ( Y != zero_zero_int ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_243_not__sum__squares__lt__zero,axiom,
! [X: int,Y: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int ) ).
% not_sum_squares_lt_zero
thf(fact_244_nat__mult__less__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ) ).
% nat_mult_less_cancel1
thf(fact_245_nat__mult__eq__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M2 )
= ( times_times_nat @ K @ N2 ) )
= ( M2 = N2 ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_246_linorder__neqE__linordered__idom,axiom,
! [X: int,Y: int] :
( ( X != Y )
=> ( ~ ( ord_less_int @ X @ Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_247_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_248_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_249_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_250_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_251_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_252_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_253_mult__left__cancel,axiom,
! [C2: nat,A: nat,B: nat] :
( ( C2 != zero_zero_nat )
=> ( ( ( times_times_nat @ C2 @ A )
= ( times_times_nat @ C2 @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_254_mult__left__cancel,axiom,
! [C2: int,A: int,B: int] :
( ( C2 != zero_zero_int )
=> ( ( ( times_times_int @ C2 @ A )
= ( times_times_int @ C2 @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_255_mult__right__cancel,axiom,
! [C2: nat,A: nat,B: nat] :
( ( C2 != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C2 )
= ( times_times_nat @ B @ C2 ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_256_mult__right__cancel,axiom,
! [C2: int,A: int,B: int] :
( ( C2 != zero_zero_int )
=> ( ( ( times_times_int @ A @ C2 )
= ( times_times_int @ B @ C2 ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_257_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C2 )
= ( plus_plus_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_258_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C2 ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C2 ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_259_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C2: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
= ( plus_plus_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ C2 ) ) ) ).
% comm_semiring_class.distrib
thf(fact_260_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C2 )
= ( plus_plus_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) ) ) ).
% comm_semiring_class.distrib
thf(fact_261_distrib__left,axiom,
! [A: nat,B: nat,C2: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C2 ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C2 ) ) ) ).
% distrib_left
thf(fact_262_distrib__left,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C2 ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C2 ) ) ) ).
% distrib_left
thf(fact_263_distrib__right,axiom,
! [A: nat,B: nat,C2: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
= ( plus_plus_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ C2 ) ) ) ).
% distrib_right
thf(fact_264_distrib__right,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C2 )
= ( plus_plus_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) ) ) ).
% distrib_right
thf(fact_265_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C2: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C2 ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C2 ) ) ).
% combine_common_factor
thf(fact_266_combine__common__factor,axiom,
! [A: int,E: int,B: int,C2: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C2 ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C2 ) ) ).
% combine_common_factor
thf(fact_267_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ( times_times_nat @ K @ M2 )
= ( times_times_nat @ K @ N2 ) )
= ( ( K = zero_zero_nat )
| ( M2 = N2 ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_268_left__add__mult__distrib,axiom,
! [I3: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I3 @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_269_mult__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_270_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_271_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_272_mult__neg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_273_mult__neg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_274_mult__pos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_275_mult__pos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_276_mult__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_277_mult__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_278_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_279_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_280_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_281_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_282_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_283_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_284_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_285_mult__less__cancel__left__neg,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_286_mult__less__cancel__left__pos,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ( ord_less_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_287_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C2: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_288_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_289_mult__strict__left__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_290_mult__less__cancel__left__disj,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C2 )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C2 @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_291_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C2: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_292_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ C2 ) ) ) ) ).
% mult_strict_right_mono
thf(fact_293_mult__strict__right__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) ) ) ) ).
% mult_strict_right_mono
thf(fact_294_mult__less__cancel__right__disj,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) )
= ( ( ( ord_less_int @ zero_zero_int @ C2 )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C2 @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_295_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_296_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_297_add__less__zeroD,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ ( plus_plus_int @ X @ Y ) @ zero_zero_int )
=> ( ( ord_less_int @ X @ zero_zero_int )
| ( ord_less_int @ Y @ zero_zero_int ) ) ) ).
% add_less_zeroD
thf(fact_298_sum__squares__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_299_ex__Suc__conv,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
& ( P @ I4 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I4: nat] :
( ( ord_less_nat @ I4 @ N2 )
& ( P @ ( suc @ I4 ) ) ) ) ) ).
% ex_Suc_conv
thf(fact_300_all__Suc__conv,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
=> ( P @ I4 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ N2 )
=> ( P @ ( suc @ I4 ) ) ) ) ) ).
% all_Suc_conv
thf(fact_301_all__less__two,axiom,
! [P: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ ( suc @ zero_zero_nat ) ) )
=> ( P @ I4 ) ) )
= ( ( P @ zero_zero_nat )
& ( P @ ( suc @ zero_zero_nat ) ) ) ) ).
% all_less_two
thf(fact_302_add__scale__eq__noteq,axiom,
! [R: nat,A: nat,B: nat,C2: nat,D: nat] :
( ( R != zero_zero_nat )
=> ( ( ( A = B )
& ( C2 != D ) )
=> ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C2 ) )
!= ( plus_plus_nat @ B @ ( times_times_nat @ R @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_303_add__scale__eq__noteq,axiom,
! [R: int,A: int,B: int,C2: int,D: int] :
( ( R != zero_zero_int )
=> ( ( ( A = B )
& ( C2 != D ) )
=> ( ( plus_plus_int @ A @ ( times_times_int @ R @ C2 ) )
!= ( plus_plus_int @ B @ ( times_times_int @ R @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_304_mult__less__iff1,axiom,
! [Z: int,X: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_int @ ( times_times_int @ X @ Z ) @ ( times_times_int @ Y @ Z ) )
= ( ord_less_int @ X @ Y ) ) ) ).
% mult_less_iff1
thf(fact_305_comp__apply,axiom,
( comp_G8049203549856156444term_a
= ( ^ [F3: ground_gmctxt_a > nat,G: ground_gterm_a > ground_gmctxt_a,X4: ground_gterm_a] : ( F3 @ ( G @ X4 ) ) ) ) ).
% comp_apply
thf(fact_306_size__char__eq__0,axiom,
( size_size_char
= ( ^ [C4: char] : zero_zero_nat ) ) ).
% size_char_eq_0
thf(fact_307_comp__eq__dest__lhs,axiom,
! [A: ground_gmctxt_a > nat,B: ground_gterm_a > ground_gmctxt_a,C2: ground_gterm_a > nat,V: ground_gterm_a] :
( ( ( comp_G8049203549856156444term_a @ A @ B )
= C2 )
=> ( ( A @ ( B @ V ) )
= ( C2 @ V ) ) ) ).
% comp_eq_dest_lhs
thf(fact_308_comp__eq__elim,axiom,
! [A: ground_gmctxt_a > nat,B: ground_gterm_a > ground_gmctxt_a,C2: ground_gmctxt_a > nat,D: ground_gterm_a > ground_gmctxt_a] :
( ( ( comp_G8049203549856156444term_a @ A @ B )
= ( comp_G8049203549856156444term_a @ C2 @ D ) )
=> ! [V2: ground_gterm_a] :
( ( A @ ( B @ V2 ) )
= ( C2 @ ( D @ V2 ) ) ) ) ).
% comp_eq_elim
thf(fact_309_comp__eq__dest,axiom,
! [A: ground_gmctxt_a > nat,B: ground_gterm_a > ground_gmctxt_a,C2: ground_gmctxt_a > nat,D: ground_gterm_a > ground_gmctxt_a,V: ground_gterm_a] :
( ( ( comp_G8049203549856156444term_a @ A @ B )
= ( comp_G8049203549856156444term_a @ C2 @ D ) )
=> ( ( A @ ( B @ V ) )
= ( C2 @ ( D @ V ) ) ) ) ).
% comp_eq_dest
thf(fact_310_comp__assoc,axiom,
! [F: ground_gmctxt_a > nat,G2: ground_gterm_a > ground_gmctxt_a,H: ground_gterm_a > ground_gterm_a] :
( ( comp_G6116966634693717713term_a @ ( comp_G8049203549856156444term_a @ F @ G2 ) @ H )
= ( comp_G8049203549856156444term_a @ F @ ( comp_G2980548778298907395term_a @ G2 @ H ) ) ) ).
% comp_assoc
thf(fact_311_comp__assoc,axiom,
! [F: nat > nat,G2: ground_gmctxt_a > nat,H: ground_gterm_a > ground_gmctxt_a] :
( ( comp_G8049203549856156444term_a @ ( comp_n6274738784168413603ctxt_a @ F @ G2 ) @ H )
= ( comp_n8259423687851516650term_a @ F @ ( comp_G8049203549856156444term_a @ G2 @ H ) ) ) ).
% comp_assoc
thf(fact_312_comp__assoc,axiom,
! [F: ground_gmctxt_a > nat,G2: ground_gmctxt_a > ground_gmctxt_a,H: ground_gterm_a > ground_gmctxt_a] :
( ( comp_G8049203549856156444term_a @ ( comp_G4985101524424093169ctxt_a @ F @ G2 ) @ H )
= ( comp_G8049203549856156444term_a @ F @ ( comp_G3656465168958649678term_a @ G2 @ H ) ) ) ).
% comp_assoc
thf(fact_313_comp__def,axiom,
( comp_G8049203549856156444term_a
= ( ^ [F3: ground_gmctxt_a > nat,G: ground_gterm_a > ground_gmctxt_a,X4: ground_gterm_a] : ( F3 @ ( G @ X4 ) ) ) ) ).
% comp_def
thf(fact_314_add__0__iff,axiom,
! [B: nat,A: nat] :
( ( B
= ( plus_plus_nat @ B @ A ) )
= ( A = zero_zero_nat ) ) ).
% add_0_iff
thf(fact_315_add__0__iff,axiom,
! [B: int,A: int] :
( ( B
= ( plus_plus_int @ B @ A ) )
= ( A = zero_zero_int ) ) ).
% add_0_iff
thf(fact_316_crossproduct__noteq,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ( A != B )
& ( C2 != D ) )
= ( ( plus_plus_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ D ) )
!= ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C2 ) ) ) ) ).
% crossproduct_noteq
thf(fact_317_crossproduct__noteq,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ( A != B )
& ( C2 != D ) )
= ( ( plus_plus_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ D ) )
!= ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C2 ) ) ) ) ).
% crossproduct_noteq
thf(fact_318_crossproduct__eq,axiom,
! [W: nat,Y: nat,X: nat,Z: nat] :
( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y ) @ ( times_times_nat @ X @ Z ) )
= ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X @ Y ) ) )
= ( ( W = X )
| ( Y = Z ) ) ) ).
% crossproduct_eq
thf(fact_319_crossproduct__eq,axiom,
! [W: int,Y: int,X: int,Z: int] :
( ( ( plus_plus_int @ ( times_times_int @ W @ Y ) @ ( times_times_int @ X @ Z ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z ) @ ( times_times_int @ X @ Y ) ) )
= ( ( W = X )
| ( Y = Z ) ) ) ).
% crossproduct_eq
thf(fact_320_size_H__char__eq__0,axiom,
( size_char
= ( ^ [C4: char] : zero_zero_nat ) ) ).
% size'_char_eq_0
thf(fact_321_old_Oprod_Oinject,axiom,
! [A: int,B: int,A4: int,B4: int] :
( ( ( product_Pair_int_int @ A @ B )
= ( product_Pair_int_int @ A4 @ B4 ) )
= ( ( A = A4 )
& ( B = B4 ) ) ) ).
% old.prod.inject
thf(fact_322_old_Oprod_Oinject,axiom,
! [A: nat,B: nat,A4: nat,B4: nat] :
( ( ( product_Pair_nat_nat @ A @ B )
= ( product_Pair_nat_nat @ A4 @ B4 ) )
= ( ( A = A4 )
& ( B = B4 ) ) ) ).
% old.prod.inject
thf(fact_323_old_Oprod_Oinject,axiom,
! [A: nat > nat,B: nat,A4: nat > nat,B4: nat] :
( ( ( produc72220940542539688at_nat @ A @ B )
= ( produc72220940542539688at_nat @ A4 @ B4 ) )
= ( ( A = A4 )
& ( B = B4 ) ) ) ).
% old.prod.inject
thf(fact_324_prod_Oinject,axiom,
! [X1: int,X2: int,Y1: int,Y2: int] :
( ( ( product_Pair_int_int @ X1 @ X2 )
= ( product_Pair_int_int @ Y1 @ Y2 ) )
= ( ( X1 = Y1 )
& ( X2 = Y2 ) ) ) ).
% prod.inject
thf(fact_325_prod_Oinject,axiom,
! [X1: nat,X2: nat,Y1: nat,Y2: nat] :
( ( ( product_Pair_nat_nat @ X1 @ X2 )
= ( product_Pair_nat_nat @ Y1 @ Y2 ) )
= ( ( X1 = Y1 )
& ( X2 = Y2 ) ) ) ).
% prod.inject
thf(fact_326_prod_Oinject,axiom,
! [X1: nat > nat,X2: nat,Y1: nat > nat,Y2: nat] :
( ( ( produc72220940542539688at_nat @ X1 @ X2 )
= ( produc72220940542539688at_nat @ Y1 @ Y2 ) )
= ( ( X1 = Y1 )
& ( X2 = Y2 ) ) ) ).
% prod.inject
thf(fact_327_gctxt_Osize_I3_J,axiom,
( ( size_s4419980032559339720ctxt_a @ ground_GHole_a )
= zero_zero_nat ) ).
% gctxt.size(3)
thf(fact_328_old_Oprod_Oexhaust,axiom,
! [Y: product_prod_int_int] :
~ ! [A5: int,B5: int] :
( Y
!= ( product_Pair_int_int @ A5 @ B5 ) ) ).
% old.prod.exhaust
thf(fact_329_old_Oprod_Oexhaust,axiom,
! [Y: product_prod_nat_nat] :
~ ! [A5: nat,B5: nat] :
( Y
!= ( product_Pair_nat_nat @ A5 @ B5 ) ) ).
% old.prod.exhaust
thf(fact_330_old_Oprod_Oexhaust,axiom,
! [Y: produc8199716216217303280at_nat] :
~ ! [A5: nat > nat,B5: nat] :
( Y
!= ( produc72220940542539688at_nat @ A5 @ B5 ) ) ).
% old.prod.exhaust
thf(fact_331_surj__pair,axiom,
! [P2: product_prod_int_int] :
? [X3: int,Y3: int] :
( P2
= ( product_Pair_int_int @ X3 @ Y3 ) ) ).
% surj_pair
thf(fact_332_surj__pair,axiom,
! [P2: product_prod_nat_nat] :
? [X3: nat,Y3: nat] :
( P2
= ( product_Pair_nat_nat @ X3 @ Y3 ) ) ).
% surj_pair
thf(fact_333_surj__pair,axiom,
! [P2: produc8199716216217303280at_nat] :
? [X3: nat > nat,Y3: nat] :
( P2
= ( produc72220940542539688at_nat @ X3 @ Y3 ) ) ).
% surj_pair
thf(fact_334_prod__cases,axiom,
! [P: product_prod_int_int > $o,P2: product_prod_int_int] :
( ! [A5: int,B5: int] : ( P @ ( product_Pair_int_int @ A5 @ B5 ) )
=> ( P @ P2 ) ) ).
% prod_cases
thf(fact_335_prod__cases,axiom,
! [P: product_prod_nat_nat > $o,P2: product_prod_nat_nat] :
( ! [A5: nat,B5: nat] : ( P @ ( product_Pair_nat_nat @ A5 @ B5 ) )
=> ( P @ P2 ) ) ).
% prod_cases
thf(fact_336_prod__cases,axiom,
! [P: produc8199716216217303280at_nat > $o,P2: produc8199716216217303280at_nat] :
( ! [A5: nat > nat,B5: nat] : ( P @ ( produc72220940542539688at_nat @ A5 @ B5 ) )
=> ( P @ P2 ) ) ).
% prod_cases
thf(fact_337_Pair__inject,axiom,
! [A: int,B: int,A4: int,B4: int] :
( ( ( product_Pair_int_int @ A @ B )
= ( product_Pair_int_int @ A4 @ B4 ) )
=> ~ ( ( A = A4 )
=> ( B != B4 ) ) ) ).
% Pair_inject
thf(fact_338_Pair__inject,axiom,
! [A: nat,B: nat,A4: nat,B4: nat] :
( ( ( product_Pair_nat_nat @ A @ B )
= ( product_Pair_nat_nat @ A4 @ B4 ) )
=> ~ ( ( A = A4 )
=> ( B != B4 ) ) ) ).
% Pair_inject
thf(fact_339_Pair__inject,axiom,
! [A: nat > nat,B: nat,A4: nat > nat,B4: nat] :
( ( ( produc72220940542539688at_nat @ A @ B )
= ( produc72220940542539688at_nat @ A4 @ B4 ) )
=> ~ ( ( A = A4 )
=> ( B != B4 ) ) ) ).
% Pair_inject
thf(fact_340_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A5: nat,B5: nat] :
( ( P @ A5 @ B5 )
= ( P @ B5 @ A5 ) )
=> ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
=> ( ! [A5: nat,B5: nat] :
( ( P @ A5 @ B5 )
=> ( P @ A5 @ ( plus_plus_nat @ A5 @ B5 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_341_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_342_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_343_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_344_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_345_gctxt_Osize__gen_I1_J,axiom,
! [X: a > nat] :
( ( ground_size_gctxt_a @ X @ ground_GHole_a )
= zero_zero_nat ) ).
% gctxt.size_gen(1)
thf(fact_346_shift_Ocases,axiom,
! [X: produc8199716216217303280at_nat] :
~ ! [F2: nat > nat,J2: nat] :
( X
!= ( produc72220940542539688at_nat @ F2 @ J2 ) ) ).
% shift.cases
thf(fact_347_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_348_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_349_of__nat__eq__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( semiri1316708129612266289at_nat @ M2 )
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( M2 = N2 ) ) ).
% of_nat_eq_iff
thf(fact_350_of__nat__eq__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( semiri1314217659103216013at_int @ M2 )
= ( semiri1314217659103216013at_int @ N2 ) )
= ( M2 = N2 ) ) ).
% of_nat_eq_iff
thf(fact_351_of__nat__eq__0__iff,axiom,
! [M2: nat] :
( ( ( semiri1316708129612266289at_nat @ M2 )
= zero_zero_nat )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_352_of__nat__eq__0__iff,axiom,
! [M2: nat] :
( ( ( semiri1314217659103216013at_int @ M2 )
= zero_zero_int )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_353_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_354_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_355_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_356_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_357_of__nat__less__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_iff
thf(fact_358_of__nat__less__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_iff
thf(fact_359_of__nat__add,axiom,
! [M2: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M2 @ N2 ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% of_nat_add
thf(fact_360_of__nat__add,axiom,
! [M2: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M2 @ N2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% of_nat_add
thf(fact_361_of__nat__mult,axiom,
! [M2: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M2 @ N2 ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% of_nat_mult
thf(fact_362_of__nat__mult,axiom,
! [M2: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M2 @ N2 ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% of_nat_mult
thf(fact_363_int__plus,axiom,
! [N2: nat,M2: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N2 @ M2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).
% int_plus
thf(fact_364_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_365_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_366_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_367_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_368_mult__of__nat__commute,axiom,
! [X: nat,Y: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
= ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_369_mult__of__nat__commute,axiom,
! [X: nat,Y: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
= ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_370_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W2: int,Z2: int] :
? [N4: nat] :
( Z2
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N4 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_371_zadd__int__left,axiom,
! [M2: nat,N2: nat,Z: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ Z ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M2 @ N2 ) ) @ Z ) ) ).
% zadd_int_left
thf(fact_372_of__nat__less__0__iff,axiom,
! [M2: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_373_of__nat__less__0__iff,axiom,
! [M2: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_374_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N2 ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_375_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
!= zero_zero_int ) ).
% of_nat_neq_0
thf(fact_376_less__imp__of__nat__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_377_less__imp__of__nat__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_378_of__nat__less__imp__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_379_of__nat__less__imp__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_380_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
& ( K
= ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_381_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% pos_int_cases
thf(fact_382_zmult__zless__mono2__lemma,axiom,
! [I3: int,J: int,K: nat] :
( ( ord_less_int @ I3 @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I3 ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_383_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_384_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_385_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C2: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).
% is_num_normalize(1)
thf(fact_386_of__nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_387_of__nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_388_pochhammer__product_H,axiom,
! [Z: nat,N2: nat,M2: nat] :
( ( comm_s4663373288045622133er_nat @ Z @ ( plus_plus_nat @ N2 @ M2 ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ N2 ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N2 ) ) @ M2 ) ) ) ).
% pochhammer_product'
thf(fact_389_pochhammer__product_H,axiom,
! [Z: int,N2: nat,M2: nat] :
( ( comm_s4660882817536571857er_int @ Z @ ( plus_plus_nat @ N2 @ M2 ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ N2 ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N2 ) ) @ M2 ) ) ) ).
% pochhammer_product'
thf(fact_390_infinitely__many_Oindex__not__p__start,axiom,
! [P2: nat > $o,I3: nat] :
( ( infinitely_many @ P2 )
=> ( ( ord_less_nat @ I3 @ ( infinitely_index @ P2 @ zero_zero_nat ) )
=> ~ ( P2 @ I3 ) ) ) ).
% infinitely_many.index_not_p_start
thf(fact_391_infinitely__many_Oindex__not__p__between,axiom,
! [P2: nat > $o,N2: nat,I3: nat] :
( ( infinitely_many @ P2 )
=> ( ( ord_less_nat @ ( infinitely_index @ P2 @ N2 ) @ I3 )
=> ( ( ord_less_nat @ I3 @ ( infinitely_index @ P2 @ ( suc @ N2 ) ) )
=> ~ ( P2 @ I3 ) ) ) ) ).
% infinitely_many.index_not_p_between
thf(fact_392_power__Suc__0,axiom,
! [N2: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_393_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M2: nat] :
( ( ( power_power_nat @ X @ M2 )
= ( suc @ zero_zero_nat ) )
= ( ( M2 = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_394_nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N2 = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_395_of__nat__power,axiom,
! [M2: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M2 @ N2 ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ N2 ) ) ).
% of_nat_power
thf(fact_396_of__nat__power,axiom,
! [M2: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( power_power_nat @ M2 @ N2 ) )
= ( power_power_int @ ( semiri1314217659103216013at_int @ M2 ) @ N2 ) ) ).
% of_nat_power
thf(fact_397_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
= ( semiri1316708129612266289at_nat @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_398_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
= ( semiri1314217659103216013at_int @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_399_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1316708129612266289at_nat @ X )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_400_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1314217659103216013at_int @ X )
= ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_401_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N2 ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_402_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N2 ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_403_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_404_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_405_pochhammer__Suc0,axiom,
! [A: int] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% pochhammer_Suc0
thf(fact_406_pochhammer__Suc0,axiom,
! [A: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% pochhammer_Suc0
thf(fact_407_power__eq__0__iff,axiom,
! [A: int,N2: nat] :
( ( ( power_power_int @ A @ N2 )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_408_power__eq__0__iff,axiom,
! [A: nat,N2: nat] :
( ( ( power_power_nat @ A @ N2 )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_409_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_410_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_411_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_412_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_413_int__int__eq,axiom,
! [M2: nat,N2: nat] :
( ( ( semiri1314217659103216013at_int @ M2 )
= ( semiri1314217659103216013at_int @ N2 ) )
= ( M2 = N2 ) ) ).
% int_int_eq
thf(fact_414_infinitely__many_Oindex_Ocong,axiom,
infinitely_index = infinitely_index ).
% infinitely_many.index.cong
thf(fact_415_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_416_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_417_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_418_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_419_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_420_zmult__zless__mono2,axiom,
! [I3: int,J: int,K: int] :
( ( ord_less_int @ I3 @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I3 ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_421_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_422_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_423_power__not__zero,axiom,
! [A: int,N2: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N2 )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_424_power__not__zero,axiom,
! [A: nat,N2: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N2 )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_425_power__commutes,axiom,
! [A: nat,N2: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_426_power__commutes,axiom,
! [A: int,N2: nat] :
( ( times_times_int @ ( power_power_int @ A @ N2 ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_427_power__mult__distrib,axiom,
! [A: nat,B: nat,N2: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N2 )
= ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_428_power__mult__distrib,axiom,
! [A: int,B: int,N2: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N2 )
= ( times_times_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_429_power__commuting__commutes,axiom,
! [X: nat,Y: nat,N2: nat] :
( ( ( times_times_nat @ X @ Y )
= ( times_times_nat @ Y @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ Y )
= ( times_times_nat @ Y @ ( power_power_nat @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_430_power__commuting__commutes,axiom,
! [X: int,Y: int,N2: nat] :
( ( ( times_times_int @ X @ Y )
= ( times_times_int @ Y @ X ) )
=> ( ( times_times_int @ ( power_power_int @ X @ N2 ) @ Y )
= ( times_times_int @ Y @ ( power_power_int @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_431_power__mult,axiom,
! [A: int,M2: nat,N2: nat] :
( ( power_power_int @ A @ ( times_times_nat @ M2 @ N2 ) )
= ( power_power_int @ ( power_power_int @ A @ M2 ) @ N2 ) ) ).
% power_mult
thf(fact_432_power__mult,axiom,
! [A: nat,M2: nat,N2: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M2 @ N2 ) )
= ( power_power_nat @ ( power_power_nat @ A @ M2 ) @ N2 ) ) ).
% power_mult
thf(fact_433_infinitely__many_Oindex__p,axiom,
! [P2: nat > $o,N2: nat] :
( ( infinitely_many @ P2 )
=> ( P2 @ ( infinitely_index @ P2 @ N2 ) ) ) ).
% infinitely_many.index_p
thf(fact_434_zero__less__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_435_zero__less__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_436_power__Suc2,axiom,
! [A: nat,N2: nat] :
( ( power_power_nat @ A @ ( suc @ N2 ) )
= ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A ) ) ).
% power_Suc2
thf(fact_437_power__Suc2,axiom,
! [A: int,N2: nat] :
( ( power_power_int @ A @ ( suc @ N2 ) )
= ( times_times_int @ ( power_power_int @ A @ N2 ) @ A ) ) ).
% power_Suc2
thf(fact_438_power__Suc,axiom,
! [A: nat,N2: nat] :
( ( power_power_nat @ A @ ( suc @ N2 ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).
% power_Suc
thf(fact_439_power__Suc,axiom,
! [A: int,N2: nat] :
( ( power_power_int @ A @ ( suc @ N2 ) )
= ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).
% power_Suc
thf(fact_440_power__add,axiom,
! [A: nat,M2: nat,N2: nat] :
( ( power_power_nat @ A @ ( plus_plus_nat @ M2 @ N2 ) )
= ( times_times_nat @ ( power_power_nat @ A @ M2 ) @ ( power_power_nat @ A @ N2 ) ) ) ).
% power_add
thf(fact_441_power__add,axiom,
! [A: int,M2: nat,N2: nat] :
( ( power_power_int @ A @ ( plus_plus_nat @ M2 @ N2 ) )
= ( times_times_int @ ( power_power_int @ A @ M2 ) @ ( power_power_int @ A @ N2 ) ) ) ).
% power_add
thf(fact_442_nat__power__less__imp__less,axiom,
! [I3: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ I3 )
=> ( ( ord_less_nat @ ( power_power_nat @ I3 @ M2 ) @ ( power_power_nat @ I3 @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ) ).
% nat_power_less_imp_less
thf(fact_443_pochhammer__pos,axiom,
! [X: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ X )
=> ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N2 ) ) ) ).
% pochhammer_pos
thf(fact_444_pochhammer__pos,axiom,
! [X: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N2 ) ) ) ).
% pochhammer_pos
thf(fact_445_zero__power,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= zero_zero_int ) ) ).
% zero_power
thf(fact_446_zero__power,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_447_power__gt__expt,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ord_less_nat @ K @ ( power_power_nat @ N2 @ K ) ) ) ).
% power_gt_expt
thf(fact_448_infinitely__many_Oindex__ordered__less,axiom,
! [P2: nat > $o,I3: nat,J: nat] :
( ( infinitely_many @ P2 )
=> ( ( ord_less_nat @ I3 @ J )
=> ( ord_less_nat @ ( infinitely_index @ P2 @ I3 ) @ ( infinitely_index @ P2 @ J ) ) ) ) ).
% infinitely_many.index_ordered_less
thf(fact_449_pochhammer__rec_H,axiom,
! [Z: nat,N2: nat] :
( ( comm_s4663373288045622133er_nat @ Z @ ( suc @ N2 ) )
= ( times_times_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N2 ) ) @ ( comm_s4663373288045622133er_nat @ Z @ N2 ) ) ) ).
% pochhammer_rec'
thf(fact_450_pochhammer__rec_H,axiom,
! [Z: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ Z @ ( suc @ N2 ) )
= ( times_times_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N2 ) ) @ ( comm_s4660882817536571857er_int @ Z @ N2 ) ) ) ).
% pochhammer_rec'
thf(fact_451_pochhammer__Suc,axiom,
! [A: nat,N2: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N2 ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).
% pochhammer_Suc
thf(fact_452_pochhammer__Suc,axiom,
! [A: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N2 ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% pochhammer_Suc
thf(fact_453_infinitely__many_Oindex__ordered,axiom,
! [P2: nat > $o,N2: nat] :
( ( infinitely_many @ P2 )
=> ( ord_less_nat @ ( infinitely_index @ P2 @ N2 ) @ ( infinitely_index @ P2 @ ( suc @ N2 ) ) ) ) ).
% infinitely_many.index_ordered
thf(fact_454_infinitely__many_Oindex__surj,axiom,
! [P2: nat > $o,L: nat,K: nat] :
( ( infinitely_many @ P2 )
=> ( ( ord_less_eq_nat @ ( infinitely_index @ P2 @ L ) @ K )
=> ? [I: nat,J2: nat] :
( ( K
= ( plus_plus_nat @ ( infinitely_index @ P2 @ I ) @ J2 ) )
& ( ord_less_nat @ ( plus_plus_nat @ ( infinitely_index @ P2 @ I ) @ J2 ) @ ( infinitely_index @ P2 @ ( suc @ I ) ) ) ) ) ) ).
% infinitely_many.index_surj
thf(fact_455_power__strict__decreasing__iff,axiom,
! [B: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M2 ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M2 ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_456_power__strict__decreasing__iff,axiom,
! [B: int,M2: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M2 ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M2 ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_457_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% neg_int_cases
thf(fact_458_power__strict__mono,axiom,
! [A: nat,B: nat,N2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ) ).
% power_strict_mono
thf(fact_459_power__strict__mono,axiom,
! [A: int,B: int,N2: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ) ).
% power_strict_mono
thf(fact_460_power__mono__iff,axiom,
! [A: nat,B: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_461_power__mono__iff,axiom,
! [A: int,B: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_462_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_463_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_464_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_465_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_466_nat__mult__eq__1__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( times_times_nat @ M2 @ N2 )
= one_one_nat )
= ( ( M2 = one_one_nat )
& ( N2 = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_467_nat__1__eq__mult__iff,axiom,
! [M2: nat,N2: nat] :
( ( one_one_nat
= ( times_times_nat @ M2 @ N2 ) )
= ( ( M2 = one_one_nat )
& ( N2 = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_468_le__zero__eq,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_469_add__le__cancel__right,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_470_add__le__cancel__right,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_471_add__le__cancel__left,axiom,
! [C2: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_472_add__le__cancel__left,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_473_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_474_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_475_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_476_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_477_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_478_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_479_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_480_mult__1,axiom,
! [A: ground_gctxt_a] :
( ( times_3671199598377387961ctxt_a @ one_on2591345007439983481ctxt_a @ A )
= A ) ).
% mult_1
thf(fact_481_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_482_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_483_mult_Oright__neutral,axiom,
! [A: ground_gctxt_a] :
( ( times_3671199598377387961ctxt_a @ A @ one_on2591345007439983481ctxt_a )
= A ) ).
% mult.right_neutral
thf(fact_484_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_485_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_486_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_487_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_488_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_489_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_490_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_491_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_492_less__one,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ one_one_nat )
= ( N2 = zero_zero_nat ) ) ).
% less_one
thf(fact_493_power__one,axiom,
! [N2: nat] :
( ( power_2735389330962240702ctxt_a @ one_on2591345007439983481ctxt_a @ N2 )
= one_on2591345007439983481ctxt_a ) ).
% power_one
thf(fact_494_power__one,axiom,
! [N2: nat] :
( ( power_power_int @ one_one_int @ N2 )
= one_one_int ) ).
% power_one
thf(fact_495_power__one,axiom,
! [N2: nat] :
( ( power_power_nat @ one_one_nat @ N2 )
= one_one_nat ) ).
% power_one
thf(fact_496_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri1316708129612266289at_nat @ N2 )
= one_one_nat )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_497_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri1314217659103216013at_int @ N2 )
= one_one_int )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_498_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_499_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_500_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_501_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_502_Suc__le__mono,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M2 ) )
= ( ord_less_eq_nat @ N2 @ M2 ) ) ).
% Suc_le_mono
thf(fact_503_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_504_le0,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).
% le0
thf(fact_505_nat__add__left__cancel__le,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% nat_add_left_cancel_le
thf(fact_506_zle__add1__eq__le,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% zle_add1_eq_le
thf(fact_507_negative__zle,axiom,
! [N2: nat,M2: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ ( semiri1314217659103216013at_int @ M2 ) ) ).
% negative_zle
thf(fact_508_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_509_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_510_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_511_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_512_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_513_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_514_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_515_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_516_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_517_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_518_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_519_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_520_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_521_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_522_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_523_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_524_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_525_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_526_mult__cancel__left1,axiom,
! [C2: int,B: int] :
( ( C2
= ( times_times_int @ C2 @ B ) )
= ( ( C2 = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_527_mult__cancel__left2,axiom,
! [C2: int,A: int] :
( ( ( times_times_int @ C2 @ A )
= C2 )
= ( ( C2 = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_528_mult__cancel__right1,axiom,
! [C2: int,B: int] :
( ( C2
= ( times_times_int @ B @ C2 ) )
= ( ( C2 = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_529_mult__cancel__right2,axiom,
! [A: int,C2: int] :
( ( ( times_times_int @ A @ C2 )
= C2 )
= ( ( C2 = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_530_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_531_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_532_mult__minus1,axiom,
! [Z: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1
thf(fact_533_mult__minus1__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1_right
thf(fact_534_power__inject__exp,axiom,
! [A: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M2 )
= ( power_power_nat @ A @ N2 ) )
= ( M2 = N2 ) ) ) ).
% power_inject_exp
thf(fact_535_power__inject__exp,axiom,
! [A: int,M2: nat,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M2 )
= ( power_power_int @ A @ N2 ) )
= ( M2 = N2 ) ) ) ).
% power_inject_exp
thf(fact_536_of__nat__le__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% of_nat_le_iff
thf(fact_537_of__nat__le__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% of_nat_le_iff
thf(fact_538_negative__eq__positive,axiom,
! [N2: nat,M2: nat] :
( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( semiri1314217659103216013at_int @ M2 ) )
= ( ( N2 = zero_zero_nat )
& ( M2 = zero_zero_nat ) ) ) ).
% negative_eq_positive
thf(fact_539_pochhammer__0,axiom,
! [A: nat] :
( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% pochhammer_0
thf(fact_540_pochhammer__0,axiom,
! [A: int] :
( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
= one_one_int ) ).
% pochhammer_0
thf(fact_541_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_542_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_543_of__nat__le__0__iff,axiom,
! [M2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_544_of__nat__le__0__iff,axiom,
! [M2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_545_power__strict__increasing__iff,axiom,
! [B: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_546_power__strict__increasing__iff,axiom,
! [B: int,X: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_547_minus__one__mult__self,axiom,
! [N2: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) )
= one_one_int ) ).
% minus_one_mult_self
thf(fact_548_left__minus__one__mult__self,axiom,
! [N2: nat,A: int] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_549_of__nat__Suc,axiom,
! [M2: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ M2 ) )
= ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M2 ) ) ) ).
% of_nat_Suc
thf(fact_550_of__nat__Suc,axiom,
! [M2: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ M2 ) )
= ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).
% of_nat_Suc
thf(fact_551_one__le__mult__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M2 @ N2 ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M2 )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) ) ).
% one_le_mult_iff
thf(fact_552_nat__mult__le__cancel__disj,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_553_mult__le__cancel2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N2 @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ) ).
% mult_le_cancel2
thf(fact_554_negative__zless,axiom,
! [N2: nat,M2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ ( semiri1314217659103216013at_int @ M2 ) ) ).
% negative_zless
thf(fact_555_power__increasing__iff,axiom,
! [B: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_556_power__increasing__iff,axiom,
! [B: int,X: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_557_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_558_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_559_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_560_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_561_power__decreasing__iff,axiom,
! [B: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M2 ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M2 ) ) ) ) ).
% power_decreasing_iff
thf(fact_562_power__decreasing__iff,axiom,
! [B: int,M2: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M2 ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M2 ) ) ) ) ).
% power_decreasing_iff
thf(fact_563_power__increasing,axiom,
! [N2: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_564_power__increasing,axiom,
! [N2: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_565_one__le__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_566_one__le__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_567_power__decreasing,axiom,
! [N2: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).
% power_decreasing
thf(fact_568_power__decreasing,axiom,
! [N2: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).
% power_decreasing
thf(fact_569_power__le__imp__le__exp,axiom,
! [A: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M2 ) @ ( power_power_nat @ A @ N2 ) )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ) ).
% power_le_imp_le_exp
thf(fact_570_power__le__imp__le__exp,axiom,
! [A: int,M2: nat,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M2 ) @ ( power_power_int @ A @ N2 ) )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ) ).
% power_le_imp_le_exp
thf(fact_571_mult__left__le,axiom,
! [C2: nat,A: nat] :
( ( ord_less_eq_nat @ C2 @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ A ) ) ) ).
% mult_left_le
thf(fact_572_mult__left__le,axiom,
! [C2: int,A: int] :
( ( ord_less_eq_int @ C2 @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C2 ) @ A ) ) ) ).
% mult_left_le
thf(fact_573_mult__le__one,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ one_one_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).
% mult_le_one
thf(fact_574_mult__le__one,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).
% mult_le_one
thf(fact_575_mult__right__le__one__le,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ord_less_eq_int @ Y @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ X @ Y ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_576_mult__left__le__one__le,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ord_less_eq_int @ Y @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ Y @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_577_power__minus,axiom,
! [A: int,N2: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( power_power_int @ A @ N2 ) ) ) ).
% power_minus
thf(fact_578_power__le__one,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_579_power__le__one,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_580_int__zle__neg,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M2 ) ) )
= ( ( N2 = zero_zero_nat )
& ( M2 = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_581_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ~ ! [N: nat] :
( K
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% nonpos_int_cases
thf(fact_582_negative__zle__0,axiom,
! [N2: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ zero_zero_int ) ).
% negative_zle_0
thf(fact_583_int__one__le__iff__zero__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ Z )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% int_one_le_iff_zero_less
thf(fact_584_zless__imp__add1__zle,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ Z )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).
% zless_imp_add1_zle
thf(fact_585_add1__zle__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
= ( ord_less_int @ W @ Z ) ) ).
% add1_zle_eq
thf(fact_586_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_587_one__reorient,axiom,
! [X: ground_gctxt_a] :
( ( one_on2591345007439983481ctxt_a = X )
= ( X = one_on2591345007439983481ctxt_a ) ) ).
% one_reorient
thf(fact_588_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_589_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_590_nat__le__linear,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
| ( ord_less_eq_nat @ N2 @ M2 ) ) ).
% nat_le_linear
thf(fact_591_le__antisym,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ M2 )
=> ( M2 = N2 ) ) ) ).
% le_antisym
thf(fact_592_eq__imp__le,axiom,
! [M2: nat,N2: nat] :
( ( M2 = N2 )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% eq_imp_le
thf(fact_593_le__trans,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I3 @ K ) ) ) ).
% le_trans
thf(fact_594_le__refl,axiom,
! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).
% le_refl
thf(fact_595_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_596_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_597_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_598_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_599_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_600_lift__Suc__mono__le,axiom,
! [F: nat > nat,N2: nat,N3: nat] :
( ! [N: nat] : ( ord_less_eq_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ N2 @ N3 )
=> ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_601_lift__Suc__mono__le,axiom,
! [F: nat > int,N2: nat,N3: nat] :
( ! [N: nat] : ( ord_less_eq_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ N2 @ N3 )
=> ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_602_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N2: nat,N3: nat] :
( ! [N: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
=> ( ( ord_less_eq_nat @ N2 @ N3 )
=> ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ N2 ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_603_lift__Suc__antimono__le,axiom,
! [F: nat > int,N2: nat,N3: nat] :
( ! [N: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
=> ( ( ord_less_eq_nat @ N2 @ N3 )
=> ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ N2 ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_604_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(3)
thf(fact_605_less__minus__one__simps_I1_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% less_minus_one_simps(1)
thf(fact_606_pos__zmult__eq__1__iff__lemma,axiom,
! [M2: int,N2: int] :
( ( ( times_times_int @ M2 @ N2 )
= one_one_int )
=> ( ( M2 = one_one_int )
| ( M2
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_607_zmult__eq__1__iff,axiom,
! [M2: int,N2: int] :
( ( ( times_times_int @ M2 @ N2 )
= one_one_int )
= ( ( ( M2 = one_one_int )
& ( N2 = one_one_int ) )
| ( ( M2
= ( uminus_uminus_int @ one_one_int ) )
& ( N2
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_608_int__ge__induct,axiom,
! [K: int,I3: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ K )
=> ( ! [I: int] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ I )
=> ( P @ ( plus_plus_int @ I @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_ge_induct
thf(fact_609_square__eq__1__iff,axiom,
! [X: int] :
( ( ( times_times_int @ X @ X )
= one_one_int )
= ( ( X = one_one_int )
| ( X
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_610_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_611_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_612_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_613_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_614_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_615_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_616_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(3)
thf(fact_617_le__minus__one__simps_I1_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% le_minus_one_simps(1)
thf(fact_618_zero__neq__neg__one,axiom,
( zero_zero_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% zero_neq_neg_one
thf(fact_619_of__nat__mono,axiom,
! [I3: nat,J: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I3 ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_620_of__nat__mono,axiom,
! [I3: nat,J: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I3 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_621_zle__int,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% zle_int
thf(fact_622_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_623_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_624_minus__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_625_less__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% less_minus_iff
thf(fact_626_verit__negate__coefficient_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_627_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_628_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_629_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_630_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_631_is__num__normalize_I8_J,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_632_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_633_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_634_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_635_verit__comp__simplify1_I3_J,axiom,
! [B4: nat,A4: nat] :
( ( ~ ( ord_less_eq_nat @ B4 @ A4 ) )
= ( ord_less_nat @ A4 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_636_verit__comp__simplify1_I3_J,axiom,
! [B4: int,A4: int] :
( ( ~ ( ord_less_eq_int @ B4 @ A4 ) )
= ( ord_less_int @ A4 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_637_add__le__imp__le__right,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_638_add__le__imp__le__right,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_639_add__le__imp__le__left,axiom,
! [C2: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_640_add__le__imp__le__left,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_641_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] :
? [C4: nat] :
( B3
= ( plus_plus_nat @ A3 @ C4 ) ) ) ) ).
% le_iff_add
thf(fact_642_add__right__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) ) ) ).
% add_right_mono
thf(fact_643_add__right__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) ) ) ).
% add_right_mono
thf(fact_644_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C3: nat] :
( B
!= ( plus_plus_nat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_645_add__left__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) ) ) ).
% add_left_mono
thf(fact_646_add__left__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) ) ) ).
% add_left_mono
thf(fact_647_add__mono,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C2 @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_648_add__mono,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C2 @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_649_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I3 @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_650_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I3 @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_651_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( I3 = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_652_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( I3 = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_653_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I3 @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_654_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I3 @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_655_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_656_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_657_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_658_Suc__leD,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% Suc_leD
thf(fact_659_le__SucE,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) )
=> ( ~ ( ord_less_eq_nat @ M2 @ N2 )
=> ( M2
= ( suc @ N2 ) ) ) ) ).
% le_SucE
thf(fact_660_le__SucI,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) ) ) ).
% le_SucI
thf(fact_661_Suc__le__D,axiom,
! [N2: nat,M6: nat] :
( ( ord_less_eq_nat @ ( suc @ N2 ) @ M6 )
=> ? [M: nat] :
( M6
= ( suc @ M ) ) ) ).
% Suc_le_D
thf(fact_662_le__Suc__eq,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) )
= ( ( ord_less_eq_nat @ M2 @ N2 )
| ( M2
= ( suc @ N2 ) ) ) ) ).
% le_Suc_eq
thf(fact_663_Suc__n__not__le__n,axiom,
! [N2: nat] :
~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).
% Suc_n_not_le_n
thf(fact_664_not__less__eq__eq,axiom,
! [M2: nat,N2: nat] :
( ( ~ ( ord_less_eq_nat @ M2 @ N2 ) )
= ( ord_less_eq_nat @ ( suc @ N2 ) @ M2 ) ) ).
% not_less_eq_eq
thf(fact_665_full__nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N: nat] :
( ! [M3: nat] :
( ( ord_less_eq_nat @ ( suc @ M3 ) @ N )
=> ( P @ M3 ) )
=> ( P @ N ) )
=> ( P @ N2 ) ) ).
% full_nat_induct
thf(fact_666_nat__induct__at__least,axiom,
! [M2: nat,N2: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( P @ M2 )
=> ( ! [N: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ( P @ N )
=> ( P @ ( suc @ N ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct_at_least
thf(fact_667_transitive__stepwise__le,axiom,
! [M2: nat,N2: nat,R2: nat > nat > $o] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ! [X3: nat] : ( R2 @ X3 @ X3 )
=> ( ! [X3: nat,Y3: nat,Z3: nat] :
( ( R2 @ X3 @ Y3 )
=> ( ( R2 @ Y3 @ Z3 )
=> ( R2 @ X3 @ Z3 ) ) )
=> ( ! [N: nat] : ( R2 @ N @ ( suc @ N ) )
=> ( R2 @ M2 @ N2 ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_668_less__eq__nat_Osimps_I1_J,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).
% less_eq_nat.simps(1)
thf(fact_669_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_670_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_671_le__0__eq,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_672_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_673_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_674_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I3: nat,J: nat] :
( ! [I: nat,J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( ord_less_nat @ ( F @ I ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_675_le__neq__implies__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( M2 != N2 )
=> ( ord_less_nat @ M2 @ N2 ) ) ) ).
% le_neq_implies_less
thf(fact_676_less__or__eq__imp__le,axiom,
! [M2: nat,N2: nat] :
( ( ( ord_less_nat @ M2 @ N2 )
| ( M2 = N2 ) )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% less_or_eq_imp_le
thf(fact_677_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M4: nat,N4: nat] :
( ( ord_less_nat @ M4 @ N4 )
| ( M4 = N4 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_678_less__imp__le__nat,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% less_imp_le_nat
thf(fact_679_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M4: nat,N4: nat] :
( ( ord_less_eq_nat @ M4 @ N4 )
& ( M4 != N4 ) ) ) ) ).
% nat_less_le
thf(fact_680_inf__pigeonhole__principle,axiom,
! [N2: nat,F: nat > nat > $o] :
( ! [K3: nat] :
? [I2: nat] :
( ( ord_less_nat @ I2 @ N2 )
& ( F @ K3 @ I2 ) )
=> ? [I: nat] :
( ( ord_less_nat @ I @ N2 )
& ! [K4: nat] :
? [K5: nat] :
( ( ord_less_eq_nat @ K4 @ K5 )
& ( F @ K5 @ I ) ) ) ) ).
% inf_pigeonhole_principle
thf(fact_681_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_682_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_683_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_684_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_685_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_686_int__cases2,axiom,
! [Z: int] :
( ! [N: nat] :
( Z
!= ( semiri1314217659103216013at_int @ N ) )
=> ~ ! [N: nat] :
( Z
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% int_cases2
thf(fact_687_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M4: nat,N4: nat] :
? [K2: nat] :
( N4
= ( plus_plus_nat @ M4 @ K2 ) ) ) ) ).
% nat_le_iff_add
thf(fact_688_trans__le__add2,axiom,
! [I3: nat,J: nat,M2: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ I3 @ ( plus_plus_nat @ M2 @ J ) ) ) ).
% trans_le_add2
thf(fact_689_trans__le__add1,axiom,
! [I3: nat,J: nat,M2: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ I3 @ ( plus_plus_nat @ J @ M2 ) ) ) ).
% trans_le_add1
thf(fact_690_add__le__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_691_add__le__mono,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_692_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N: nat] :
( L
= ( plus_plus_nat @ K @ N ) ) ) ).
% le_Suc_ex
thf(fact_693_add__leD2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N2 )
=> ( ord_less_eq_nat @ K @ N2 ) ) ).
% add_leD2
thf(fact_694_add__leD1,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N2 )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% add_leD1
thf(fact_695_le__add2,axiom,
! [N2: nat,M2: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M2 @ N2 ) ) ).
% le_add2
thf(fact_696_le__add1,axiom,
! [N2: nat,M2: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M2 ) ) ).
% le_add1
thf(fact_697_add__leE,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N2 )
=> ~ ( ( ord_less_eq_nat @ M2 @ N2 )
=> ~ ( ord_less_eq_nat @ K @ N2 ) ) ) ).
% add_leE
thf(fact_698_mult__le__mono2,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I3 ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_699_mult__le__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I3 @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_700_mult__le__mono,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I3 @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_701_le__square,axiom,
! [M2: nat] : ( ord_less_eq_nat @ M2 @ ( times_times_nat @ M2 @ M2 ) ) ).
% le_square
thf(fact_702_le__cube,axiom,
! [M2: nat] : ( ord_less_eq_nat @ M2 @ ( times_times_nat @ M2 @ ( times_times_nat @ M2 @ M2 ) ) ) ).
% le_cube
thf(fact_703_nat__mult__1__right,axiom,
! [N2: nat] :
( ( times_times_nat @ N2 @ one_one_nat )
= N2 ) ).
% nat_mult_1_right
thf(fact_704_nat__mult__1,axiom,
! [N2: nat] :
( ( times_times_nat @ one_one_nat @ N2 )
= N2 ) ).
% nat_mult_1
thf(fact_705_one__gctxt__def,axiom,
one_on2591345007439983481ctxt_a = ground_GHole_a ).
% one_gctxt_def
thf(fact_706_mult__le__cancel__left1,axiom,
! [C2: int,B: int] :
( ( ord_less_eq_int @ C2 @ ( times_times_int @ C2 @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_707_mult__le__cancel__left2,axiom,
! [C2: int,A: int] :
( ( ord_less_eq_int @ ( times_times_int @ C2 @ A ) @ C2 )
= ( ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_708_mult__le__cancel__right1,axiom,
! [C2: int,B: int] :
( ( ord_less_eq_int @ C2 @ ( times_times_int @ B @ C2 ) )
= ( ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_709_mult__le__cancel__right2,axiom,
! [A: int,C2: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C2 ) @ C2 )
= ( ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_710_mult__less__cancel__left1,axiom,
! [C2: int,B: int] :
( ( ord_less_int @ C2 @ ( times_times_int @ C2 @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_711_mult__less__cancel__left2,axiom,
! [C2: int,A: int] :
( ( ord_less_int @ ( times_times_int @ C2 @ A ) @ C2 )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_712_mult__less__cancel__right1,axiom,
! [C2: int,B: int] :
( ( ord_less_int @ C2 @ ( times_times_int @ B @ C2 ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_713_mult__less__cancel__right2,axiom,
! [A: int,C2: int] :
( ( ord_less_int @ ( times_times_int @ A @ C2 ) @ C2 )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_714_convex__bound__le,axiom,
! [X: int,A: int,Y: int,U: int,V: int] :
( ( ord_less_eq_int @ X @ A )
=> ( ( ord_less_eq_int @ Y @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_715_power__Suc__le__self,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_716_power__Suc__le__self,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_717_infinitely__many_Oinf,axiom,
! [P2: nat > $o,I3: nat] :
( ( infinitely_many @ P2 )
=> ? [J2: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
& ( P2 @ J2 ) ) ) ).
% infinitely_many.inf
thf(fact_718_not__zle__0__negative,axiom,
! [N2: nat] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ).
% not_zle_0_negative
thf(fact_719_self__le__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% self_le_power
thf(fact_720_self__le__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).
% self_le_power
thf(fact_721_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
!= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_722_le__imp__0__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).
% le_imp_0_less
thf(fact_723_convex__bound__lt,axiom,
! [X: int,A: int,Y: int,U: int,V: int] :
( ( ord_less_int @ X @ A )
=> ( ( ord_less_int @ Y @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_724_neg__eq__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_725_eq__neg__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_726_add_Oinverse__unique,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
=> ( ( uminus_uminus_int @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_727_ab__group__add__class_Oab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_group_add_class.ab_left_minus
thf(fact_728_add__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% add_eq_0_iff
thf(fact_729_mult__mono,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C2 @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_730_mult__mono,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C2 @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_731_mult__mono_H,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C2 @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_732_mult__mono_H,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C2 @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_733_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_734_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_735_mult__left__mono__neg,axiom,
! [B: int,A: int,C2: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_736_mult__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_737_mult__left__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B ) ) ) ) ).
% mult_left_mono
thf(fact_738_mult__left__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) ) ) ) ).
% mult_left_mono
thf(fact_739_mult__right__mono__neg,axiom,
! [B: int,A: int,C2: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) ) ) ) ).
% mult_right_mono_neg
thf(fact_740_mult__right__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ C2 ) ) ) ) ).
% mult_right_mono
thf(fact_741_mult__right__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) ) ) ) ).
% mult_right_mono
thf(fact_742_mult__le__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_743_split__mult__neg__le,axiom,
! [A: nat,B: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_744_split__mult__neg__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).
% split_mult_neg_le
thf(fact_745_mult__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_746_mult__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_747_mult__nonneg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_748_mult__nonneg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos
thf(fact_749_mult__nonpos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_750_mult__nonpos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonpos_nonneg
thf(fact_751_mult__nonneg__nonpos2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_752_mult__nonneg__nonpos2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_753_zero__le__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).
% zero_le_mult_iff
thf(fact_754_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_755_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_756_add__nonpos__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_757_add__nonpos__eq__0__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y @ zero_zero_int )
=> ( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_758_add__nonneg__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_759_add__nonneg__eq__0__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_760_add__nonpos__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_761_add__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_nonpos
thf(fact_762_add__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_763_add__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_764_add__increasing2,axiom,
! [C2: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).
% add_increasing2
thf(fact_765_add__increasing2,axiom,
! [C2: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).
% add_increasing2
thf(fact_766_add__decreasing2,axiom,
! [C2: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C2 @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ B ) ) ) ).
% add_decreasing2
thf(fact_767_add__decreasing2,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ) ).
% add_decreasing2
thf(fact_768_add__increasing,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C2 )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).
% add_increasing
thf(fact_769_add__increasing,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C2 )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).
% add_increasing
thf(fact_770_add__decreasing,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C2 @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ B ) ) ) ).
% add_decreasing
thf(fact_771_add__decreasing,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C2 @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ) ).
% add_decreasing
thf(fact_772_add__less__le__mono,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C2 @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_773_add__less__le__mono,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C2 @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_774_add__le__less__mono,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C2 @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_775_add__le__less__mono,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C2 @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_776_add__mono__thms__linordered__field_I3_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I3 @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_777_add__mono__thms__linordered__field_I3_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I3 @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_778_add__mono__thms__linordered__field_I4_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I3 @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_779_add__mono__thms__linordered__field_I4_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I3 @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_780_zero__le__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_781_zero__le__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_782_power__mono,axiom,
! [A: nat,B: nat,N2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_783_power__mono,axiom,
! [A: int,B: int,N2: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_784_Abstract__Rewriting_Ochain__mono,axiom,
! [R3: set_Pr958786334691620121nt_int,R2: set_Pr958786334691620121nt_int,Seq: nat > int] :
( ( ord_le2843351958646193337nt_int @ R3 @ R2 )
=> ( ! [I: nat] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ ( Seq @ I ) @ ( Seq @ ( suc @ I ) ) ) @ R3 )
=> ! [I2: nat] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ ( Seq @ I2 ) @ ( Seq @ ( suc @ I2 ) ) ) @ R2 ) ) ) ).
% Abstract_Rewriting.chain_mono
thf(fact_785_Abstract__Rewriting_Ochain__mono,axiom,
! [R3: set_Pr1261947904930325089at_nat,R2: set_Pr1261947904930325089at_nat,Seq: nat > nat] :
( ( ord_le3146513528884898305at_nat @ R3 @ R2 )
=> ( ! [I: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ ( Seq @ I ) @ ( Seq @ ( suc @ I ) ) ) @ R3 )
=> ! [I2: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ ( Seq @ I2 ) @ ( Seq @ ( suc @ I2 ) ) ) @ R2 ) ) ) ).
% Abstract_Rewriting.chain_mono
thf(fact_786_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_787_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_788_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_789_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_790_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_791_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_792_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_793_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_794_int__cases,axiom,
! [Z: int] :
( ! [N: nat] :
( Z
!= ( semiri1314217659103216013at_int @ N ) )
=> ~ ! [N: nat] :
( Z
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ).
% int_cases
thf(fact_795_int__of__nat__induct,axiom,
! [P: int > $o,Z: int] :
( ! [N: nat] : ( P @ ( semiri1314217659103216013at_int @ N ) )
=> ( ! [N: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) )
=> ( P @ Z ) ) ) ).
% int_of_nat_induct
thf(fact_796_le__imp__less__Suc,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ord_less_nat @ M2 @ ( suc @ N2 ) ) ) ).
% le_imp_less_Suc
thf(fact_797_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_798_less__Suc__eq__le,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% less_Suc_eq_le
thf(fact_799_le__less__Suc__eq,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( ord_less_nat @ N2 @ ( suc @ M2 ) )
= ( N2 = M2 ) ) ) ).
% le_less_Suc_eq
thf(fact_800_Suc__le__lessD,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% Suc_le_lessD
thf(fact_801_inc__induct,axiom,
! [I3: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( P @ J )
=> ( ! [N: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( ord_less_nat @ N @ J )
=> ( ( P @ ( suc @ N ) )
=> ( P @ N ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% inc_induct
thf(fact_802_dec__induct,axiom,
! [I3: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( P @ I3 )
=> ( ! [N: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( ord_less_nat @ N @ J )
=> ( ( P @ N )
=> ( P @ ( suc @ N ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_803_Suc__le__eq,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% Suc_le_eq
thf(fact_804_Suc__leI,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 ) ) ).
% Suc_leI
thf(fact_805_ex__least__nat__le,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N2 )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ K3 )
=> ~ ( P @ I2 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_806_less__1__mult,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ M2 )
=> ( ( ord_less_nat @ one_one_nat @ N2 )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M2 @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_807_less__1__mult,axiom,
! [M2: int,N2: int] :
( ( ord_less_int @ one_one_int @ M2 )
=> ( ( ord_less_int @ one_one_int @ N2 )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M2 @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_808_less__add__one,axiom,
! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).
% less_add_one
thf(fact_809_less__add__one,axiom,
! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).
% less_add_one
thf(fact_810_add__mono1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).
% add_mono1
thf(fact_811_add__mono1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).
% add_mono1
thf(fact_812_mono__nat__linear__lb,axiom,
! [F: nat > nat,M2: nat,K: nat] :
( ! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( F @ M ) @ ( F @ N ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M2 ) @ K ) @ ( F @ ( plus_plus_nat @ M2 @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_813_not__int__zless__negative,axiom,
! [N2: nat,M2: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).
% not_int_zless_negative
thf(fact_814_Suc__mult__le__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M2 ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% Suc_mult_le_cancel1
thf(fact_815_left__right__inverse__power,axiom,
! [X: ground_gctxt_a,Y: ground_gctxt_a,N2: nat] :
( ( ( times_3671199598377387961ctxt_a @ X @ Y )
= one_on2591345007439983481ctxt_a )
=> ( ( times_3671199598377387961ctxt_a @ ( power_2735389330962240702ctxt_a @ X @ N2 ) @ ( power_2735389330962240702ctxt_a @ Y @ N2 ) )
= one_on2591345007439983481ctxt_a ) ) ).
% left_right_inverse_power
thf(fact_816_left__right__inverse__power,axiom,
! [X: nat,Y: nat,N2: nat] :
( ( ( times_times_nat @ X @ Y )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ ( power_power_nat @ Y @ N2 ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_817_left__right__inverse__power,axiom,
! [X: int,Y: int,N2: nat] :
( ( ( times_times_int @ X @ Y )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X @ N2 ) @ ( power_power_int @ Y @ N2 ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_818_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_819_power__0,axiom,
! [A: ground_gctxt_a] :
( ( power_2735389330962240702ctxt_a @ A @ zero_zero_nat )
= one_on2591345007439983481ctxt_a ) ).
% power_0
thf(fact_820_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_821_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_822_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N: nat] :
( K
!= ( semiri1314217659103216013at_int @ N ) ) ) ).
% nonneg_int_cases
thf(fact_823_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N: nat] :
( K
= ( semiri1314217659103216013at_int @ N ) ) ) ).
% zero_le_imp_eq_int
thf(fact_824_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_825_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_826_Suc__eq__plus1,axiom,
( suc
= ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_827_mult__eq__self__implies__10,axiom,
! [M2: nat,N2: nat] :
( ( M2
= ( times_times_nat @ M2 @ N2 ) )
=> ( ( N2 = one_one_nat )
| ( M2 = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_828_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W2: int,Z2: int] :
? [N4: nat] :
( Z2
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_829_odd__nonzero,axiom,
! [Z: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_830_int__gr__induct,axiom,
! [K: int,I3: int,P: int > $o] :
( ( ord_less_int @ K @ I3 )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I: int] :
( ( ord_less_int @ K @ I )
=> ( ( P @ I )
=> ( P @ ( plus_plus_int @ I @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_gr_induct
thf(fact_831_zless__add1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ( ord_less_int @ W @ Z )
| ( W = Z ) ) ) ).
% zless_add1_eq
thf(fact_832_infinitely__many_Oindex__ordered__le,axiom,
! [P2: nat > $o,I3: nat,J: nat] :
( ( infinitely_many @ P2 )
=> ( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ ( infinitely_index @ P2 @ I3 ) @ ( infinitely_index @ P2 @ J ) ) ) ) ).
% infinitely_many.index_ordered_le
thf(fact_833_mult__le__cancel__left,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_834_mult__le__cancel__right,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) )
= ( ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_835_mult__left__less__imp__less,axiom,
! [C2: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_836_mult__left__less__imp__less,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_837_mult__strict__mono,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C2 @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_838_mult__strict__mono,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C2 @ D )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_839_mult__less__cancel__left,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_840_mult__right__less__imp__less,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ C2 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_841_mult__right__less__imp__less,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_842_mult__strict__mono_H,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C2 @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_843_mult__strict__mono_H,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C2 @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_844_mult__less__cancel__right,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C2 @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_845_mult__le__cancel__left__neg,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ C2 @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_846_mult__le__cancel__left__pos,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ( ord_less_eq_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_847_mult__left__le__imp__le,axiom,
! [C2: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_848_mult__left__le__imp__le,axiom,
! [C2: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C2 @ A ) @ ( times_times_int @ C2 @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_849_mult__right__le__imp__le,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ C2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_850_mult__right__le__imp__le,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) )
=> ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_851_mult__le__less__imp__less,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C2 @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_852_mult__le__less__imp__less,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C2 @ D )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_853_mult__less__le__imp__less,axiom,
! [A: nat,B: nat,C2: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C2 @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_854_mult__less__le__imp__less,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C2 @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ C2 )
=> ( ord_less_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_855_mult__le__cancel__iff1,axiom,
! [Z: int,X: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ ( times_times_int @ X @ Z ) @ ( times_times_int @ Y @ Z ) )
= ( ord_less_eq_int @ X @ Y ) ) ) ).
% mult_le_cancel_iff1
thf(fact_856_mult__le__cancel__iff2,axiom,
! [Z: int,X: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ ( times_times_int @ Z @ X ) @ ( times_times_int @ Z @ Y ) )
= ( ord_less_eq_int @ X @ Y ) ) ) ).
% mult_le_cancel_iff2
thf(fact_857_add__neg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_nonpos
thf(fact_858_add__neg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_nonpos
thf(fact_859_add__nonneg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_860_add__nonneg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_861_add__nonpos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_neg
thf(fact_862_add__nonpos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_neg
thf(fact_863_add__pos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_864_add__pos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_865_add__strict__increasing,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C2 )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).
% add_strict_increasing
thf(fact_866_add__strict__increasing,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C2 )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).
% add_strict_increasing
thf(fact_867_add__strict__increasing2,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C2 )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).
% add_strict_increasing2
thf(fact_868_add__strict__increasing2,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C2 )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).
% add_strict_increasing2
thf(fact_869_sum__squares__ge__zero,axiom,
! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) ) ).
% sum_squares_ge_zero
thf(fact_870_sum__squares__le__zero__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_871_power__less__imp__less__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_872_power__less__imp__less__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_873_power__inject__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ( power_power_nat @ A @ ( suc @ N2 ) )
= ( power_power_nat @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_874_power__inject__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ( power_power_int @ A @ ( suc @ N2 ) )
= ( power_power_int @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_875_power__le__imp__le__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ ( power_power_nat @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_876_power__le__imp__le__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ ( power_power_int @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_877_int__cases4,axiom,
! [M2: int] :
( ! [N: nat] :
( M2
!= ( semiri1314217659103216013at_int @ N ) )
=> ~ ! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( M2
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).
% int_cases4
thf(fact_878_zero__less__two,axiom,
ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).
% zero_less_two
thf(fact_879_zero__less__two,axiom,
ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).
% zero_less_two
thf(fact_880_ex__least__nat__less,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_nat @ K3 @ N2 )
& ! [I2: nat] :
( ( ord_less_eq_nat @ I2 @ K3 )
=> ~ ( P @ I2 ) )
& ( P @ ( suc @ K3 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_881_nat__mult__le__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ) ).
% nat_mult_le_cancel1
thf(fact_882_power__gt1__lemma,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_883_power__gt1__lemma,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_884_power__less__power__Suc,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_885_power__less__power__Suc,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_886_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= one_one_int ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_887_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= one_one_nat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_888_power__gt1,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) ) ) ).
% power_gt1
thf(fact_889_power__gt1,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N2 ) ) ) ) ).
% power_gt1
thf(fact_890_power__less__imp__less__exp,axiom,
! [A: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M2 ) @ ( power_power_nat @ A @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ) ).
% power_less_imp_less_exp
thf(fact_891_power__less__imp__less__exp,axiom,
! [A: int,M2: nat,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M2 ) @ ( power_power_int @ A @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ) ).
% power_less_imp_less_exp
thf(fact_892_power__strict__increasing,axiom,
! [N2: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_893_power__strict__increasing,axiom,
! [N2: nat,N5: nat,A: int] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_894_pochhammer__nonneg,axiom,
! [X: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ X )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N2 ) ) ) ).
% pochhammer_nonneg
thf(fact_895_pochhammer__nonneg,axiom,
! [X: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N2 ) ) ) ).
% pochhammer_nonneg
thf(fact_896_nat__induct__non__zero,axiom,
! [N2: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ one_one_nat )
=> ( ! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ N )
=> ( P @ ( suc @ N ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct_non_zero
thf(fact_897_nat__one__le__power,axiom,
! [I3: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I3 )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I3 @ N2 ) ) ) ).
% nat_one_le_power
thf(fact_898_pochhammer__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N2 )
= one_one_nat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ) ) ).
% pochhammer_0_left
thf(fact_899_pochhammer__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N2 )
= one_one_int ) )
& ( ( N2 != zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N2 )
= zero_zero_int ) ) ) ).
% pochhammer_0_left
thf(fact_900_int__Suc,axiom,
! [N2: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ).
% int_Suc
thf(fact_901_int__ops_I4_J,axiom,
! [A: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ A ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).
% int_ops(4)
thf(fact_902_pos__zmult__eq__1__iff,axiom,
! [M2: int,N2: int] :
( ( ord_less_int @ zero_zero_int @ M2 )
=> ( ( ( times_times_int @ M2 @ N2 )
= one_one_int )
= ( ( M2 = one_one_int )
& ( N2 = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_903_odd__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_904_power__eq__imp__eq__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ( power_power_nat @ A @ N2 )
= ( power_power_nat @ B @ N2 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_905_power__eq__imp__eq__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ( power_power_int @ A @ N2 )
= ( power_power_int @ B @ N2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_906_power__eq__iff__eq__base,axiom,
! [N2: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N2 )
= ( power_power_nat @ B @ N2 ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_907_power__eq__iff__eq__base,axiom,
! [N2: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N2 )
= ( power_power_int @ B @ N2 ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_908_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N ) )
=> ~ ! [N: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ) ).
% int_cases3
thf(fact_909_pochhammer__of__nat__eq__0__lemma,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ N2 @ K )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_910_pochhammer__of__nat__eq__0__iff,axiom,
! [N2: nat,K: nat] :
( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
= zero_zero_int )
= ( ord_less_nat @ N2 @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_911_negD,axiom,
! [X: int] :
( ( ord_less_int @ X @ zero_zero_int )
=> ? [N: nat] :
( X
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ).
% negD
thf(fact_912_negative__zless__0,axiom,
! [N2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ zero_zero_int ) ).
% negative_zless_0
thf(fact_913_power__Suc__less,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_Suc_less
thf(fact_914_power__Suc__less,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_Suc_less
thf(fact_915_power__Suc__less__one,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_916_power__Suc__less__one,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ one_one_int ) ) ) ).
% power_Suc_less_one
thf(fact_917_power__strict__decreasing,axiom,
! [N2: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_918_power__strict__decreasing,axiom,
! [N2: nat,N5: nat,A: int] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_919_one__less__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% one_less_power
thf(fact_920_one__less__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ) ).
% one_less_power
thf(fact_921_pochhammer__rec,axiom,
! [A: nat,N2: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
= ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N2 ) ) ) ).
% pochhammer_rec
thf(fact_922_pochhammer__rec,axiom,
! [A: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
= ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N2 ) ) ) ).
% pochhammer_rec
thf(fact_923_incr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( plus_plus_int @ X5 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_924_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_dec_simps(2)
thf(fact_925_one__natural_Orsp,axiom,
one_one_nat = one_one_nat ).
% one_natural.rsp
thf(fact_926_one__integer_Orsp,axiom,
one_one_int = one_one_int ).
% one_integer.rsp
thf(fact_927_pinf_I1_J,axiom,
! [P: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z4 @ X3 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [Z4: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z4 @ X3 )
=> ( ( Q2 @ X3 )
= ( Q3 @ X3 ) ) )
=> ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( ( ( P @ X5 )
& ( Q2 @ X5 ) )
= ( ( P3 @ X5 )
& ( Q3 @ X5 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_928_pinf_I1_J,axiom,
! [P: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ Z4 @ X3 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ Z4 @ X3 )
=> ( ( Q2 @ X3 )
= ( Q3 @ X3 ) ) )
=> ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ( ( P @ X5 )
& ( Q2 @ X5 ) )
= ( ( P3 @ X5 )
& ( Q3 @ X5 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_929_pinf_I2_J,axiom,
! [P: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z4 @ X3 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [Z4: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z4 @ X3 )
=> ( ( Q2 @ X3 )
= ( Q3 @ X3 ) ) )
=> ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( ( ( P @ X5 )
| ( Q2 @ X5 ) )
= ( ( P3 @ X5 )
| ( Q3 @ X5 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_930_pinf_I2_J,axiom,
! [P: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ Z4 @ X3 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ Z4 @ X3 )
=> ( ( Q2 @ X3 )
= ( Q3 @ X3 ) ) )
=> ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ( ( P @ X5 )
| ( Q2 @ X5 ) )
= ( ( P3 @ X5 )
| ( Q3 @ X5 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_931_pinf_I3_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( X5 != T ) ) ).
% pinf(3)
thf(fact_932_pinf_I3_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( X5 != T ) ) ).
% pinf(3)
thf(fact_933_pinf_I4_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( X5 != T ) ) ).
% pinf(4)
thf(fact_934_pinf_I4_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( X5 != T ) ) ).
% pinf(4)
thf(fact_935_pinf_I5_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ~ ( ord_less_nat @ X5 @ T ) ) ).
% pinf(5)
thf(fact_936_pinf_I5_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ~ ( ord_less_int @ X5 @ T ) ) ).
% pinf(5)
thf(fact_937_pinf_I7_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( ord_less_nat @ T @ X5 ) ) ).
% pinf(7)
thf(fact_938_pinf_I7_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ord_less_int @ T @ X5 ) ) ).
% pinf(7)
thf(fact_939_minf_I1_J,axiom,
! [P: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z4 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [Z4: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z4 )
=> ( ( Q2 @ X3 )
= ( Q3 @ X3 ) ) )
=> ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( ( ( P @ X5 )
& ( Q2 @ X5 ) )
= ( ( P3 @ X5 )
& ( Q3 @ X5 ) ) ) ) ) ) ).
% minf(1)
thf(fact_940_minf_I1_J,axiom,
! [P: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z4 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z4 )
=> ( ( Q2 @ X3 )
= ( Q3 @ X3 ) ) )
=> ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ( ( P @ X5 )
& ( Q2 @ X5 ) )
= ( ( P3 @ X5 )
& ( Q3 @ X5 ) ) ) ) ) ) ).
% minf(1)
thf(fact_941_minf_I2_J,axiom,
! [P: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z4 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [Z4: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z4 )
=> ( ( Q2 @ X3 )
= ( Q3 @ X3 ) ) )
=> ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( ( ( P @ X5 )
| ( Q2 @ X5 ) )
= ( ( P3 @ X5 )
| ( Q3 @ X5 ) ) ) ) ) ) ).
% minf(2)
thf(fact_942_minf_I2_J,axiom,
! [P: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z4 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z4 )
=> ( ( Q2 @ X3 )
= ( Q3 @ X3 ) ) )
=> ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ( ( P @ X5 )
| ( Q2 @ X5 ) )
= ( ( P3 @ X5 )
| ( Q3 @ X5 ) ) ) ) ) ) ).
% minf(2)
thf(fact_943_minf_I3_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( X5 != T ) ) ).
% minf(3)
thf(fact_944_minf_I3_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( X5 != T ) ) ).
% minf(3)
thf(fact_945_minf_I4_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( X5 != T ) ) ).
% minf(4)
thf(fact_946_minf_I4_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( X5 != T ) ) ).
% minf(4)
thf(fact_947_minf_I5_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( ord_less_nat @ X5 @ T ) ) ).
% minf(5)
thf(fact_948_minf_I5_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ord_less_int @ X5 @ T ) ) ).
% minf(5)
thf(fact_949_minf_I7_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ~ ( ord_less_nat @ T @ X5 ) ) ).
% minf(7)
thf(fact_950_minf_I7_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ~ ( ord_less_int @ T @ X5 ) ) ).
% minf(7)
thf(fact_951_pinf_I6_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ~ ( ord_less_eq_nat @ X5 @ T ) ) ).
% pinf(6)
thf(fact_952_pinf_I6_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ~ ( ord_less_eq_int @ X5 @ T ) ) ).
% pinf(6)
thf(fact_953_pinf_I8_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( ord_less_eq_nat @ T @ X5 ) ) ).
% pinf(8)
thf(fact_954_pinf_I8_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ord_less_eq_int @ T @ X5 ) ) ).
% pinf(8)
thf(fact_955_minf_I6_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( ord_less_eq_nat @ X5 @ T ) ) ).
% minf(6)
thf(fact_956_minf_I6_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ord_less_eq_int @ X5 @ T ) ) ).
% minf(6)
thf(fact_957_minf_I8_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ~ ( ord_less_eq_nat @ T @ X5 ) ) ).
% minf(8)
thf(fact_958_minf_I8_J,axiom,
! [T: int] :
? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ~ ( ord_less_eq_int @ T @ X5 ) ) ).
% minf(8)
thf(fact_959_fold__atLeastAtMost__nat_Ocases,axiom,
! [X: produc4471711990508489141at_nat] :
~ ! [F2: nat > nat > nat,A5: nat,B5: nat,Acc: nat] :
( X
!= ( produc3209952032786966637at_nat @ F2 @ ( produc487386426758144856at_nat @ A5 @ ( product_Pair_nat_nat @ B5 @ Acc ) ) ) ) ).
% fold_atLeastAtMost_nat.cases
thf(fact_960_pochhammer__minus_H,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_961_Suc__diff__diff,axiom,
! [M2: nat,N2: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M2 ) @ N2 ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M2 @ N2 ) @ K ) ) ).
% Suc_diff_diff
thf(fact_962_diff__Suc__Suc,axiom,
! [M2: nat,N2: nat] :
( ( minus_minus_nat @ ( suc @ M2 ) @ ( suc @ N2 ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ).
% diff_Suc_Suc
thf(fact_963_diff__self__eq__0,axiom,
! [M2: nat] :
( ( minus_minus_nat @ M2 @ M2 )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_964_diff__0__eq__0,axiom,
! [N2: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_965_diff__diff__cancel,axiom,
! [I3: nat,N2: nat] :
( ( ord_less_eq_nat @ I3 @ N2 )
=> ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I3 ) )
= I3 ) ) ).
% diff_diff_cancel
thf(fact_966_diff__diff__left,axiom,
! [I3: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J ) @ K )
= ( minus_minus_nat @ I3 @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_967_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_968_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_969_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_970_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_971_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_972_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_973_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_974_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_975_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_976_add__diff__cancel__left,axiom,
! [C2: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_977_add__diff__cancel__left,axiom,
! [C2: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_978_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_979_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_980_add__diff__cancel__right,axiom,
! [A: nat,C2: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_981_add__diff__cancel__right,axiom,
! [A: int,C2: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_982_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_983_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_984_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_985_zero__less__diff,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% zero_less_diff
thf(fact_986_diff__is__0__eq_H,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( minus_minus_nat @ M2 @ N2 )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_987_diff__is__0__eq,axiom,
! [M2: nat,N2: nat] :
( ( ( minus_minus_nat @ M2 @ N2 )
= zero_zero_nat )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% diff_is_0_eq
thf(fact_988_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I3 @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I3 @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_989_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I3 )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I3 ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_990_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I3 @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I3 @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_991_diff__Suc__1,axiom,
! [N2: nat] :
( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
= N2 ) ).
% diff_Suc_1
thf(fact_992_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_993_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_994_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_995_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_996_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_997_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_998_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_999_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_1000_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_1001_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_1002_uminus__add__conv__diff,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_1003_diff__minus__eq__add,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
= ( plus_plus_int @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_1004_Suc__pred,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
= N2 ) ) ).
% Suc_pred
thf(fact_1005_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I3 )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I3 ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_1006_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I3 @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I3 @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_1007_zle__diff1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
= ( ord_less_int @ W @ Z ) ) ).
% zle_diff1_eq
thf(fact_1008_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_1009_Suc__diff__1,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
= N2 ) ) ).
% Suc_diff_1
thf(fact_1010_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C2 @ D ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C2 @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_1011_diff__right__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ C2 ) ) ) ).
% diff_right_mono
thf(fact_1012_diff__left__mono,axiom,
! [B: int,A: int,C2: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C2 @ A ) @ ( minus_minus_int @ C2 @ B ) ) ) ).
% diff_left_mono
thf(fact_1013_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_1014_diff__mono,axiom,
! [A: int,B: int,D: int,C2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D @ C2 )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_1015_diff__Suc__eq__diff__pred,axiom,
! [M2: nat,N2: nat] :
( ( minus_minus_nat @ M2 @ ( suc @ N2 ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N2 ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_1016_int__le__induct,axiom,
! [I3: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ K )
=> ( ! [I: int] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ I )
=> ( P @ ( minus_minus_int @ I @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_le_induct
thf(fact_1017_of__nat__diff,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq_nat @ N2 @ M2 )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M2 @ N2 ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).
% of_nat_diff
thf(fact_1018_of__nat__diff,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq_nat @ N2 @ M2 )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M2 @ N2 ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% of_nat_diff
thf(fact_1019_inf__period_I1_J,axiom,
! [P: int > $o,D2: int,Q2: int > $o] :
( ! [X3: int,K3: int] :
( ( P @ X3 )
= ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
=> ( ! [X3: int,K3: int] :
( ( Q2 @ X3 )
= ( Q2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
=> ! [X5: int,K4: int] :
( ( ( P @ X5 )
& ( Q2 @ X5 ) )
= ( ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D2 ) ) )
& ( Q2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D2 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_1020_inf__period_I2_J,axiom,
! [P: int > $o,D2: int,Q2: int > $o] :
( ! [X3: int,K3: int] :
( ( P @ X3 )
= ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
=> ( ! [X3: int,K3: int] :
( ( Q2 @ X3 )
= ( Q2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
=> ! [X5: int,K4: int] :
( ( ( P @ X5 )
| ( Q2 @ X5 ) )
= ( ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D2 ) ) )
| ( Q2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D2 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_1021_eq__diff__iff,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ( minus_minus_nat @ M2 @ K )
= ( minus_minus_nat @ N2 @ K ) )
= ( M2 = N2 ) ) ) ) ).
% eq_diff_iff
thf(fact_1022_le__diff__iff,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ) ) ).
% le_diff_iff
thf(fact_1023_Nat_Odiff__diff__eq,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_1024_diff__le__mono,axiom,
! [M2: nat,N2: nat,L: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).
% diff_le_mono
thf(fact_1025_diff__le__self,axiom,
! [M2: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N2 ) @ M2 ) ).
% diff_le_self
thf(fact_1026_le__diff__iff_H,axiom,
! [A: nat,C2: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C2 )
=> ( ( ord_less_eq_nat @ B @ C2 )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A ) @ ( minus_minus_nat @ C2 @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_1027_diff__le__mono2,axiom,
! [M2: nat,N2: nat,L: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).
% diff_le_mono2
thf(fact_1028_Nat_Odiff__cancel,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ).
% Nat.diff_cancel
thf(fact_1029_diff__cancel2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ K ) @ ( plus_plus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ).
% diff_cancel2
thf(fact_1030_diff__add__inverse,axiom,
! [N2: nat,M2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M2 ) @ N2 )
= M2 ) ).
% diff_add_inverse
thf(fact_1031_diff__add__inverse2,axiom,
! [M2: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ N2 ) @ N2 )
= M2 ) ).
% diff_add_inverse2
thf(fact_1032_int__less__induct,axiom,
! [I3: int,K: int,P: int > $o] :
( ( ord_less_int @ I3 @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I: int] :
( ( ord_less_int @ I @ K )
=> ( ( P @ I )
=> ( P @ ( minus_minus_int @ I @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_less_induct
thf(fact_1033_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(3)
thf(fact_1034_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_1035_diff__mult__distrib,axiom,
! [M2: nat,N2: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M2 @ N2 ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).
% diff_mult_distrib
thf(fact_1036_diff__mult__distrib2,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M2 @ N2 ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) ) ) ).
% diff_mult_distrib2
thf(fact_1037_int__diff__cases,axiom,
! [Z: int] :
~ ! [M: nat,N: nat] :
( Z
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% int_diff_cases
thf(fact_1038_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_1039_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
= ( ( ( ord_less_eq_nat @ Y @ X )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
& ( ( ord_less_nat @ X @ Y )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_1040_le__iff__diff__le__0,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B3: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B3 ) @ zero_zero_int ) ) ) ).
% le_iff_diff_le_0
thf(fact_1041_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A3: int,B3: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B3 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_1042_diff__le__eq,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C2 )
= ( ord_less_eq_int @ A @ ( plus_plus_int @ C2 @ B ) ) ) ).
% diff_le_eq
thf(fact_1043_le__diff__eq,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_eq_int @ A @ ( minus_minus_int @ C2 @ B ) )
= ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C2 ) ) ).
% le_diff_eq
thf(fact_1044_diff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% diff_add
thf(fact_1045_le__add__diff,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C2 @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C2 ) @ A ) ) ) ).
% le_add_diff
thf(fact_1046_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C2 @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_1047_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C2 @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C2 @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_1048_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C2 @ B ) @ A )
= ( plus_plus_nat @ C2 @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_1049_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C2 )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C2 ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_1050_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C2 ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C2 ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_1051_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C2 @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C2 @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_1052_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_1053_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C2 )
= ( B
= ( plus_plus_nat @ C2 @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_1054_add__le__imp__le__diff,axiom,
! [I3: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ N2 )
=> ( ord_less_eq_nat @ I3 @ ( minus_minus_nat @ N2 @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_1055_add__le__imp__le__diff,axiom,
! [I3: int,K: int,N2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ N2 )
=> ( ord_less_eq_int @ I3 @ ( minus_minus_int @ N2 @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_1056_add__le__add__imp__diff__le,axiom,
! [I3: nat,K: nat,N2: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N2 @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1057_add__le__add__imp__diff__le,axiom,
! [I3: int,K: int,N2: int,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ N2 )
=> ( ( ord_less_eq_int @ N2 @ ( plus_plus_int @ J @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ N2 )
=> ( ( ord_less_eq_int @ N2 @ ( plus_plus_int @ J @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N2 @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1058_diff__less__eq,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C2 )
= ( ord_less_int @ A @ ( plus_plus_int @ C2 @ B ) ) ) ).
% diff_less_eq
thf(fact_1059_less__diff__eq,axiom,
! [A: int,C2: int,B: int] :
( ( ord_less_int @ A @ ( minus_minus_int @ C2 @ B ) )
= ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C2 ) ) ).
% less_diff_eq
thf(fact_1060_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ~ ( ord_less_nat @ A @ B )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_1061_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: int,B: int] :
( ~ ( ord_less_int @ A @ B )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_1062_square__diff__square__factored,axiom,
! [X: int,Y: int] :
( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
= ( times_times_int @ ( plus_plus_int @ X @ Y ) @ ( minus_minus_int @ X @ Y ) ) ) ).
% square_diff_square_factored
thf(fact_1063_eq__add__iff2,axiom,
! [A: int,E: int,C2: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C2 )
= ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( C2
= ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_1064_eq__add__iff1,axiom,
! [A: int,E: int,C2: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C2 )
= ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C2 )
= D ) ) ).
% eq_add_iff1
thf(fact_1065_group__cancel_Osub2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( minus_minus_int @ A @ B2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_1066_diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B3 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_1067_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B3 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_1068_Suc__diff__Suc,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ N2 @ M2 )
=> ( ( suc @ ( minus_minus_nat @ M2 @ ( suc @ N2 ) ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ) ).
% Suc_diff_Suc
thf(fact_1069_diff__less__Suc,axiom,
! [M2: nat,N2: nat] : ( ord_less_nat @ ( minus_minus_nat @ M2 @ N2 ) @ ( suc @ M2 ) ) ).
% diff_less_Suc
thf(fact_1070_diff__less,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ord_less_nat @ ( minus_minus_nat @ M2 @ N2 ) @ M2 ) ) ) ).
% diff_less
thf(fact_1071_Suc__diff__le,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq_nat @ N2 @ M2 )
=> ( ( minus_minus_nat @ ( suc @ M2 ) @ N2 )
= ( suc @ ( minus_minus_nat @ M2 @ N2 ) ) ) ) ).
% Suc_diff_le
thf(fact_1072_diff__add__0,axiom,
! [N2: nat,M2: nat] :
( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M2 ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1073_less__diff__iff,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( ord_less_nat @ M2 @ N2 ) ) ) ) ).
% less_diff_iff
thf(fact_1074_diff__less__mono,axiom,
! [A: nat,B: nat,C2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C2 @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C2 ) @ ( minus_minus_nat @ B @ C2 ) ) ) ) ).
% diff_less_mono
thf(fact_1075_less__diff__conv,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1076_add__diff__inverse__nat,axiom,
! [M2: nat,N2: nat] :
( ~ ( ord_less_nat @ M2 @ N2 )
=> ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M2 @ N2 ) )
= M2 ) ) ).
% add_diff_inverse_nat
thf(fact_1077_le__diff__conv,axiom,
! [J: nat,K: nat,I3: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I3 )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I3 @ K ) ) ) ).
% le_diff_conv
thf(fact_1078_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I3 @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1079_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I3 @ J ) @ K )
= ( plus_plus_nat @ I3 @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1080_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I3 ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I3 ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1081_Nat_Ole__imp__diff__is__add,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ( minus_minus_nat @ J @ I3 )
= K )
= ( J
= ( plus_plus_nat @ K @ I3 ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1082_minus__int__code_I2_J,axiom,
! [L: int] :
( ( minus_minus_int @ zero_zero_int @ L )
= ( uminus_uminus_int @ L ) ) ).
% minus_int_code(2)
thf(fact_1083_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: int,Z5: int] : ( Y5 = Z5 ) )
= ( ^ [A3: int,B3: int] :
( ( minus_minus_int @ A3 @ B3 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_1084_diff__strict__mono,axiom,
! [A: int,B: int,D: int,C2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D @ C2 )
=> ( ord_less_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_1085_diff__eq__diff__less,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C2 @ D ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C2 @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_1086_diff__strict__left__mono,axiom,
! [B: int,A: int,C2: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C2 @ A ) @ ( minus_minus_int @ C2 @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_1087_diff__strict__right__mono,axiom,
! [A: int,B: int,C2: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ C2 ) ) ) ).
% diff_strict_right_mono
thf(fact_1088_diff__right__commute,axiom,
! [A: nat,C2: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C2 ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C2 ) ) ).
% diff_right_commute
thf(fact_1089_diff__right__commute,axiom,
! [A: int,C2: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C2 ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C2 ) ) ).
% diff_right_commute
thf(fact_1090_diff__eq__diff__eq,axiom,
! [A: int,B: int,C2: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C2 @ D ) )
=> ( ( A = B )
= ( C2 = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_1091_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_1092_diff__less__mono2,axiom,
! [M2: nat,N2: nat,L: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ( ord_less_nat @ M2 @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M2 ) ) ) ) ).
% diff_less_mono2
thf(fact_1093_less__imp__diff__less,axiom,
! [J: nat,K: nat,N2: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).
% less_imp_diff_less
thf(fact_1094_diffs0__imp__equal,axiom,
! [M2: nat,N2: nat] :
( ( ( minus_minus_nat @ M2 @ N2 )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N2 @ M2 )
= zero_zero_nat )
=> ( M2 = N2 ) ) ) ).
% diffs0_imp_equal
thf(fact_1095_minus__nat_Odiff__0,axiom,
! [M2: nat] :
( ( minus_minus_nat @ M2 @ zero_zero_nat )
= M2 ) ).
% minus_nat.diff_0
thf(fact_1096_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I3: nat] :
( ( P @ K )
=> ( ! [N: nat] :
( ( P @ ( suc @ N ) )
=> ( P @ N ) )
=> ( P @ ( minus_minus_nat @ K @ I3 ) ) ) ) ).
% zero_induct_lemma
thf(fact_1097_group__cancel_Osub1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( minus_minus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_1098_diff__eq__eq,axiom,
! [A: int,B: int,C2: int] :
( ( ( minus_minus_int @ A @ B )
= C2 )
= ( A
= ( plus_plus_int @ C2 @ B ) ) ) ).
% diff_eq_eq
thf(fact_1099_eq__diff__eq,axiom,
! [A: int,C2: int,B: int] :
( ( A
= ( minus_minus_int @ C2 @ B ) )
= ( ( plus_plus_int @ A @ B )
= C2 ) ) ).
% eq_diff_eq
thf(fact_1100_add__diff__eq,axiom,
! [A: int,B: int,C2: int] :
( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C2 ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C2 ) ) ).
% add_diff_eq
thf(fact_1101_diff__diff__eq2,axiom,
! [A: int,B: int,C2: int] :
( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C2 ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ).
% diff_diff_eq2
thf(fact_1102_diff__add__eq,axiom,
! [A: int,B: int,C2: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C2 )
= ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ).
% diff_add_eq
thf(fact_1103_diff__add__eq__diff__diff__swap,axiom,
! [A: int,B: int,C2: int] :
( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C2 ) )
= ( minus_minus_int @ ( minus_minus_int @ A @ C2 ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_1104_add__implies__diff,axiom,
! [C2: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C2 @ B )
= A )
=> ( C2
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_1105_add__implies__diff,axiom,
! [C2: int,B: int,A: int] :
( ( ( plus_plus_int @ C2 @ B )
= A )
=> ( C2
= ( minus_minus_int @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_1106_diff__diff__eq,axiom,
! [A: nat,B: nat,C2: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C2 )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).
% diff_diff_eq
thf(fact_1107_diff__diff__eq,axiom,
! [A: int,B: int,C2: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C2 )
= ( minus_minus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).
% diff_diff_eq
thf(fact_1108_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C2: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C2 ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C2 ) ) ) ).
% right_diff_distrib'
thf(fact_1109_right__diff__distrib_H,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C2 ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C2 ) ) ) ).
% right_diff_distrib'
thf(fact_1110_left__diff__distrib_H,axiom,
! [B: nat,C2: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C2 ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C2 @ A ) ) ) ).
% left_diff_distrib'
thf(fact_1111_left__diff__distrib_H,axiom,
! [B: int,C2: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C2 ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C2 @ A ) ) ) ).
% left_diff_distrib'
thf(fact_1112_right__diff__distrib,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C2 ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C2 ) ) ) ).
% right_diff_distrib
thf(fact_1113_left__diff__distrib,axiom,
! [A: int,B: int,C2: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C2 )
= ( minus_minus_int @ ( times_times_int @ A @ C2 ) @ ( times_times_int @ B @ C2 ) ) ) ).
% left_diff_distrib
thf(fact_1114_le__add__iff2,axiom,
! [A: int,E: int,C2: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C2 ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_eq_int @ C2 @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% le_add_iff2
thf(fact_1115_le__add__iff1,axiom,
! [A: int,E: int,C2: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C2 ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C2 ) @ D ) ) ).
% le_add_iff1
thf(fact_1116_less__add__iff1,axiom,
! [A: int,E: int,C2: int,B: int,D: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C2 ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C2 ) @ D ) ) ).
% less_add_iff1
thf(fact_1117_less__add__iff2,axiom,
! [A: int,E: int,C2: int,B: int,D: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C2 ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_int @ C2 @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% less_add_iff2
thf(fact_1118_square__diff__one__factored,axiom,
! [X: int] :
( ( minus_minus_int @ ( times_times_int @ X @ X ) @ one_one_int )
= ( times_times_int @ ( plus_plus_int @ X @ one_one_int ) @ ( minus_minus_int @ X @ one_one_int ) ) ) ).
% square_diff_one_factored
thf(fact_1119_diff__Suc__less,axiom,
! [N2: nat,I3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ ( minus_minus_nat @ N2 @ ( suc @ I3 ) ) @ N2 ) ) ).
% diff_Suc_less
thf(fact_1120_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D3: nat] :
( ( A
= ( plus_plus_nat @ B @ D3 ) )
=> ( P @ D3 ) ) ) ) ).
% nat_diff_split
thf(fact_1121_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D3: nat] :
( ( A
= ( plus_plus_nat @ B @ D3 ) )
& ~ ( P @ D3 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1122_less__diff__conv2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I3 )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I3 @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1123_plusinfinity,axiom,
! [D: int,P3: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int,K3: int] :
( ( P3 @ X3 )
= ( P3 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ Z4 @ X3 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [X_1: int] : ( P3 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% plusinfinity
thf(fact_1124_minusinfinity,axiom,
! [D: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int,K3: int] :
( ( P1 @ X3 )
= ( P1 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z4 )
=> ( ( P @ X3 )
= ( P1 @ X3 ) ) )
=> ( ? [X_1: int] : ( P1 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% minusinfinity
thf(fact_1125_nat__diff__add__eq2,axiom,
! [I3: nat,J: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( minus_minus_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I3 ) @ U ) @ N2 ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_1126_nat__diff__add__eq1,axiom,
! [J: nat,I3: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I3 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J ) @ U ) @ M2 ) @ N2 ) ) ) ).
% nat_diff_add_eq1
thf(fact_1127_nat__le__add__iff2,axiom,
! [I3: nat,J: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_eq_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I3 ) @ U ) @ N2 ) ) ) ) ).
% nat_le_add_iff2
thf(fact_1128_nat__le__add__iff1,axiom,
! [J: nat,I3: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I3 )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J ) @ U ) @ M2 ) @ N2 ) ) ) ).
% nat_le_add_iff1
thf(fact_1129_nat__eq__add__iff2,axiom,
! [I3: nat,J: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M2 )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( M2
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I3 ) @ U ) @ N2 ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_1130_nat__eq__add__iff1,axiom,
! [J: nat,I3: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I3 )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M2 )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J ) @ U ) @ M2 )
= N2 ) ) ) ).
% nat_eq_add_iff1
thf(fact_1131_int__induct,axiom,
! [P: int > $o,K: int,I3: int] :
( ( P @ K )
=> ( ! [I: int] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ I )
=> ( P @ ( plus_plus_int @ I @ one_one_int ) ) ) )
=> ( ! [I: int] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ I )
=> ( P @ ( minus_minus_int @ I @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_induct
thf(fact_1132_dbl__dec__def,axiom,
( neg_nu3811975205180677377ec_int
= ( ^ [X4: int] : ( minus_minus_int @ ( plus_plus_int @ X4 @ X4 ) @ one_one_int ) ) ) ).
% dbl_dec_def
thf(fact_1133_Suc__pred_H,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( N2
= ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_1134_Suc__diff__eq__diff__pred,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( minus_minus_nat @ ( suc @ M2 ) @ N2 )
= ( minus_minus_nat @ M2 @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_1135_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M4: nat,N4: nat] : ( if_nat @ ( M4 = zero_zero_nat ) @ N4 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M4 @ one_one_nat ) @ N4 ) ) ) ) ) ).
% add_eq_if
thf(fact_1136_nat__less__add__iff1,axiom,
! [J: nat,I3: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I3 )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J ) @ U ) @ M2 ) @ N2 ) ) ) ).
% nat_less_add_iff1
thf(fact_1137_nat__less__add__iff2,axiom,
! [I3: nat,J: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I3 ) @ U ) @ N2 ) ) ) ) ).
% nat_less_add_iff2
thf(fact_1138_decr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( minus_minus_int @ X3 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_1139_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M4: nat,N4: nat] : ( if_nat @ ( M4 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N4 @ ( times_times_nat @ ( minus_minus_nat @ M4 @ one_one_nat ) @ N4 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1140_power__eq__if,axiom,
( power_2735389330962240702ctxt_a
= ( ^ [P4: ground_gctxt_a,M4: nat] : ( if_Ground_gctxt_a @ ( M4 = zero_zero_nat ) @ one_on2591345007439983481ctxt_a @ ( times_3671199598377387961ctxt_a @ P4 @ ( power_2735389330962240702ctxt_a @ P4 @ ( minus_minus_nat @ M4 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_1141_power__eq__if,axiom,
( power_power_nat
= ( ^ [P4: nat,M4: nat] : ( if_nat @ ( M4 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P4 @ ( power_power_nat @ P4 @ ( minus_minus_nat @ M4 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_1142_power__eq__if,axiom,
( power_power_int
= ( ^ [P4: int,M4: nat] : ( if_int @ ( M4 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P4 @ ( power_power_int @ P4 @ ( minus_minus_nat @ M4 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_1143_power__minus__mult,axiom,
! [N2: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
= ( power_power_nat @ A @ N2 ) ) ) ).
% power_minus_mult
thf(fact_1144_power__minus__mult,axiom,
! [N2: nat,A: int] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
= ( power_power_int @ A @ N2 ) ) ) ).
% power_minus_mult
thf(fact_1145_pochhammer__product,axiom,
! [M2: nat,N2: nat,Z: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( comm_s4663373288045622133er_nat @ Z @ N2 )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ M2 ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ M2 ) ) @ ( minus_minus_nat @ N2 @ M2 ) ) ) ) ) ).
% pochhammer_product
thf(fact_1146_pochhammer__product,axiom,
! [M2: nat,N2: nat,Z: int] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( comm_s4660882817536571857er_int @ Z @ N2 )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ M2 ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ M2 ) ) @ ( minus_minus_nat @ N2 @ M2 ) ) ) ) ) ).
% pochhammer_product
thf(fact_1147_pochhammer__absorb__comp,axiom,
! [R: int,K: nat] :
( ( times_times_int @ ( minus_minus_int @ R @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R ) @ K ) )
= ( times_times_int @ R @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_1148_pochhammer__minus,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_1149_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N2 @ K ) )
= ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_1150_diff__commute,axiom,
! [I3: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I3 @ K ) @ J ) ) ).
% diff_commute
thf(fact_1151_divides__aux__eq,axiom,
! [Q4: nat,R: nat] :
( ( unique5332122412489317741ux_nat @ ( product_Pair_nat_nat @ Q4 @ R ) )
= ( R = zero_zero_nat ) ) ).
% divides_aux_eq
thf(fact_1152_divides__aux__eq,axiom,
! [Q4: int,R: int] :
( ( unique5329631941980267465ux_int @ ( product_Pair_int_int @ Q4 @ R ) )
= ( R = zero_zero_int ) ) ).
% divides_aux_eq
thf(fact_1153_nat0__intermed__int__val,axiom,
! [N2: nat,F: nat > int,K: int] :
( ! [I: nat] :
( ( ord_less_nat @ I @ N2 )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I @ one_one_nat ) ) @ ( F @ I ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
=> ? [I: nat] :
( ( ord_less_eq_nat @ I @ N2 )
& ( ( F @ I )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_1154_abs__idempotent,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_idempotent
thf(fact_1155_abs__abs,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_abs
thf(fact_1156_abs__zero,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_zero
thf(fact_1157_abs__eq__0,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0
thf(fact_1158_abs__0__eq,axiom,
! [A: int] :
( ( zero_zero_int
= ( abs_abs_int @ A ) )
= ( A = zero_zero_int ) ) ).
% abs_0_eq
thf(fact_1159_abs__0,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_0
thf(fact_1160_abs__mult__self__eq,axiom,
! [A: int] :
( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
= ( times_times_int @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_1161_abs__add__abs,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
= ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_add_abs
thf(fact_1162_abs__1,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_1
thf(fact_1163_abs__minus,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus
thf(fact_1164_abs__minus__cancel,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus_cancel
thf(fact_1165_abs__of__nat,axiom,
! [N2: nat] :
( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( semiri1314217659103216013at_int @ N2 ) ) ).
% abs_of_nat
thf(fact_1166_abs__le__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_le_zero_iff
thf(fact_1167_abs__le__self__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% abs_le_self_iff
thf(fact_1168_abs__of__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_1169_zero__less__abs__iff,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
= ( A != zero_zero_int ) ) ).
% zero_less_abs_iff
thf(fact_1170_abs__power__minus,axiom,
! [A: int,N2: nat] :
( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 ) )
= ( abs_abs_int @ ( power_power_int @ A @ N2 ) ) ) ).
% abs_power_minus
thf(fact_1171_abs__of__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_nonpos
thf(fact_1172_zabs__less__one__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
= ( Z = zero_zero_int ) ) ).
% zabs_less_one_iff
thf(fact_1173_zero__less__power__abs__iff,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) )
= ( ( A != zero_zero_int )
| ( N2 = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_1174_abs__triangle__ineq2__sym,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_1175_abs__triangle__ineq3,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_1176_abs__triangle__ineq2,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_1177_abs__minus__commute,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
= ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_1178_abs__mult__pos,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( times_times_int @ ( abs_abs_int @ Y ) @ X )
= ( abs_abs_int @ ( times_times_int @ Y @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_1179_abs__eq__mult,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
| ( ord_less_eq_int @ A @ zero_zero_int ) )
& ( ( ord_less_eq_int @ zero_zero_int @ B )
| ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_1180_abs__mult__pos_H,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( times_times_int @ X @ ( abs_abs_int @ Y ) )
= ( abs_abs_int @ ( times_times_int @ X @ Y ) ) ) ) ).
% abs_mult_pos'
thf(fact_1181_abs__minus__le__zero,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).
% abs_minus_le_zero
thf(fact_1182_eq__abs__iff_H,axiom,
! [A: int,B: int] :
( ( A
= ( abs_abs_int @ B ) )
= ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_int @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_1183_abs__eq__iff_H,axiom,
! [A: int,B: int] :
( ( ( abs_abs_int @ A )
= B )
= ( ( ord_less_eq_int @ zero_zero_int @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_1184_abs__diff__triangle__ineq,axiom,
! [A: int,B: int,C2: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C2 @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C2 ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_1185_abs__triangle__ineq4,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_1186_abs__diff__le__iff,axiom,
! [X: int,A: int,R: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R )
= ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R ) @ X )
& ( ord_less_eq_int @ X @ ( plus_plus_int @ A @ R ) ) ) ) ).
% abs_diff_le_iff
thf(fact_1187_abs__if__raw,axiom,
( abs_abs_int
= ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_1188_abs__of__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_neg
thf(fact_1189_abs__if,axiom,
( abs_abs_int
= ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_1190_abs__diff__less__iff,axiom,
! [X: int,A: int,R: int] :
( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R )
= ( ( ord_less_int @ ( minus_minus_int @ A @ R ) @ X )
& ( ord_less_int @ X @ ( plus_plus_int @ A @ R ) ) ) ) ).
% abs_diff_less_iff
thf(fact_1191_zero__le__power__abs,axiom,
! [A: int,N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) ) ).
% zero_le_power_abs
thf(fact_1192_zabs__def,axiom,
( abs_abs_int
= ( ^ [I4: int] : ( if_int @ ( ord_less_int @ I4 @ zero_zero_int ) @ ( uminus_uminus_int @ I4 ) @ I4 ) ) ) ).
% zabs_def
thf(fact_1193_abs__eq__iff,axiom,
! [X: int,Y: int] :
( ( ( abs_abs_int @ X )
= ( abs_abs_int @ Y ) )
= ( ( X = Y )
| ( X
= ( uminus_uminus_int @ Y ) ) ) ) ).
% abs_eq_iff
thf(fact_1194_abs__one,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_one
thf(fact_1195_abs__zmult__eq__1,axiom,
! [M2: int,N2: int] :
( ( ( abs_abs_int @ ( times_times_int @ M2 @ N2 ) )
= one_one_int )
=> ( ( abs_abs_int @ M2 )
= one_one_int ) ) ).
% abs_zmult_eq_1
% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
thf(help_If_3_1_If_001t__Ground____Ctxt__Ogctxt_Itf__a_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Ground____Ctxt__Ogctxt_Itf__a_J_T,axiom,
! [X: ground_gctxt_a,Y: ground_gctxt_a] :
( ( if_Ground_gctxt_a @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Ground____Ctxt__Ogctxt_Itf__a_J_T,axiom,
! [X: ground_gctxt_a,Y: ground_gctxt_a] :
( ( if_Ground_gctxt_a @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
! [X3: ground_gctxt_a,Y3: ground_gctxt_a] :
( ( ( ground5442125528501538874ctxt_a @ X3 )
!= ( ground5442125528501538874ctxt_a @ Y3 ) )
| ( X3 = Y3 ) ) ).
%------------------------------------------------------------------------------