TPTP Problem File: SLH0079^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Dedekind_Real/0000_Dedekind_Real/prob_00406_011617__5630906_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1355 ( 462 unt;  89 typ;   0 def)
%            Number of atoms       : 3893 (1026 equ;   0 cnn)
%            Maximal formula atoms :   12 (   3 avg)
%            Number of connectives : 10267 ( 445   ~; 148   |; 197   &;7671   @)
%                                         (   0 <=>;1806  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   7 avg)
%            Number of types       :    9 (   8 usr)
%            Number of type conns  :  425 ( 425   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   84 (  81 usr;  14 con; 0-2 aty)
%            Number of variables   : 3372 ( 215   ^;3001   !; 156   ?;3372   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 09:24:34.570
%------------------------------------------------------------------------------
% Could-be-implicit typings (8)
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Rat__Orat_J_J,type,
    set_set_rat: $tType ).

thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
    set_rat: $tType ).

thf(ty_n_t__Dedekind____Real__Opreal,type,
    dedekind_preal: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Rat__Orat,type,
    rat: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (81)
thf(sy_c_Conditionally__Complete__Lattices_Opreordering__bdd_001t__Int__Oint,type,
    condit7933062003635074389dd_int: ( int > int > $o ) > ( int > int > $o ) > $o ).

thf(sy_c_Conditionally__Complete__Lattices_Opreordering__bdd_001t__Nat__Onat,type,
    condit7935552474144124665dd_nat: ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Conditionally__Complete__Lattices_Opreordering__bdd_001t__Num__Onum,type,
    condit4492884260299903299dd_num: ( num > num > $o ) > ( num > num > $o ) > $o ).

thf(sy_c_Conditionally__Complete__Lattices_Opreordering__bdd_001t__Rat__Orat,type,
    condit7300422414057628929dd_rat: ( rat > rat > $o ) > ( rat > rat > $o ) > $o ).

thf(sy_c_Conditionally__Complete__Lattices_Opreordering__bdd_001t__Real__Oreal,type,
    condit1497324847667023189d_real: ( real > real > $o ) > ( real > real > $o ) > $o ).

thf(sy_c_Conditionally__Complete__Lattices_Opreordering__bdd_001t__Set__Oset_It__Rat__Orat_J,type,
    condit1630490436397131959et_rat: ( set_rat > set_rat > $o ) > ( set_rat > set_rat > $o ) > $o ).

thf(sy_c_Dedekind__Real_Oadd__set,type,
    dedekind_add_set: set_rat > set_rat > set_rat ).

thf(sy_c_Dedekind__Real_Ocut,type,
    dedekind_cut: set_rat > $o ).

thf(sy_c_Dedekind__Real_Oinverse__set,type,
    dedekind_inverse_set: set_rat > set_rat ).

thf(sy_c_Dedekind__Real_Omult__set,type,
    dedekind_mult_set: set_rat > set_rat > set_rat ).

thf(sy_c_Dedekind__Real_Opreal_OAbs__preal,type,
    dedekind_Abs_preal: set_rat > dedekind_preal ).

thf(sy_c_Dedekind__Real_Opreal_ORep__preal,type,
    dedekind_Rep_preal: dedekind_preal > set_rat ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Dedekind____Real__Opreal,type,
    invers3090987106763476162_preal: dedekind_preal > dedekind_preal ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
    inverse_inverse_rat: rat > rat ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
    one_one_rat: rat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Dedekind____Real__Opreal,type,
    plus_p3173629198307831117_preal: dedekind_preal > dedekind_preal > dedekind_preal ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
    plus_plus_rat: rat > rat > rat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Dedekind____Real__Opreal,type,
    times_3000655703912201937_preal: dedekind_preal > dedekind_preal > dedekind_preal ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
    times_times_rat: rat > rat > rat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
    zero_zero_rat: rat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Num_Oinc,type,
    inc: num > num ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
    neg_numeral_dbl_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Dedekind____Real__Opreal,type,
    ord_le5708704896291381698_preal: dedekind_preal > dedekind_preal > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
    ord_less_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Int__Oint_J,type,
    ord_less_eq_o_int: ( $o > int ) > ( $o > int ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Nat__Onat_J,type,
    ord_less_eq_o_nat: ( $o > nat ) > ( $o > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Num__Onum_J,type,
    ord_less_eq_o_num: ( $o > num ) > ( $o > num ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Rat__Orat_J,type,
    ord_less_eq_o_rat: ( $o > rat ) > ( $o > rat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Set__Oset_It__Rat__Orat_J_J,type,
    ord_le642427739152028983et_rat: ( $o > set_rat ) > ( $o > set_rat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Dedekind____Real__Opreal,type,
    ord_le5604041210740703414_preal: dedekind_preal > dedekind_preal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
    ord_less_eq_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_eq_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Int__Oint,type,
    order_Greatest_int: ( int > $o ) > int ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Num__Onum,type,
    order_Greatest_num: ( num > $o ) > num ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Rat__Orat,type,
    order_Greatest_rat: ( rat > $o ) > rat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Set__Oset_It__Rat__Orat_J,type,
    order_2216579580035808117et_rat: ( set_rat > $o ) > set_rat ).

thf(sy_c_Rat_Ofield__char__0__class_Oof__rat_001t__Rat__Orat,type,
    field_2639924705303425560at_rat: rat > rat ).

thf(sy_c_Rat_Ofield__char__0__class_Oof__rat_001t__Real__Oreal,type,
    field_7254667332652039916t_real: rat > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Dedekind____Real__Opreal,type,
    divide4190755330972744004_preal: dedekind_preal > dedekind_preal > dedekind_preal ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
    divide_divide_rat: rat > rat > rat ).

thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
    collect_rat: ( rat > $o ) > set_rat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Rat__Orat_J,type,
    collect_set_rat: ( set_rat > $o ) > set_set_rat ).

thf(sy_c_member_001t__Rat__Orat,type,
    member_rat: rat > set_rat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Rat__Orat_J,type,
    member_set_rat: set_rat > set_set_rat > $o ).

thf(sy_v_A____,type,
    a: set_rat ).

thf(sy_v_v____,type,
    v: rat ).

thf(sy_v_x____,type,
    x: rat ).

% Relevant facts (1265)
thf(fact_0_v,axiom,
    member_rat @ v @ a ).

% v
thf(fact_1_xlessv,axiom,
    ord_less_rat @ x @ v ).

% xlessv
thf(fact_2_xpos,axiom,
    ord_less_rat @ zero_zero_rat @ x ).

% xpos
thf(fact_3_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_4_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_5_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).

% less_numeral_extra(3)
thf(fact_6_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_7_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_8_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_9_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_10_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_11_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_12_field__lbound__gt__zero,axiom,
    ! [D1: rat,D2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D1 )
     => ( ( ord_less_rat @ zero_zero_rat @ D2 )
       => ? [E: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ E )
            & ( ord_less_rat @ E @ D1 )
            & ( ord_less_rat @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_13_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_14_x,axiom,
    member_rat @ x @ a ).

% x
thf(fact_15_of__rat__less__0__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_rat @ ( field_2639924705303425560at_rat @ R ) @ zero_zero_rat )
      = ( ord_less_rat @ R @ zero_zero_rat ) ) ).

% of_rat_less_0_iff
thf(fact_16_of__rat__less__0__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_real @ ( field_7254667332652039916t_real @ R ) @ zero_zero_real )
      = ( ord_less_rat @ R @ zero_zero_rat ) ) ).

% of_rat_less_0_iff
thf(fact_17_zero__less__of__rat__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( field_2639924705303425560at_rat @ R ) )
      = ( ord_less_rat @ zero_zero_rat @ R ) ) ).

% zero_less_of_rat_iff
thf(fact_18_zero__less__of__rat__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_real @ zero_zero_real @ ( field_7254667332652039916t_real @ R ) )
      = ( ord_less_rat @ zero_zero_rat @ R ) ) ).

% zero_less_of_rat_iff
thf(fact_19_A,axiom,
    dedekind_cut @ a ).

% A
thf(fact_20__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062v_O_A_092_060lbrakk_062v_A_092_060in_062_AA_059_Ax_A_060_Av_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [V: rat] :
        ( ( member_rat @ V @ a )
       => ~ ( ord_less_rat @ x @ V ) ) ).

% \<open>\<And>thesis. (\<And>v. \<lbrakk>v \<in> A; x < v\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_21__092_060open_062_092_060exists_062u_092_060in_062A_O_Ax_A_060_Au_092_060close_062,axiom,
    ? [X: rat] :
      ( ( member_rat @ X @ a )
      & ( ord_less_rat @ x @ X ) ) ).

% \<open>\<exists>u\<in>A. x < u\<close>
thf(fact_22_zero__eq__of__rat__iff,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( field_2639924705303425560at_rat @ A ) )
      = ( zero_zero_rat = A ) ) ).

% zero_eq_of_rat_iff
thf(fact_23_zero__eq__of__rat__iff,axiom,
    ! [A: rat] :
      ( ( zero_zero_real
        = ( field_7254667332652039916t_real @ A ) )
      = ( zero_zero_rat = A ) ) ).

% zero_eq_of_rat_iff
thf(fact_24_of__rat__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( field_2639924705303425560at_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% of_rat_eq_0_iff
thf(fact_25_of__rat__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( field_7254667332652039916t_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_rat ) ) ).

% of_rat_eq_0_iff
thf(fact_26_of__rat__0,axiom,
    ( ( field_2639924705303425560at_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% of_rat_0
thf(fact_27_of__rat__0,axiom,
    ( ( field_7254667332652039916t_real @ zero_zero_rat )
    = zero_zero_real ) ).

% of_rat_0
thf(fact_28_of__rat__less,axiom,
    ! [R: rat,S: rat] :
      ( ( ord_less_rat @ ( field_2639924705303425560at_rat @ R ) @ ( field_2639924705303425560at_rat @ S ) )
      = ( ord_less_rat @ R @ S ) ) ).

% of_rat_less
thf(fact_29_of__rat__less,axiom,
    ! [R: rat,S: rat] :
      ( ( ord_less_real @ ( field_7254667332652039916t_real @ R ) @ ( field_7254667332652039916t_real @ S ) )
      = ( ord_less_rat @ R @ S ) ) ).

% of_rat_less
thf(fact_30_zero__reorient,axiom,
    ! [X2: rat] :
      ( ( zero_zero_rat = X2 )
      = ( X2 = zero_zero_rat ) ) ).

% zero_reorient
thf(fact_31_zero__reorient,axiom,
    ! [X2: nat] :
      ( ( zero_zero_nat = X2 )
      = ( X2 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_32_zero__reorient,axiom,
    ! [X2: int] :
      ( ( zero_zero_int = X2 )
      = ( X2 = zero_zero_int ) ) ).

% zero_reorient
thf(fact_33_zero__reorient,axiom,
    ! [X2: real] :
      ( ( zero_zero_real = X2 )
      = ( X2 = zero_zero_real ) ) ).

% zero_reorient
thf(fact_34_order__less__imp__not__less,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ~ ( ord_less_set_rat @ Y @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_35_order__less__imp__not__less,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ~ ( ord_less_rat @ Y @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_36_order__less__imp__not__less,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ~ ( ord_less_num @ Y @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_37_order__less__imp__not__less,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ~ ( ord_less_nat @ Y @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_38_order__less__imp__not__less,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ~ ( ord_less_int @ Y @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_39_order__less__imp__not__less,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ~ ( ord_less_real @ Y @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_40_order__less__imp__not__eq2,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ( Y != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_41_order__less__imp__not__eq2,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( Y != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_42_order__less__imp__not__eq2,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( Y != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_43_order__less__imp__not__eq2,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( Y != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_44_order__less__imp__not__eq2,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ( Y != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_45_order__less__imp__not__eq2,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( Y != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_46_order__less__imp__not__eq,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ( X2 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_47_order__less__imp__not__eq,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( X2 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_48_order__less__imp__not__eq,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( X2 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_49_order__less__imp__not__eq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( X2 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_50_order__less__imp__not__eq,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ( X2 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_51_order__less__imp__not__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( X2 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_52_linorder__less__linear,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
      | ( X2 = Y )
      | ( ord_less_rat @ Y @ X2 ) ) ).

% linorder_less_linear
thf(fact_53_linorder__less__linear,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
      | ( X2 = Y )
      | ( ord_less_num @ Y @ X2 ) ) ).

% linorder_less_linear
thf(fact_54_linorder__less__linear,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
      | ( X2 = Y )
      | ( ord_less_nat @ Y @ X2 ) ) ).

% linorder_less_linear
thf(fact_55_linorder__less__linear,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ X2 @ Y )
      | ( X2 = Y )
      | ( ord_less_int @ Y @ X2 ) ) ).

% linorder_less_linear
thf(fact_56_linorder__less__linear,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
      | ( X2 = Y )
      | ( ord_less_real @ Y @ X2 ) ) ).

% linorder_less_linear
thf(fact_57_order__less__imp__triv,axiom,
    ! [X2: set_rat,Y: set_rat,P: $o] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ( ( ord_less_set_rat @ Y @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_58_order__less__imp__triv,axiom,
    ! [X2: rat,Y: rat,P: $o] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( ( ord_less_rat @ Y @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_59_order__less__imp__triv,axiom,
    ! [X2: num,Y: num,P: $o] :
      ( ( ord_less_num @ X2 @ Y )
     => ( ( ord_less_num @ Y @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_60_order__less__imp__triv,axiom,
    ! [X2: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( ( ord_less_nat @ Y @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_61_order__less__imp__triv,axiom,
    ! [X2: int,Y: int,P: $o] :
      ( ( ord_less_int @ X2 @ Y )
     => ( ( ord_less_int @ Y @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_62_order__less__imp__triv,axiom,
    ! [X2: real,Y: real,P: $o] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ( ord_less_real @ Y @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_63_order__less__not__sym,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ~ ( ord_less_set_rat @ Y @ X2 ) ) ).

% order_less_not_sym
thf(fact_64_order__less__not__sym,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ~ ( ord_less_rat @ Y @ X2 ) ) ).

% order_less_not_sym
thf(fact_65_order__less__not__sym,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ~ ( ord_less_num @ Y @ X2 ) ) ).

% order_less_not_sym
thf(fact_66_order__less__not__sym,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ~ ( ord_less_nat @ Y @ X2 ) ) ).

% order_less_not_sym
thf(fact_67_order__less__not__sym,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ~ ( ord_less_int @ Y @ X2 ) ) ).

% order_less_not_sym
thf(fact_68_order__less__not__sym,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ~ ( ord_less_real @ Y @ X2 ) ) ).

% order_less_not_sym
thf(fact_69_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_70_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_71_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_72_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_73_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_74_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_75_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_76_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_77_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_78_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_79_order__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_80_order__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_81_order__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_nat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_82_order__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X: int,Y2: int] :
              ( ( ord_less_int @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_83_order__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_real @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_84_order__less__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_85_order__less__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_86_order__less__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_nat @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_87_order__less__subst1,axiom,
    ! [A: num,F: int > num,B: int,C: int] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X: int,Y2: int] :
              ( ( ord_less_int @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_88_order__less__subst1,axiom,
    ! [A: num,F: real > num,B: real,C: real] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_real @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_89_order__less__irrefl,axiom,
    ! [X2: set_rat] :
      ~ ( ord_less_set_rat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_90_order__less__irrefl,axiom,
    ! [X2: rat] :
      ~ ( ord_less_rat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_91_order__less__irrefl,axiom,
    ! [X2: num] :
      ~ ( ord_less_num @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_92_order__less__irrefl,axiom,
    ! [X2: nat] :
      ~ ( ord_less_nat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_93_order__less__irrefl,axiom,
    ! [X2: int] :
      ~ ( ord_less_int @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_94_order__less__irrefl,axiom,
    ! [X2: real] :
      ~ ( ord_less_real @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_95_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_96_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_97_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_98_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_99_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_100_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_101_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_102_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_103_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_104_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_105_ord__eq__less__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_106_ord__eq__less__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_107_ord__eq__less__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_108_ord__eq__less__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_109_ord__eq__less__subst,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_110_ord__eq__less__subst,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_111_ord__eq__less__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_112_ord__eq__less__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_113_ord__eq__less__subst,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_114_ord__eq__less__subst,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_115_order__less__trans,axiom,
    ! [X2: set_rat,Y: set_rat,Z: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ( ( ord_less_set_rat @ Y @ Z )
       => ( ord_less_set_rat @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_116_order__less__trans,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( ( ord_less_rat @ Y @ Z )
       => ( ord_less_rat @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_117_order__less__trans,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( ( ord_less_num @ Y @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_118_order__less__trans,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_119_order__less__trans,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_120_order__less__trans,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ( ord_less_real @ Y @ Z )
       => ( ord_less_real @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_121_preal__Ex__mem,axiom,
    ! [A2: set_rat] :
      ( ( dedekind_cut @ A2 )
     => ? [X: rat] : ( member_rat @ X @ A2 ) ) ).

% preal_Ex_mem
thf(fact_122_preal__exists__greater,axiom,
    ! [A2: set_rat,Y: rat] :
      ( ( dedekind_cut @ A2 )
     => ( ( member_rat @ Y @ A2 )
       => ? [X: rat] :
            ( ( member_rat @ X @ A2 )
            & ( ord_less_rat @ Y @ X ) ) ) ) ).

% preal_exists_greater
thf(fact_123_preal__imp__pos,axiom,
    ! [A2: set_rat,R: rat] :
      ( ( dedekind_cut @ A2 )
     => ( ( member_rat @ R @ A2 )
       => ( ord_less_rat @ zero_zero_rat @ R ) ) ) ).

% preal_imp_pos
thf(fact_124_preal__nonempty,axiom,
    ! [A2: set_rat] :
      ( ( dedekind_cut @ A2 )
     => ? [X: rat] :
          ( ( member_rat @ X @ A2 )
          & ( ord_less_rat @ zero_zero_rat @ X ) ) ) ).

% preal_nonempty
thf(fact_125_not__in__preal__ub,axiom,
    ! [A2: set_rat,X2: rat,Y: rat] :
      ( ( dedekind_cut @ A2 )
     => ( ~ ( member_rat @ X2 @ A2 )
       => ( ( member_rat @ Y @ A2 )
         => ( ( ord_less_rat @ zero_zero_rat @ X2 )
           => ( ord_less_rat @ Y @ X2 ) ) ) ) ) ).

% not_in_preal_ub
thf(fact_126_preal__exists__bound,axiom,
    ! [A2: set_rat] :
      ( ( dedekind_cut @ A2 )
     => ? [X: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ X )
          & ~ ( member_rat @ X @ A2 ) ) ) ).

% preal_exists_bound
thf(fact_127_preal__downwards__closed,axiom,
    ! [A2: set_rat,Y: rat,Z: rat] :
      ( ( dedekind_cut @ A2 )
     => ( ( member_rat @ Y @ A2 )
       => ( ( ord_less_rat @ zero_zero_rat @ Z )
         => ( ( ord_less_rat @ Z @ Y )
           => ( member_rat @ Z @ A2 ) ) ) ) ) ).

% preal_downwards_closed
thf(fact_128_lt__ex,axiom,
    ! [X2: rat] :
    ? [Y2: rat] : ( ord_less_rat @ Y2 @ X2 ) ).

% lt_ex
thf(fact_129_lt__ex,axiom,
    ! [X2: int] :
    ? [Y2: int] : ( ord_less_int @ Y2 @ X2 ) ).

% lt_ex
thf(fact_130_lt__ex,axiom,
    ! [X2: real] :
    ? [Y2: real] : ( ord_less_real @ Y2 @ X2 ) ).

% lt_ex
thf(fact_131_gt__ex,axiom,
    ! [X2: rat] :
    ? [X_1: rat] : ( ord_less_rat @ X2 @ X_1 ) ).

% gt_ex
thf(fact_132_gt__ex,axiom,
    ! [X2: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X2 @ X_1 ) ).

% gt_ex
thf(fact_133_gt__ex,axiom,
    ! [X2: int] :
    ? [X_1: int] : ( ord_less_int @ X2 @ X_1 ) ).

% gt_ex
thf(fact_134_gt__ex,axiom,
    ! [X2: real] :
    ? [X_1: real] : ( ord_less_real @ X2 @ X_1 ) ).

% gt_ex
thf(fact_135_dense,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ? [Z2: rat] :
          ( ( ord_less_rat @ X2 @ Z2 )
          & ( ord_less_rat @ Z2 @ Y ) ) ) ).

% dense
thf(fact_136_dense,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ? [Z2: real] :
          ( ( ord_less_real @ X2 @ Z2 )
          & ( ord_less_real @ Z2 @ Y ) ) ) ).

% dense
thf(fact_137_mem__Collect__eq,axiom,
    ! [A: rat,P: rat > $o] :
      ( ( member_rat @ A @ ( collect_rat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_138_mem__Collect__eq,axiom,
    ! [A: set_rat,P: set_rat > $o] :
      ( ( member_set_rat @ A @ ( collect_set_rat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_139_Collect__mem__eq,axiom,
    ! [A2: set_rat] :
      ( ( collect_rat
        @ ^ [X3: rat] : ( member_rat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_140_Collect__mem__eq,axiom,
    ! [A2: set_set_rat] :
      ( ( collect_set_rat
        @ ^ [X3: set_rat] : ( member_set_rat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_141_Collect__cong,axiom,
    ! [P: set_rat > $o,Q: set_rat > $o] :
      ( ! [X: set_rat] :
          ( ( P @ X )
          = ( Q @ X ) )
     => ( ( collect_set_rat @ P )
        = ( collect_set_rat @ Q ) ) ) ).

% Collect_cong
thf(fact_142_less__imp__neq,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ( X2 != Y ) ) ).

% less_imp_neq
thf(fact_143_less__imp__neq,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( X2 != Y ) ) ).

% less_imp_neq
thf(fact_144_less__imp__neq,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( X2 != Y ) ) ).

% less_imp_neq
thf(fact_145_less__imp__neq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( X2 != Y ) ) ).

% less_imp_neq
thf(fact_146_less__imp__neq,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ( X2 != Y ) ) ).

% less_imp_neq
thf(fact_147_less__imp__neq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( X2 != Y ) ) ).

% less_imp_neq
thf(fact_148_order_Oasym,axiom,
    ! [A: set_rat,B: set_rat] :
      ( ( ord_less_set_rat @ A @ B )
     => ~ ( ord_less_set_rat @ B @ A ) ) ).

% order.asym
thf(fact_149_order_Oasym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order.asym
thf(fact_150_order_Oasym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order.asym
thf(fact_151_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_152_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_153_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_154_ord__eq__less__trans,axiom,
    ! [A: set_rat,B: set_rat,C: set_rat] :
      ( ( A = B )
     => ( ( ord_less_set_rat @ B @ C )
       => ( ord_less_set_rat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_155_ord__eq__less__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_156_ord__eq__less__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_157_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_158_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_159_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_160_ord__less__eq__trans,axiom,
    ! [A: set_rat,B: set_rat,C: set_rat] :
      ( ( ord_less_set_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_set_rat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_161_ord__less__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_162_ord__less__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_163_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_164_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_165_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_166_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X: nat] :
          ( ! [Y3: nat] :
              ( ( ord_less_nat @ Y3 @ X )
             => ( P @ Y3 ) )
         => ( P @ X ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_167_antisym__conv3,axiom,
    ! [Y: rat,X2: rat] :
      ( ~ ( ord_less_rat @ Y @ X2 )
     => ( ( ~ ( ord_less_rat @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv3
thf(fact_168_antisym__conv3,axiom,
    ! [Y: num,X2: num] :
      ( ~ ( ord_less_num @ Y @ X2 )
     => ( ( ~ ( ord_less_num @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv3
thf(fact_169_antisym__conv3,axiom,
    ! [Y: nat,X2: nat] :
      ( ~ ( ord_less_nat @ Y @ X2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv3
thf(fact_170_antisym__conv3,axiom,
    ! [Y: int,X2: int] :
      ( ~ ( ord_less_int @ Y @ X2 )
     => ( ( ~ ( ord_less_int @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv3
thf(fact_171_antisym__conv3,axiom,
    ! [Y: real,X2: real] :
      ( ~ ( ord_less_real @ Y @ X2 )
     => ( ( ~ ( ord_less_real @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv3
thf(fact_172_linorder__cases,axiom,
    ! [X2: rat,Y: rat] :
      ( ~ ( ord_less_rat @ X2 @ Y )
     => ( ( X2 != Y )
       => ( ord_less_rat @ Y @ X2 ) ) ) ).

% linorder_cases
thf(fact_173_linorder__cases,axiom,
    ! [X2: num,Y: num] :
      ( ~ ( ord_less_num @ X2 @ Y )
     => ( ( X2 != Y )
       => ( ord_less_num @ Y @ X2 ) ) ) ).

% linorder_cases
thf(fact_174_linorder__cases,axiom,
    ! [X2: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y )
     => ( ( X2 != Y )
       => ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_cases
thf(fact_175_linorder__cases,axiom,
    ! [X2: int,Y: int] :
      ( ~ ( ord_less_int @ X2 @ Y )
     => ( ( X2 != Y )
       => ( ord_less_int @ Y @ X2 ) ) ) ).

% linorder_cases
thf(fact_176_linorder__cases,axiom,
    ! [X2: real,Y: real] :
      ( ~ ( ord_less_real @ X2 @ Y )
     => ( ( X2 != Y )
       => ( ord_less_real @ Y @ X2 ) ) ) ).

% linorder_cases
thf(fact_177_dual__order_Oasym,axiom,
    ! [B: set_rat,A: set_rat] :
      ( ( ord_less_set_rat @ B @ A )
     => ~ ( ord_less_set_rat @ A @ B ) ) ).

% dual_order.asym
thf(fact_178_dual__order_Oasym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ~ ( ord_less_rat @ A @ B ) ) ).

% dual_order.asym
thf(fact_179_dual__order_Oasym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ~ ( ord_less_num @ A @ B ) ) ).

% dual_order.asym
thf(fact_180_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_181_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_182_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_183_dual__order_Oirrefl,axiom,
    ! [A: set_rat] :
      ~ ( ord_less_set_rat @ A @ A ) ).

% dual_order.irrefl
thf(fact_184_dual__order_Oirrefl,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% dual_order.irrefl
thf(fact_185_dual__order_Oirrefl,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% dual_order.irrefl
thf(fact_186_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_187_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_188_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_189_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X4: nat] : ( P2 @ X4 ) )
    = ( ^ [P3: nat > $o] :
        ? [N2: nat] :
          ( ( P3 @ N2 )
          & ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ~ ( P3 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_190_linorder__less__wlog,axiom,
    ! [P: rat > rat > $o,A: rat,B: rat] :
      ( ! [A3: rat,B2: rat] :
          ( ( ord_less_rat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: rat] : ( P @ A3 @ A3 )
       => ( ! [A3: rat,B2: rat] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_191_linorder__less__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A3: num,B2: num] :
          ( ( ord_less_num @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: num] : ( P @ A3 @ A3 )
       => ( ! [A3: num,B2: num] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_192_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat] : ( P @ A3 @ A3 )
       => ( ! [A3: nat,B2: nat] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_193_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_int @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: int] : ( P @ A3 @ A3 )
       => ( ! [A3: int,B2: int] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_194_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B2: real] :
          ( ( ord_less_real @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: real] : ( P @ A3 @ A3 )
       => ( ! [A3: real,B2: real] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_195_order_Ostrict__trans,axiom,
    ! [A: set_rat,B: set_rat,C: set_rat] :
      ( ( ord_less_set_rat @ A @ B )
     => ( ( ord_less_set_rat @ B @ C )
       => ( ord_less_set_rat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_196_order_Ostrict__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_197_order_Ostrict__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_198_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_199_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_200_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_201_not__less__iff__gr__or__eq,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ~ ( ord_less_rat @ X2 @ Y ) )
      = ( ( ord_less_rat @ Y @ X2 )
        | ( X2 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_202_not__less__iff__gr__or__eq,axiom,
    ! [X2: num,Y: num] :
      ( ( ~ ( ord_less_num @ X2 @ Y ) )
      = ( ( ord_less_num @ Y @ X2 )
        | ( X2 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_203_not__less__iff__gr__or__eq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y ) )
      = ( ( ord_less_nat @ Y @ X2 )
        | ( X2 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_204_not__less__iff__gr__or__eq,axiom,
    ! [X2: int,Y: int] :
      ( ( ~ ( ord_less_int @ X2 @ Y ) )
      = ( ( ord_less_int @ Y @ X2 )
        | ( X2 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_205_not__less__iff__gr__or__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ~ ( ord_less_real @ X2 @ Y ) )
      = ( ( ord_less_real @ Y @ X2 )
        | ( X2 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_206_dual__order_Ostrict__trans,axiom,
    ! [B: set_rat,A: set_rat,C: set_rat] :
      ( ( ord_less_set_rat @ B @ A )
     => ( ( ord_less_set_rat @ C @ B )
       => ( ord_less_set_rat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_207_dual__order_Ostrict__trans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_208_dual__order_Ostrict__trans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_209_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_210_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_211_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_212_order_Ostrict__implies__not__eq,axiom,
    ! [A: set_rat,B: set_rat] :
      ( ( ord_less_set_rat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_213_order_Ostrict__implies__not__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_214_order_Ostrict__implies__not__eq,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_215_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_216_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_217_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_218_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: set_rat,A: set_rat] :
      ( ( ord_less_set_rat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_219_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_220_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_221_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_222_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_223_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_224_linorder__neqE,axiom,
    ! [X2: rat,Y: rat] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_rat @ X2 @ Y )
       => ( ord_less_rat @ Y @ X2 ) ) ) ).

% linorder_neqE
thf(fact_225_linorder__neqE,axiom,
    ! [X2: num,Y: num] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_num @ X2 @ Y )
       => ( ord_less_num @ Y @ X2 ) ) ) ).

% linorder_neqE
thf(fact_226_linorder__neqE,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_nat @ X2 @ Y )
       => ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_neqE
thf(fact_227_linorder__neqE,axiom,
    ! [X2: int,Y: int] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_int @ X2 @ Y )
       => ( ord_less_int @ Y @ X2 ) ) ) ).

% linorder_neqE
thf(fact_228_linorder__neqE,axiom,
    ! [X2: real,Y: real] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_real @ X2 @ Y )
       => ( ord_less_real @ Y @ X2 ) ) ) ).

% linorder_neqE
thf(fact_229_order__less__asym,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ~ ( ord_less_set_rat @ Y @ X2 ) ) ).

% order_less_asym
thf(fact_230_order__less__asym,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ~ ( ord_less_rat @ Y @ X2 ) ) ).

% order_less_asym
thf(fact_231_order__less__asym,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ~ ( ord_less_num @ Y @ X2 ) ) ).

% order_less_asym
thf(fact_232_order__less__asym,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ~ ( ord_less_nat @ Y @ X2 ) ) ).

% order_less_asym
thf(fact_233_order__less__asym,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ~ ( ord_less_int @ Y @ X2 ) ) ).

% order_less_asym
thf(fact_234_order__less__asym,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ~ ( ord_less_real @ Y @ X2 ) ) ).

% order_less_asym
thf(fact_235_linorder__neq__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( X2 != Y )
      = ( ( ord_less_rat @ X2 @ Y )
        | ( ord_less_rat @ Y @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_236_linorder__neq__iff,axiom,
    ! [X2: num,Y: num] :
      ( ( X2 != Y )
      = ( ( ord_less_num @ X2 @ Y )
        | ( ord_less_num @ Y @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_237_linorder__neq__iff,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 != Y )
      = ( ( ord_less_nat @ X2 @ Y )
        | ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_238_linorder__neq__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( X2 != Y )
      = ( ( ord_less_int @ X2 @ Y )
        | ( ord_less_int @ Y @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_239_linorder__neq__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( X2 != Y )
      = ( ( ord_less_real @ X2 @ Y )
        | ( ord_less_real @ Y @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_240_order__less__asym_H,axiom,
    ! [A: set_rat,B: set_rat] :
      ( ( ord_less_set_rat @ A @ B )
     => ~ ( ord_less_set_rat @ B @ A ) ) ).

% order_less_asym'
thf(fact_241_order__less__asym_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order_less_asym'
thf(fact_242_order__less__asym_H,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order_less_asym'
thf(fact_243_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_244_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_245_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_246_mem__mult__set,axiom,
    ! [A2: set_rat,B3: set_rat] :
      ( ( dedekind_cut @ A2 )
     => ( ( dedekind_cut @ B3 )
       => ( dedekind_cut @ ( dedekind_mult_set @ A2 @ B3 ) ) ) ) ).

% mem_mult_set
thf(fact_247_mem__add__set,axiom,
    ! [A2: set_rat,B3: set_rat] :
      ( ( dedekind_cut @ A2 )
     => ( ( dedekind_cut @ B3 )
       => ( dedekind_cut @ ( dedekind_add_set @ A2 @ B3 ) ) ) ) ).

% mem_add_set
thf(fact_248_preal__downwards__closed_H,axiom,
    ! [A2: set_rat,Y: rat,Z: rat] :
      ( ( dedekind_cut @ A2 )
     => ( ( member_rat @ Y @ A2 )
       => ( ( ord_less_rat @ zero_zero_rat @ Z )
         => ( ( ord_less_eq_rat @ Z @ Y )
           => ( member_rat @ Z @ A2 ) ) ) ) ) ).

% preal_downwards_closed'
thf(fact_249_minf_I7_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z2 )
     => ~ ( ord_less_rat @ T @ X5 ) ) ).

% minf(7)
thf(fact_250_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z2 )
     => ~ ( ord_less_num @ T @ X5 ) ) ).

% minf(7)
thf(fact_251_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z2 )
     => ~ ( ord_less_nat @ T @ X5 ) ) ).

% minf(7)
thf(fact_252_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z2 )
     => ~ ( ord_less_int @ T @ X5 ) ) ).

% minf(7)
thf(fact_253_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z2 )
     => ~ ( ord_less_real @ T @ X5 ) ) ).

% minf(7)
thf(fact_254_minf_I5_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z2 )
     => ( ord_less_rat @ X5 @ T ) ) ).

% minf(5)
thf(fact_255_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z2 )
     => ( ord_less_num @ X5 @ T ) ) ).

% minf(5)
thf(fact_256_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z2 )
     => ( ord_less_nat @ X5 @ T ) ) ).

% minf(5)
thf(fact_257_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z2 )
     => ( ord_less_int @ X5 @ T ) ) ).

% minf(5)
thf(fact_258_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z2 )
     => ( ord_less_real @ X5 @ T ) ) ).

% minf(5)
thf(fact_259_minf_I4_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_260_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_261_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_262_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_263_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_264_minf_I3_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_265_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_266_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_267_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_268_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z2 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_269_minf_I2_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q2: rat > $o] :
      ( ? [Z3: rat] :
        ! [X: rat] :
          ( ( ord_less_rat @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: rat] :
          ! [X: rat] :
            ( ( ord_less_rat @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_270_minf_I2_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z3: num] :
        ! [X: num] :
          ( ( ord_less_num @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: num] :
          ! [X: num] :
            ( ( ord_less_num @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: num] :
          ! [X5: num] :
            ( ( ord_less_num @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_271_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z3: nat] :
        ! [X: nat] :
          ( ( ord_less_nat @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: nat] :
          ! [X: nat] :
            ( ( ord_less_nat @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_272_minf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z3: int] :
        ! [X: int] :
          ( ( ord_less_int @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: int] :
          ! [X: int] :
            ( ( ord_less_int @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_273_minf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z3: real] :
        ! [X: real] :
          ( ( ord_less_real @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: real] :
          ! [X: real] :
            ( ( ord_less_real @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: real] :
          ! [X5: real] :
            ( ( ord_less_real @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_274_minf_I1_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q2: rat > $o] :
      ( ? [Z3: rat] :
        ! [X: rat] :
          ( ( ord_less_rat @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: rat] :
          ! [X: rat] :
            ( ( ord_less_rat @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_275_minf_I1_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z3: num] :
        ! [X: num] :
          ( ( ord_less_num @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: num] :
          ! [X: num] :
            ( ( ord_less_num @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: num] :
          ! [X5: num] :
            ( ( ord_less_num @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_276_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z3: nat] :
        ! [X: nat] :
          ( ( ord_less_nat @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: nat] :
          ! [X: nat] :
            ( ( ord_less_nat @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_277_minf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z3: int] :
        ! [X: int] :
          ( ( ord_less_int @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: int] :
          ! [X: int] :
            ( ( ord_less_int @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_278_minf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z3: real] :
        ! [X: real] :
          ( ( ord_less_real @ X @ Z3 )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: real] :
          ! [X: real] :
            ( ( ord_less_real @ X @ Z3 )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: real] :
          ! [X5: real] :
            ( ( ord_less_real @ X5 @ Z2 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_279_dual__order_Orefl,axiom,
    ! [A: set_rat] : ( ord_less_eq_set_rat @ A @ A ) ).

% dual_order.refl
thf(fact_280_dual__order_Orefl,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% dual_order.refl
thf(fact_281_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_282_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_283_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_284_order__refl,axiom,
    ! [X2: set_rat] : ( ord_less_eq_set_rat @ X2 @ X2 ) ).

% order_refl
thf(fact_285_order__refl,axiom,
    ! [X2: rat] : ( ord_less_eq_rat @ X2 @ X2 ) ).

% order_refl
thf(fact_286_order__refl,axiom,
    ! [X2: num] : ( ord_less_eq_num @ X2 @ X2 ) ).

% order_refl
thf(fact_287_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_288_order__refl,axiom,
    ! [X2: int] : ( ord_less_eq_int @ X2 @ X2 ) ).

% order_refl
thf(fact_289_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_290_zero__le__of__rat__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( field_7254667332652039916t_real @ R ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ R ) ) ).

% zero_le_of_rat_iff
thf(fact_291_zero__le__of__rat__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( field_2639924705303425560at_rat @ R ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ R ) ) ).

% zero_le_of_rat_iff
thf(fact_292_of__rat__le__0__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_eq_real @ ( field_7254667332652039916t_real @ R ) @ zero_zero_real )
      = ( ord_less_eq_rat @ R @ zero_zero_rat ) ) ).

% of_rat_le_0_iff
thf(fact_293_of__rat__le__0__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_eq_rat @ ( field_2639924705303425560at_rat @ R ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ R @ zero_zero_rat ) ) ).

% of_rat_le_0_iff
thf(fact_294_order__antisym__conv,axiom,
    ! [Y: set_rat,X2: set_rat] :
      ( ( ord_less_eq_set_rat @ Y @ X2 )
     => ( ( ord_less_eq_set_rat @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_295_order__antisym__conv,axiom,
    ! [Y: rat,X2: rat] :
      ( ( ord_less_eq_rat @ Y @ X2 )
     => ( ( ord_less_eq_rat @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_296_order__antisym__conv,axiom,
    ! [Y: num,X2: num] :
      ( ( ord_less_eq_num @ Y @ X2 )
     => ( ( ord_less_eq_num @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_297_order__antisym__conv,axiom,
    ! [Y: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_298_order__antisym__conv,axiom,
    ! [Y: int,X2: int] :
      ( ( ord_less_eq_int @ Y @ X2 )
     => ( ( ord_less_eq_int @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_299_linorder__le__cases,axiom,
    ! [X2: rat,Y: rat] :
      ( ~ ( ord_less_eq_rat @ X2 @ Y )
     => ( ord_less_eq_rat @ Y @ X2 ) ) ).

% linorder_le_cases
thf(fact_300_linorder__le__cases,axiom,
    ! [X2: num,Y: num] :
      ( ~ ( ord_less_eq_num @ X2 @ Y )
     => ( ord_less_eq_num @ Y @ X2 ) ) ).

% linorder_le_cases
thf(fact_301_linorder__le__cases,axiom,
    ! [X2: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y )
     => ( ord_less_eq_nat @ Y @ X2 ) ) ).

% linorder_le_cases
thf(fact_302_linorder__le__cases,axiom,
    ! [X2: int,Y: int] :
      ( ~ ( ord_less_eq_int @ X2 @ Y )
     => ( ord_less_eq_int @ Y @ X2 ) ) ).

% linorder_le_cases
thf(fact_303_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_304_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_305_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_306_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_307_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_308_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_309_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_310_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_311_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_312_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_313_ord__eq__le__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_314_ord__eq__le__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_315_ord__eq__le__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_316_ord__eq__le__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_317_ord__eq__le__subst,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_318_ord__eq__le__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_319_ord__eq__le__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_320_ord__eq__le__subst,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_321_ord__eq__le__subst,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_322_ord__eq__le__subst,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_323_linorder__linear,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y )
      | ( ord_less_eq_rat @ Y @ X2 ) ) ).

% linorder_linear
thf(fact_324_linorder__linear,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
      | ( ord_less_eq_num @ Y @ X2 ) ) ).

% linorder_linear
thf(fact_325_linorder__linear,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
      | ( ord_less_eq_nat @ Y @ X2 ) ) ).

% linorder_linear
thf(fact_326_linorder__linear,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ X2 @ Y )
      | ( ord_less_eq_int @ Y @ X2 ) ) ).

% linorder_linear
thf(fact_327_order__eq__refl,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( X2 = Y )
     => ( ord_less_eq_set_rat @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_328_order__eq__refl,axiom,
    ! [X2: rat,Y: rat] :
      ( ( X2 = Y )
     => ( ord_less_eq_rat @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_329_order__eq__refl,axiom,
    ! [X2: num,Y: num] :
      ( ( X2 = Y )
     => ( ord_less_eq_num @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_330_order__eq__refl,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 = Y )
     => ( ord_less_eq_nat @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_331_order__eq__refl,axiom,
    ! [X2: int,Y: int] :
      ( ( X2 = Y )
     => ( ord_less_eq_int @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_332_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_333_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_334_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_335_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_336_order__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_337_order__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_338_order__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_339_order__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_340_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_341_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_342_order__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_343_order__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_344_order__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_345_order__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X: int,Y2: int] :
              ( ( ord_less_eq_int @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_346_order__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_347_order__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_348_order__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_349_order__subst1,axiom,
    ! [A: num,F: int > num,B: int,C: int] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X: int,Y2: int] :
              ( ( ord_less_eq_int @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_350_order__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_351_order__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_352_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_rat,Z4: set_rat] : ( Y4 = Z4 ) )
    = ( ^ [A4: set_rat,B4: set_rat] :
          ( ( ord_less_eq_set_rat @ A4 @ B4 )
          & ( ord_less_eq_set_rat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_353_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: rat,Z4: rat] : ( Y4 = Z4 ) )
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_eq_rat @ A4 @ B4 )
          & ( ord_less_eq_rat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_354_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: num,Z4: num] : ( Y4 = Z4 ) )
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_eq_num @ A4 @ B4 )
          & ( ord_less_eq_num @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_355_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z4: nat] : ( Y4 = Z4 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_356_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: int,Z4: int] : ( Y4 = Z4 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ( ord_less_eq_int @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_357_antisym,axiom,
    ! [A: set_rat,B: set_rat] :
      ( ( ord_less_eq_set_rat @ A @ B )
     => ( ( ord_less_eq_set_rat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_358_antisym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_359_antisym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_360_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_361_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_362_dual__order_Otrans,axiom,
    ! [B: set_rat,A: set_rat,C: set_rat] :
      ( ( ord_less_eq_set_rat @ B @ A )
     => ( ( ord_less_eq_set_rat @ C @ B )
       => ( ord_less_eq_set_rat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_363_dual__order_Otrans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_364_dual__order_Otrans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_eq_num @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_365_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_366_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_367_dual__order_Oantisym,axiom,
    ! [B: set_rat,A: set_rat] :
      ( ( ord_less_eq_set_rat @ B @ A )
     => ( ( ord_less_eq_set_rat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_368_dual__order_Oantisym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_369_dual__order_Oantisym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_370_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_371_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_372_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: set_rat,Z4: set_rat] : ( Y4 = Z4 ) )
    = ( ^ [A4: set_rat,B4: set_rat] :
          ( ( ord_less_eq_set_rat @ B4 @ A4 )
          & ( ord_less_eq_set_rat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_373_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: rat,Z4: rat] : ( Y4 = Z4 ) )
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_eq_rat @ B4 @ A4 )
          & ( ord_less_eq_rat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_374_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: num,Z4: num] : ( Y4 = Z4 ) )
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_eq_num @ B4 @ A4 )
          & ( ord_less_eq_num @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_375_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: nat,Z4: nat] : ( Y4 = Z4 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_376_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: int,Z4: int] : ( Y4 = Z4 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ( ord_less_eq_int @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_377_linorder__wlog,axiom,
    ! [P: rat > rat > $o,A: rat,B: rat] :
      ( ! [A3: rat,B2: rat] :
          ( ( ord_less_eq_rat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: rat,B2: rat] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_378_linorder__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: num,B2: num] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_379_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat,B2: nat] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_380_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: int,B2: int] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_381_order__trans,axiom,
    ! [X2: set_rat,Y: set_rat,Z: set_rat] :
      ( ( ord_less_eq_set_rat @ X2 @ Y )
     => ( ( ord_less_eq_set_rat @ Y @ Z )
       => ( ord_less_eq_set_rat @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_382_order__trans,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y )
     => ( ( ord_less_eq_rat @ Y @ Z )
       => ( ord_less_eq_rat @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_383_order__trans,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ord_less_eq_num @ Y @ Z )
       => ( ord_less_eq_num @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_384_order__trans,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_385_order__trans,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( ord_less_eq_int @ X2 @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_eq_int @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_386_order_Otrans,axiom,
    ! [A: set_rat,B: set_rat,C: set_rat] :
      ( ( ord_less_eq_set_rat @ A @ B )
     => ( ( ord_less_eq_set_rat @ B @ C )
       => ( ord_less_eq_set_rat @ A @ C ) ) ) ).

% order.trans
thf(fact_387_order_Otrans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% order.trans
thf(fact_388_order_Otrans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% order.trans
thf(fact_389_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_390_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_391_order__antisym,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_eq_set_rat @ X2 @ Y )
     => ( ( ord_less_eq_set_rat @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_392_order__antisym,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y )
     => ( ( ord_less_eq_rat @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_393_order__antisym,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ord_less_eq_num @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_394_order__antisym,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_395_order__antisym,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ X2 @ Y )
     => ( ( ord_less_eq_int @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_396_ord__le__eq__trans,axiom,
    ! [A: set_rat,B: set_rat,C: set_rat] :
      ( ( ord_less_eq_set_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_rat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_397_ord__le__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_398_ord__le__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_399_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_400_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_401_ord__eq__le__trans,axiom,
    ! [A: set_rat,B: set_rat,C: set_rat] :
      ( ( A = B )
     => ( ( ord_less_eq_set_rat @ B @ C )
       => ( ord_less_eq_set_rat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_402_ord__eq__le__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_403_ord__eq__le__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_404_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_405_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_406_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_rat,Z4: set_rat] : ( Y4 = Z4 ) )
    = ( ^ [X3: set_rat,Y5: set_rat] :
          ( ( ord_less_eq_set_rat @ X3 @ Y5 )
          & ( ord_less_eq_set_rat @ Y5 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_407_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: rat,Z4: rat] : ( Y4 = Z4 ) )
    = ( ^ [X3: rat,Y5: rat] :
          ( ( ord_less_eq_rat @ X3 @ Y5 )
          & ( ord_less_eq_rat @ Y5 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_408_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: num,Z4: num] : ( Y4 = Z4 ) )
    = ( ^ [X3: num,Y5: num] :
          ( ( ord_less_eq_num @ X3 @ Y5 )
          & ( ord_less_eq_num @ Y5 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_409_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z4: nat] : ( Y4 = Z4 ) )
    = ( ^ [X3: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y5 )
          & ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_410_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: int,Z4: int] : ( Y4 = Z4 ) )
    = ( ^ [X3: int,Y5: int] :
          ( ( ord_less_eq_int @ X3 @ Y5 )
          & ( ord_less_eq_int @ Y5 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_411_le__cases3,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( ( ord_less_eq_rat @ X2 @ Y )
       => ~ ( ord_less_eq_rat @ Y @ Z ) )
     => ( ( ( ord_less_eq_rat @ Y @ X2 )
         => ~ ( ord_less_eq_rat @ X2 @ Z ) )
       => ( ( ( ord_less_eq_rat @ X2 @ Z )
           => ~ ( ord_less_eq_rat @ Z @ Y ) )
         => ( ( ( ord_less_eq_rat @ Z @ Y )
             => ~ ( ord_less_eq_rat @ Y @ X2 ) )
           => ( ( ( ord_less_eq_rat @ Y @ Z )
               => ~ ( ord_less_eq_rat @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_rat @ Z @ X2 )
                 => ~ ( ord_less_eq_rat @ X2 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_412_le__cases3,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ( ord_less_eq_num @ X2 @ Y )
       => ~ ( ord_less_eq_num @ Y @ Z ) )
     => ( ( ( ord_less_eq_num @ Y @ X2 )
         => ~ ( ord_less_eq_num @ X2 @ Z ) )
       => ( ( ( ord_less_eq_num @ X2 @ Z )
           => ~ ( ord_less_eq_num @ Z @ Y ) )
         => ( ( ( ord_less_eq_num @ Z @ Y )
             => ~ ( ord_less_eq_num @ Y @ X2 ) )
           => ( ( ( ord_less_eq_num @ Y @ Z )
               => ~ ( ord_less_eq_num @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_num @ Z @ X2 )
                 => ~ ( ord_less_eq_num @ X2 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_413_le__cases3,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_414_le__cases3,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( ( ord_less_eq_int @ X2 @ Y )
       => ~ ( ord_less_eq_int @ Y @ Z ) )
     => ( ( ( ord_less_eq_int @ Y @ X2 )
         => ~ ( ord_less_eq_int @ X2 @ Z ) )
       => ( ( ( ord_less_eq_int @ X2 @ Z )
           => ~ ( ord_less_eq_int @ Z @ Y ) )
         => ( ( ( ord_less_eq_int @ Z @ Y )
             => ~ ( ord_less_eq_int @ Y @ X2 ) )
           => ( ( ( ord_less_eq_int @ Y @ Z )
               => ~ ( ord_less_eq_int @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_int @ Z @ X2 )
                 => ~ ( ord_less_eq_int @ X2 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_415_nle__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_eq_rat @ A @ B ) )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_416_nle__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_eq_num @ A @ B ) )
      = ( ( ord_less_eq_num @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_417_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_418_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_419_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z2 @ X5 )
     => ~ ( ord_less_eq_real @ X5 @ T ) ) ).

% pinf(6)
thf(fact_420_pinf_I6_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z2 @ X5 )
     => ~ ( ord_less_eq_rat @ X5 @ T ) ) ).

% pinf(6)
thf(fact_421_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z2 @ X5 )
     => ~ ( ord_less_eq_num @ X5 @ T ) ) ).

% pinf(6)
thf(fact_422_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z2 @ X5 )
     => ~ ( ord_less_eq_nat @ X5 @ T ) ) ).

% pinf(6)
thf(fact_423_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z2 @ X5 )
     => ~ ( ord_less_eq_int @ X5 @ T ) ) ).

% pinf(6)
thf(fact_424_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z2 @ X5 )
     => ( ord_less_eq_real @ T @ X5 ) ) ).

% pinf(8)
thf(fact_425_pinf_I8_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z2 @ X5 )
     => ( ord_less_eq_rat @ T @ X5 ) ) ).

% pinf(8)
thf(fact_426_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z2 @ X5 )
     => ( ord_less_eq_num @ T @ X5 ) ) ).

% pinf(8)
thf(fact_427_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z2 @ X5 )
     => ( ord_less_eq_nat @ T @ X5 ) ) ).

% pinf(8)
thf(fact_428_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z2 @ X5 )
     => ( ord_less_eq_int @ T @ X5 ) ) ).

% pinf(8)
thf(fact_429_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z2 )
     => ( ord_less_eq_real @ X5 @ T ) ) ).

% minf(6)
thf(fact_430_minf_I6_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z2 )
     => ( ord_less_eq_rat @ X5 @ T ) ) ).

% minf(6)
thf(fact_431_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z2 )
     => ( ord_less_eq_num @ X5 @ T ) ) ).

% minf(6)
thf(fact_432_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z2 )
     => ( ord_less_eq_nat @ X5 @ T ) ) ).

% minf(6)
thf(fact_433_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z2 )
     => ( ord_less_eq_int @ X5 @ T ) ) ).

% minf(6)
thf(fact_434_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z2 )
     => ~ ( ord_less_eq_real @ T @ X5 ) ) ).

% minf(8)
thf(fact_435_minf_I8_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z2 )
     => ~ ( ord_less_eq_rat @ T @ X5 ) ) ).

% minf(8)
thf(fact_436_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z2 )
     => ~ ( ord_less_eq_num @ T @ X5 ) ) ).

% minf(8)
thf(fact_437_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z2 )
     => ~ ( ord_less_eq_nat @ T @ X5 ) ) ).

% minf(8)
thf(fact_438_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z2 )
     => ~ ( ord_less_eq_int @ T @ X5 ) ) ).

% minf(8)
thf(fact_439_of__rat__less__eq,axiom,
    ! [R: rat,S: rat] :
      ( ( ord_less_eq_rat @ ( field_2639924705303425560at_rat @ R ) @ ( field_2639924705303425560at_rat @ S ) )
      = ( ord_less_eq_rat @ R @ S ) ) ).

% of_rat_less_eq
thf(fact_440_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_441_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_442_le__numeral__extra_I3_J,axiom,
    ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).

% le_numeral_extra(3)
thf(fact_443_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_444_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_445_order__le__imp__less__or__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ( ord_less_real @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_446_order__le__imp__less__or__eq,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_eq_set_rat @ X2 @ Y )
     => ( ( ord_less_set_rat @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_447_order__le__imp__less__or__eq,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y )
     => ( ( ord_less_rat @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_448_order__le__imp__less__or__eq,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ord_less_num @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_449_order__le__imp__less__or__eq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_less_nat @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_450_order__le__imp__less__or__eq,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ X2 @ Y )
     => ( ( ord_less_int @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_451_linorder__le__less__linear,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
      | ( ord_less_real @ Y @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_452_linorder__le__less__linear,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y )
      | ( ord_less_rat @ Y @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_453_linorder__le__less__linear,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
      | ( ord_less_num @ Y @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_454_linorder__le__less__linear,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
      | ( ord_less_nat @ Y @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_455_linorder__le__less__linear,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ X2 @ Y )
      | ( ord_less_int @ Y @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_456_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_457_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_458_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_nat @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_459_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X: int,Y2: int] :
              ( ( ord_less_int @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_460_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_real @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_461_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_462_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_463_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_nat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_464_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > rat,C: rat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X: int,Y2: int] :
              ( ( ord_less_int @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_465_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_real @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_466_order__less__le__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_467_order__less__le__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_468_order__less__le__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_469_order__less__le__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_470_order__less__le__subst1,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_471_order__less__le__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_472_order__less__le__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_473_order__less__le__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_474_order__less__le__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_475_order__less__le__subst1,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_476_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_477_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_478_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_479_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_480_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_eq_rat @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_481_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_482_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_483_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_484_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_485_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_eq_num @ X @ Y2 )
             => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_486_order__le__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_487_order__le__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_488_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_nat @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_489_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X: int,Y2: int] :
              ( ( ord_less_int @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_490_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_real @ X @ Y2 )
             => ( ord_less_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_491_order__le__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X: rat,Y2: rat] :
              ( ( ord_less_rat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_492_order__le__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X: num,Y2: num] :
              ( ( ord_less_num @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_493_order__le__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X: nat,Y2: nat] :
              ( ( ord_less_nat @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_494_order__le__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X: int,Y2: int] :
              ( ( ord_less_int @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_495_order__le__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_real @ X @ Y2 )
             => ( ord_less_rat @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_496_order__less__le__trans,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ( ord_less_eq_real @ Y @ Z )
       => ( ord_less_real @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_497_order__less__le__trans,axiom,
    ! [X2: set_rat,Y: set_rat,Z: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ( ( ord_less_eq_set_rat @ Y @ Z )
       => ( ord_less_set_rat @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_498_order__less__le__trans,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( ( ord_less_eq_rat @ Y @ Z )
       => ( ord_less_rat @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_499_order__less__le__trans,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( ( ord_less_eq_num @ Y @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_500_order__less__le__trans,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_501_order__less__le__trans,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_502_order__le__less__trans,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ( ord_less_real @ Y @ Z )
       => ( ord_less_real @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_503_order__le__less__trans,axiom,
    ! [X2: set_rat,Y: set_rat,Z: set_rat] :
      ( ( ord_less_eq_set_rat @ X2 @ Y )
     => ( ( ord_less_set_rat @ Y @ Z )
       => ( ord_less_set_rat @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_504_order__le__less__trans,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y )
     => ( ( ord_less_rat @ Y @ Z )
       => ( ord_less_rat @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_505_order__le__less__trans,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ord_less_num @ Y @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_506_order__le__less__trans,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_507_order__le__less__trans,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( ord_less_eq_int @ X2 @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_508_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_509_order__neq__le__trans,axiom,
    ! [A: set_rat,B: set_rat] :
      ( ( A != B )
     => ( ( ord_less_eq_set_rat @ A @ B )
       => ( ord_less_set_rat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_510_order__neq__le__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( A != B )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_511_order__neq__le__trans,axiom,
    ! [A: num,B: num] :
      ( ( A != B )
     => ( ( ord_less_eq_num @ A @ B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_512_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_513_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_514_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_515_order__le__neq__trans,axiom,
    ! [A: set_rat,B: set_rat] :
      ( ( ord_less_eq_set_rat @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_rat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_516_order__le__neq__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( A != B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_517_order__le__neq__trans,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( A != B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_518_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_519_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_520_order__less__imp__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ord_less_eq_real @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_521_order__less__imp__le,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_set_rat @ X2 @ Y )
     => ( ord_less_eq_set_rat @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_522_order__less__imp__le,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( ord_less_eq_rat @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_523_order__less__imp__le,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( ord_less_eq_num @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_524_order__less__imp__le,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( ord_less_eq_nat @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_525_order__less__imp__le,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ X2 @ Y )
     => ( ord_less_eq_int @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_526_linorder__not__less,axiom,
    ! [X2: real,Y: real] :
      ( ( ~ ( ord_less_real @ X2 @ Y ) )
      = ( ord_less_eq_real @ Y @ X2 ) ) ).

% linorder_not_less
thf(fact_527_linorder__not__less,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ~ ( ord_less_rat @ X2 @ Y ) )
      = ( ord_less_eq_rat @ Y @ X2 ) ) ).

% linorder_not_less
thf(fact_528_linorder__not__less,axiom,
    ! [X2: num,Y: num] :
      ( ( ~ ( ord_less_num @ X2 @ Y ) )
      = ( ord_less_eq_num @ Y @ X2 ) ) ).

% linorder_not_less
thf(fact_529_linorder__not__less,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y ) )
      = ( ord_less_eq_nat @ Y @ X2 ) ) ).

% linorder_not_less
thf(fact_530_linorder__not__less,axiom,
    ! [X2: int,Y: int] :
      ( ( ~ ( ord_less_int @ X2 @ Y ) )
      = ( ord_less_eq_int @ Y @ X2 ) ) ).

% linorder_not_less
thf(fact_531_linorder__not__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ~ ( ord_less_eq_real @ X2 @ Y ) )
      = ( ord_less_real @ Y @ X2 ) ) ).

% linorder_not_le
thf(fact_532_linorder__not__le,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ~ ( ord_less_eq_rat @ X2 @ Y ) )
      = ( ord_less_rat @ Y @ X2 ) ) ).

% linorder_not_le
thf(fact_533_linorder__not__le,axiom,
    ! [X2: num,Y: num] :
      ( ( ~ ( ord_less_eq_num @ X2 @ Y ) )
      = ( ord_less_num @ Y @ X2 ) ) ).

% linorder_not_le
thf(fact_534_linorder__not__le,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X2 @ Y ) )
      = ( ord_less_nat @ Y @ X2 ) ) ).

% linorder_not_le
thf(fact_535_linorder__not__le,axiom,
    ! [X2: int,Y: int] :
      ( ( ~ ( ord_less_eq_int @ X2 @ Y ) )
      = ( ord_less_int @ Y @ X2 ) ) ).

% linorder_not_le
thf(fact_536_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X3: real,Y5: real] :
          ( ( ord_less_eq_real @ X3 @ Y5 )
          & ( X3 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_537_order__less__le,axiom,
    ( ord_less_set_rat
    = ( ^ [X3: set_rat,Y5: set_rat] :
          ( ( ord_less_eq_set_rat @ X3 @ Y5 )
          & ( X3 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_538_order__less__le,axiom,
    ( ord_less_rat
    = ( ^ [X3: rat,Y5: rat] :
          ( ( ord_less_eq_rat @ X3 @ Y5 )
          & ( X3 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_539_order__less__le,axiom,
    ( ord_less_num
    = ( ^ [X3: num,Y5: num] :
          ( ( ord_less_eq_num @ X3 @ Y5 )
          & ( X3 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_540_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y5 )
          & ( X3 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_541_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X3: int,Y5: int] :
          ( ( ord_less_eq_int @ X3 @ Y5 )
          & ( X3 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_542_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X3: real,Y5: real] :
          ( ( ord_less_real @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_543_order__le__less,axiom,
    ( ord_less_eq_set_rat
    = ( ^ [X3: set_rat,Y5: set_rat] :
          ( ( ord_less_set_rat @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_544_order__le__less,axiom,
    ( ord_less_eq_rat
    = ( ^ [X3: rat,Y5: rat] :
          ( ( ord_less_rat @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_545_order__le__less,axiom,
    ( ord_less_eq_num
    = ( ^ [X3: num,Y5: num] :
          ( ( ord_less_num @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_546_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y5: nat] :
          ( ( ord_less_nat @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_547_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X3: int,Y5: int] :
          ( ( ord_less_int @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_548_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_549_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_rat,A: set_rat] :
      ( ( ord_less_set_rat @ B @ A )
     => ( ord_less_eq_set_rat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_550_dual__order_Ostrict__implies__order,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_551_dual__order_Ostrict__implies__order,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ord_less_eq_num @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_552_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_553_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_554_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_555_order_Ostrict__implies__order,axiom,
    ! [A: set_rat,B: set_rat] :
      ( ( ord_less_set_rat @ A @ B )
     => ( ord_less_eq_set_rat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_556_order_Ostrict__implies__order,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_557_order_Ostrict__implies__order,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ord_less_eq_num @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_558_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_559_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_560_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B4: real,A4: real] :
          ( ( ord_less_eq_real @ B4 @ A4 )
          & ~ ( ord_less_eq_real @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_561_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_rat
    = ( ^ [B4: set_rat,A4: set_rat] :
          ( ( ord_less_eq_set_rat @ B4 @ A4 )
          & ~ ( ord_less_eq_set_rat @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_562_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [B4: rat,A4: rat] :
          ( ( ord_less_eq_rat @ B4 @ A4 )
          & ~ ( ord_less_eq_rat @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_563_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [B4: num,A4: num] :
          ( ( ord_less_eq_num @ B4 @ A4 )
          & ~ ( ord_less_eq_num @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_564_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_565_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ~ ( ord_less_eq_int @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_566_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_567_dual__order_Ostrict__trans2,axiom,
    ! [B: set_rat,A: set_rat,C: set_rat] :
      ( ( ord_less_set_rat @ B @ A )
     => ( ( ord_less_eq_set_rat @ C @ B )
       => ( ord_less_set_rat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_568_dual__order_Ostrict__trans2,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_569_dual__order_Ostrict__trans2,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_570_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_571_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_572_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_573_dual__order_Ostrict__trans1,axiom,
    ! [B: set_rat,A: set_rat,C: set_rat] :
      ( ( ord_less_eq_set_rat @ B @ A )
     => ( ( ord_less_set_rat @ C @ B )
       => ( ord_less_set_rat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_574_dual__order_Ostrict__trans1,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_575_dual__order_Ostrict__trans1,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_576_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_577_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_578_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B4: real,A4: real] :
          ( ( ord_less_eq_real @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_579_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_rat
    = ( ^ [B4: set_rat,A4: set_rat] :
          ( ( ord_less_eq_set_rat @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_580_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [B4: rat,A4: rat] :
          ( ( ord_less_eq_rat @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_581_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [B4: num,A4: num] :
          ( ( ord_less_eq_num @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_582_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_583_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_584_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B4: real,A4: real] :
          ( ( ord_less_real @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_585_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_rat
    = ( ^ [B4: set_rat,A4: set_rat] :
          ( ( ord_less_set_rat @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_586_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [B4: rat,A4: rat] :
          ( ( ord_less_rat @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_587_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [B4: num,A4: num] :
          ( ( ord_less_num @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_588_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_nat @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_589_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_int @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_590_dense__le__bounded,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ! [W: real] :
            ( ( ord_less_real @ X2 @ W )
           => ( ( ord_less_real @ W @ Y )
             => ( ord_less_eq_real @ W @ Z ) ) )
       => ( ord_less_eq_real @ Y @ Z ) ) ) ).

% dense_le_bounded
thf(fact_591_dense__le__bounded,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( ! [W: rat] :
            ( ( ord_less_rat @ X2 @ W )
           => ( ( ord_less_rat @ W @ Y )
             => ( ord_less_eq_rat @ W @ Z ) ) )
       => ( ord_less_eq_rat @ Y @ Z ) ) ) ).

% dense_le_bounded
thf(fact_592_dense__ge__bounded,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ( ! [W: real] :
            ( ( ord_less_real @ Z @ W )
           => ( ( ord_less_real @ W @ X2 )
             => ( ord_less_eq_real @ Y @ W ) ) )
       => ( ord_less_eq_real @ Y @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_593_dense__ge__bounded,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ( ! [W: rat] :
            ( ( ord_less_rat @ Z @ W )
           => ( ( ord_less_rat @ W @ X2 )
             => ( ord_less_eq_rat @ Y @ W ) ) )
       => ( ord_less_eq_rat @ Y @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_594_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B4: real] :
          ( ( ord_less_eq_real @ A4 @ B4 )
          & ~ ( ord_less_eq_real @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_595_order_Ostrict__iff__not,axiom,
    ( ord_less_set_rat
    = ( ^ [A4: set_rat,B4: set_rat] :
          ( ( ord_less_eq_set_rat @ A4 @ B4 )
          & ~ ( ord_less_eq_set_rat @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_596_order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_eq_rat @ A4 @ B4 )
          & ~ ( ord_less_eq_rat @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_597_order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_eq_num @ A4 @ B4 )
          & ~ ( ord_less_eq_num @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_598_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ~ ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_599_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ~ ( ord_less_eq_int @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_600_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_601_order_Ostrict__trans2,axiom,
    ! [A: set_rat,B: set_rat,C: set_rat] :
      ( ( ord_less_set_rat @ A @ B )
     => ( ( ord_less_eq_set_rat @ B @ C )
       => ( ord_less_set_rat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_602_order_Ostrict__trans2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_603_order_Ostrict__trans2,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_604_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_605_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_606_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_607_order_Ostrict__trans1,axiom,
    ! [A: set_rat,B: set_rat,C: set_rat] :
      ( ( ord_less_eq_set_rat @ A @ B )
     => ( ( ord_less_set_rat @ B @ C )
       => ( ord_less_set_rat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_608_order_Ostrict__trans1,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_609_order_Ostrict__trans1,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_610_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_611_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_612_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B4: real] :
          ( ( ord_less_eq_real @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_613_order_Ostrict__iff__order,axiom,
    ( ord_less_set_rat
    = ( ^ [A4: set_rat,B4: set_rat] :
          ( ( ord_less_eq_set_rat @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_614_order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_eq_rat @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_615_order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_eq_num @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_616_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_617_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_618_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B4: real] :
          ( ( ord_less_real @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_619_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_rat
    = ( ^ [A4: set_rat,B4: set_rat] :
          ( ( ord_less_set_rat @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_620_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_rat @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_621_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_num @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_622_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_623_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_int @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_624_not__le__imp__less,axiom,
    ! [Y: real,X2: real] :
      ( ~ ( ord_less_eq_real @ Y @ X2 )
     => ( ord_less_real @ X2 @ Y ) ) ).

% not_le_imp_less
thf(fact_625_not__le__imp__less,axiom,
    ! [Y: rat,X2: rat] :
      ( ~ ( ord_less_eq_rat @ Y @ X2 )
     => ( ord_less_rat @ X2 @ Y ) ) ).

% not_le_imp_less
thf(fact_626_not__le__imp__less,axiom,
    ! [Y: num,X2: num] :
      ( ~ ( ord_less_eq_num @ Y @ X2 )
     => ( ord_less_num @ X2 @ Y ) ) ).

% not_le_imp_less
thf(fact_627_not__le__imp__less,axiom,
    ! [Y: nat,X2: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X2 )
     => ( ord_less_nat @ X2 @ Y ) ) ).

% not_le_imp_less
thf(fact_628_not__le__imp__less,axiom,
    ! [Y: int,X2: int] :
      ( ~ ( ord_less_eq_int @ Y @ X2 )
     => ( ord_less_int @ X2 @ Y ) ) ).

% not_le_imp_less
thf(fact_629_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X3: real,Y5: real] :
          ( ( ord_less_eq_real @ X3 @ Y5 )
          & ~ ( ord_less_eq_real @ Y5 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_630_less__le__not__le,axiom,
    ( ord_less_set_rat
    = ( ^ [X3: set_rat,Y5: set_rat] :
          ( ( ord_less_eq_set_rat @ X3 @ Y5 )
          & ~ ( ord_less_eq_set_rat @ Y5 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_631_less__le__not__le,axiom,
    ( ord_less_rat
    = ( ^ [X3: rat,Y5: rat] :
          ( ( ord_less_eq_rat @ X3 @ Y5 )
          & ~ ( ord_less_eq_rat @ Y5 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_632_less__le__not__le,axiom,
    ( ord_less_num
    = ( ^ [X3: num,Y5: num] :
          ( ( ord_less_eq_num @ X3 @ Y5 )
          & ~ ( ord_less_eq_num @ Y5 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_633_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y5 )
          & ~ ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_634_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X3: int,Y5: int] :
          ( ( ord_less_eq_int @ X3 @ Y5 )
          & ~ ( ord_less_eq_int @ Y5 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_635_dense__le,axiom,
    ! [Y: real,Z: real] :
      ( ! [X: real] :
          ( ( ord_less_real @ X @ Y )
         => ( ord_less_eq_real @ X @ Z ) )
     => ( ord_less_eq_real @ Y @ Z ) ) ).

% dense_le
thf(fact_636_dense__le,axiom,
    ! [Y: rat,Z: rat] :
      ( ! [X: rat] :
          ( ( ord_less_rat @ X @ Y )
         => ( ord_less_eq_rat @ X @ Z ) )
     => ( ord_less_eq_rat @ Y @ Z ) ) ).

% dense_le
thf(fact_637_dense__ge,axiom,
    ! [Z: real,Y: real] :
      ( ! [X: real] :
          ( ( ord_less_real @ Z @ X )
         => ( ord_less_eq_real @ Y @ X ) )
     => ( ord_less_eq_real @ Y @ Z ) ) ).

% dense_ge
thf(fact_638_dense__ge,axiom,
    ! [Z: rat,Y: rat] :
      ( ! [X: rat] :
          ( ( ord_less_rat @ Z @ X )
         => ( ord_less_eq_rat @ Y @ X ) )
     => ( ord_less_eq_rat @ Y @ Z ) ) ).

% dense_ge
thf(fact_639_antisym__conv2,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ( ~ ( ord_less_real @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_640_antisym__conv2,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( ord_less_eq_set_rat @ X2 @ Y )
     => ( ( ~ ( ord_less_set_rat @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_641_antisym__conv2,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y )
     => ( ( ~ ( ord_less_rat @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_642_antisym__conv2,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ~ ( ord_less_num @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_643_antisym__conv2,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ~ ( ord_less_nat @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_644_antisym__conv2,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ X2 @ Y )
     => ( ( ~ ( ord_less_int @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_645_antisym__conv1,axiom,
    ! [X2: real,Y: real] :
      ( ~ ( ord_less_real @ X2 @ Y )
     => ( ( ord_less_eq_real @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_646_antisym__conv1,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ~ ( ord_less_set_rat @ X2 @ Y )
     => ( ( ord_less_eq_set_rat @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_647_antisym__conv1,axiom,
    ! [X2: rat,Y: rat] :
      ( ~ ( ord_less_rat @ X2 @ Y )
     => ( ( ord_less_eq_rat @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_648_antisym__conv1,axiom,
    ! [X2: num,Y: num] :
      ( ~ ( ord_less_num @ X2 @ Y )
     => ( ( ord_less_eq_num @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_649_antisym__conv1,axiom,
    ! [X2: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_650_antisym__conv1,axiom,
    ! [X2: int,Y: int] :
      ( ~ ( ord_less_int @ X2 @ Y )
     => ( ( ord_less_eq_int @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_651_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_652_nless__le,axiom,
    ! [A: set_rat,B: set_rat] :
      ( ( ~ ( ord_less_set_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_set_rat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_653_nless__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_654_nless__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_655_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_656_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_657_leI,axiom,
    ! [X2: real,Y: real] :
      ( ~ ( ord_less_real @ X2 @ Y )
     => ( ord_less_eq_real @ Y @ X2 ) ) ).

% leI
thf(fact_658_leI,axiom,
    ! [X2: rat,Y: rat] :
      ( ~ ( ord_less_rat @ X2 @ Y )
     => ( ord_less_eq_rat @ Y @ X2 ) ) ).

% leI
thf(fact_659_leI,axiom,
    ! [X2: num,Y: num] :
      ( ~ ( ord_less_num @ X2 @ Y )
     => ( ord_less_eq_num @ Y @ X2 ) ) ).

% leI
thf(fact_660_leI,axiom,
    ! [X2: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y )
     => ( ord_less_eq_nat @ Y @ X2 ) ) ).

% leI
thf(fact_661_leI,axiom,
    ! [X2: int,Y: int] :
      ( ~ ( ord_less_int @ X2 @ Y )
     => ( ord_less_eq_int @ Y @ X2 ) ) ).

% leI
thf(fact_662_leD,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ Y @ X2 )
     => ~ ( ord_less_real @ X2 @ Y ) ) ).

% leD
thf(fact_663_leD,axiom,
    ! [Y: set_rat,X2: set_rat] :
      ( ( ord_less_eq_set_rat @ Y @ X2 )
     => ~ ( ord_less_set_rat @ X2 @ Y ) ) ).

% leD
thf(fact_664_leD,axiom,
    ! [Y: rat,X2: rat] :
      ( ( ord_less_eq_rat @ Y @ X2 )
     => ~ ( ord_less_rat @ X2 @ Y ) ) ).

% leD
thf(fact_665_leD,axiom,
    ! [Y: num,X2: num] :
      ( ( ord_less_eq_num @ Y @ X2 )
     => ~ ( ord_less_num @ X2 @ Y ) ) ).

% leD
thf(fact_666_leD,axiom,
    ! [Y: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y @ X2 )
     => ~ ( ord_less_nat @ X2 @ Y ) ) ).

% leD
thf(fact_667_leD,axiom,
    ! [Y: int,X2: int] :
      ( ( ord_less_eq_int @ Y @ X2 )
     => ~ ( ord_less_int @ X2 @ Y ) ) ).

% leD
thf(fact_668_less__eq__rat__def,axiom,
    ( ord_less_eq_rat
    = ( ^ [X3: rat,Y5: rat] :
          ( ( ord_less_rat @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% less_eq_rat_def
thf(fact_669_pinf_I1_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q2: rat > $o] :
      ( ? [Z3: rat] :
        ! [X: rat] :
          ( ( ord_less_rat @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: rat] :
          ! [X: rat] :
            ( ( ord_less_rat @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_670_pinf_I1_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z3: num] :
        ! [X: num] :
          ( ( ord_less_num @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: num] :
          ! [X: num] :
            ( ( ord_less_num @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: num] :
          ! [X5: num] :
            ( ( ord_less_num @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_671_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z3: nat] :
        ! [X: nat] :
          ( ( ord_less_nat @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: nat] :
          ! [X: nat] :
            ( ( ord_less_nat @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_672_pinf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z3: int] :
        ! [X: int] :
          ( ( ord_less_int @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: int] :
          ! [X: int] :
            ( ( ord_less_int @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_673_pinf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z3: real] :
        ! [X: real] :
          ( ( ord_less_real @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: real] :
          ! [X: real] :
            ( ( ord_less_real @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: real] :
          ! [X5: real] :
            ( ( ord_less_real @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_674_pinf_I2_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q2: rat > $o] :
      ( ? [Z3: rat] :
        ! [X: rat] :
          ( ( ord_less_rat @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: rat] :
          ! [X: rat] :
            ( ( ord_less_rat @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_675_pinf_I2_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z3: num] :
        ! [X: num] :
          ( ( ord_less_num @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: num] :
          ! [X: num] :
            ( ( ord_less_num @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: num] :
          ! [X5: num] :
            ( ( ord_less_num @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_676_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z3: nat] :
        ! [X: nat] :
          ( ( ord_less_nat @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: nat] :
          ! [X: nat] :
            ( ( ord_less_nat @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_677_pinf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z3: int] :
        ! [X: int] :
          ( ( ord_less_int @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: int] :
          ! [X: int] :
            ( ( ord_less_int @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_678_pinf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z3: real] :
        ! [X: real] :
          ( ( ord_less_real @ Z3 @ X )
         => ( ( P @ X )
            = ( P4 @ X ) ) )
     => ( ? [Z3: real] :
          ! [X: real] :
            ( ( ord_less_real @ Z3 @ X )
           => ( ( Q @ X )
              = ( Q2 @ X ) ) )
       => ? [Z2: real] :
          ! [X5: real] :
            ( ( ord_less_real @ Z2 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_679_pinf_I3_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_680_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_681_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_682_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_683_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_684_pinf_I4_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_685_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_686_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_687_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_688_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z2 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_689_pinf_I5_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z2 @ X5 )
     => ~ ( ord_less_rat @ X5 @ T ) ) ).

% pinf(5)
thf(fact_690_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z2 @ X5 )
     => ~ ( ord_less_num @ X5 @ T ) ) ).

% pinf(5)
thf(fact_691_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z2 @ X5 )
     => ~ ( ord_less_nat @ X5 @ T ) ) ).

% pinf(5)
thf(fact_692_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z2 @ X5 )
     => ~ ( ord_less_int @ X5 @ T ) ) ).

% pinf(5)
thf(fact_693_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z2 @ X5 )
     => ~ ( ord_less_real @ X5 @ T ) ) ).

% pinf(5)
thf(fact_694_pinf_I7_J,axiom,
    ! [T: rat] :
    ? [Z2: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z2 @ X5 )
     => ( ord_less_rat @ T @ X5 ) ) ).

% pinf(7)
thf(fact_695_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z2 @ X5 )
     => ( ord_less_num @ T @ X5 ) ) ).

% pinf(7)
thf(fact_696_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z2 @ X5 )
     => ( ord_less_nat @ T @ X5 ) ) ).

% pinf(7)
thf(fact_697_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z2 @ X5 )
     => ( ord_less_int @ T @ X5 ) ) ).

% pinf(7)
thf(fact_698_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z2 @ X5 )
     => ( ord_less_real @ T @ X5 ) ) ).

% pinf(7)
thf(fact_699_complete__interval,axiom,
    ! [A: real,B: real,P: real > $o] :
      ( ( ord_less_real @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: real] :
              ( ( ord_less_eq_real @ A @ C2 )
              & ( ord_less_eq_real @ C2 @ B )
              & ! [X5: real] :
                  ( ( ( ord_less_eq_real @ A @ X5 )
                    & ( ord_less_real @ X5 @ C2 ) )
                 => ( P @ X5 ) )
              & ! [D: real] :
                  ( ! [X: real] :
                      ( ( ( ord_less_eq_real @ A @ X )
                        & ( ord_less_real @ X @ D ) )
                     => ( P @ X ) )
                 => ( ord_less_eq_real @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_700_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A @ C2 )
              & ( ord_less_eq_nat @ C2 @ B )
              & ! [X5: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X5 )
                    & ( ord_less_nat @ X5 @ C2 ) )
                 => ( P @ X5 ) )
              & ! [D: nat] :
                  ( ! [X: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X )
                        & ( ord_less_nat @ X @ D ) )
                     => ( P @ X ) )
                 => ( ord_less_eq_nat @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_701_complete__interval,axiom,
    ! [A: int,B: int,P: int > $o] :
      ( ( ord_less_int @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: int] :
              ( ( ord_less_eq_int @ A @ C2 )
              & ( ord_less_eq_int @ C2 @ B )
              & ! [X5: int] :
                  ( ( ( ord_less_eq_int @ A @ X5 )
                    & ( ord_less_int @ X5 @ C2 ) )
                 => ( P @ X5 ) )
              & ! [D: int] :
                  ( ! [X: int] :
                      ( ( ( ord_less_eq_int @ A @ X )
                        & ( ord_less_int @ X @ D ) )
                     => ( P @ X ) )
                 => ( ord_less_eq_int @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_702_verit__comp__simplify1_I3_J,axiom,
    ! [B5: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B5 @ A5 ) )
      = ( ord_less_real @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_703_verit__comp__simplify1_I3_J,axiom,
    ! [B5: rat,A5: rat] :
      ( ( ~ ( ord_less_eq_rat @ B5 @ A5 ) )
      = ( ord_less_rat @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_704_verit__comp__simplify1_I3_J,axiom,
    ! [B5: num,A5: num] :
      ( ( ~ ( ord_less_eq_num @ B5 @ A5 ) )
      = ( ord_less_num @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_705_verit__comp__simplify1_I3_J,axiom,
    ! [B5: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B5 @ A5 ) )
      = ( ord_less_nat @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_706_verit__comp__simplify1_I3_J,axiom,
    ! [B5: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B5 @ A5 ) )
      = ( ord_less_int @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_707_Greatest__equality,axiom,
    ! [P: set_rat > $o,X2: set_rat] :
      ( ( P @ X2 )
     => ( ! [Y2: set_rat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_set_rat @ Y2 @ X2 ) )
       => ( ( order_2216579580035808117et_rat @ P )
          = X2 ) ) ) ).

% Greatest_equality
thf(fact_708_Greatest__equality,axiom,
    ! [P: rat > $o,X2: rat] :
      ( ( P @ X2 )
     => ( ! [Y2: rat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_rat @ Y2 @ X2 ) )
       => ( ( order_Greatest_rat @ P )
          = X2 ) ) ) ).

% Greatest_equality
thf(fact_709_Greatest__equality,axiom,
    ! [P: num > $o,X2: num] :
      ( ( P @ X2 )
     => ( ! [Y2: num] :
            ( ( P @ Y2 )
           => ( ord_less_eq_num @ Y2 @ X2 ) )
       => ( ( order_Greatest_num @ P )
          = X2 ) ) ) ).

% Greatest_equality
thf(fact_710_Greatest__equality,axiom,
    ! [P: int > $o,X2: int] :
      ( ( P @ X2 )
     => ( ! [Y2: int] :
            ( ( P @ Y2 )
           => ( ord_less_eq_int @ Y2 @ X2 ) )
       => ( ( order_Greatest_int @ P )
          = X2 ) ) ) ).

% Greatest_equality
thf(fact_711_Greatest__equality,axiom,
    ! [P: nat > $o,X2: nat] :
      ( ( P @ X2 )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ X2 ) )
       => ( ( order_Greatest_nat @ P )
          = X2 ) ) ) ).

% Greatest_equality
thf(fact_712_GreatestI2__order,axiom,
    ! [P: set_rat > $o,X2: set_rat,Q: set_rat > $o] :
      ( ( P @ X2 )
     => ( ! [Y2: set_rat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_set_rat @ Y2 @ X2 ) )
       => ( ! [X: set_rat] :
              ( ( P @ X )
             => ( ! [Y3: set_rat] :
                    ( ( P @ Y3 )
                   => ( ord_less_eq_set_rat @ Y3 @ X ) )
               => ( Q @ X ) ) )
         => ( Q @ ( order_2216579580035808117et_rat @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_713_GreatestI2__order,axiom,
    ! [P: rat > $o,X2: rat,Q: rat > $o] :
      ( ( P @ X2 )
     => ( ! [Y2: rat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_rat @ Y2 @ X2 ) )
       => ( ! [X: rat] :
              ( ( P @ X )
             => ( ! [Y3: rat] :
                    ( ( P @ Y3 )
                   => ( ord_less_eq_rat @ Y3 @ X ) )
               => ( Q @ X ) ) )
         => ( Q @ ( order_Greatest_rat @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_714_GreatestI2__order,axiom,
    ! [P: num > $o,X2: num,Q: num > $o] :
      ( ( P @ X2 )
     => ( ! [Y2: num] :
            ( ( P @ Y2 )
           => ( ord_less_eq_num @ Y2 @ X2 ) )
       => ( ! [X: num] :
              ( ( P @ X )
             => ( ! [Y3: num] :
                    ( ( P @ Y3 )
                   => ( ord_less_eq_num @ Y3 @ X ) )
               => ( Q @ X ) ) )
         => ( Q @ ( order_Greatest_num @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_715_GreatestI2__order,axiom,
    ! [P: int > $o,X2: int,Q: int > $o] :
      ( ( P @ X2 )
     => ( ! [Y2: int] :
            ( ( P @ Y2 )
           => ( ord_less_eq_int @ Y2 @ X2 ) )
       => ( ! [X: int] :
              ( ( P @ X )
             => ( ! [Y3: int] :
                    ( ( P @ Y3 )
                   => ( ord_less_eq_int @ Y3 @ X ) )
               => ( Q @ X ) ) )
         => ( Q @ ( order_Greatest_int @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_716_GreatestI2__order,axiom,
    ! [P: nat > $o,X2: nat,Q: nat > $o] :
      ( ( P @ X2 )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ X2 ) )
       => ( ! [X: nat] :
              ( ( P @ X )
             => ( ! [Y3: nat] :
                    ( ( P @ Y3 )
                   => ( ord_less_eq_nat @ Y3 @ X ) )
               => ( Q @ X ) ) )
         => ( Q @ ( order_Greatest_nat @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_717_ex__gt__or__lt,axiom,
    ! [A: real] :
    ? [B2: real] :
      ( ( ord_less_real @ A @ B2 )
      | ( ord_less_real @ B2 @ A ) ) ).

% ex_gt_or_lt
thf(fact_718_linorder__neqE__linordered__idom,axiom,
    ! [X2: rat,Y: rat] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_rat @ X2 @ Y )
       => ( ord_less_rat @ Y @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_719_linorder__neqE__linordered__idom,axiom,
    ! [X2: int,Y: int] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_int @ X2 @ Y )
       => ( ord_less_int @ Y @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_720_linorder__neqE__linordered__idom,axiom,
    ! [X2: real,Y: real] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_real @ X2 @ Y )
       => ( ord_less_real @ Y @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_721_linordered__field__no__ub,axiom,
    ! [X5: rat] :
    ? [X_1: rat] : ( ord_less_rat @ X5 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_722_linordered__field__no__ub,axiom,
    ! [X5: real] :
    ? [X_1: real] : ( ord_less_real @ X5 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_723_linordered__field__no__lb,axiom,
    ! [X5: rat] :
    ? [Y2: rat] : ( ord_less_rat @ Y2 @ X5 ) ).

% linordered_field_no_lb
thf(fact_724_linordered__field__no__lb,axiom,
    ! [X5: real] :
    ? [Y2: real] : ( ord_less_real @ Y2 @ X5 ) ).

% linordered_field_no_lb
thf(fact_725_verit__la__disequality,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
      | ~ ( ord_less_eq_rat @ A @ B )
      | ~ ( ord_less_eq_rat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_726_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_727_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_728_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_729_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_rat] : ( ord_less_eq_set_rat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_730_verit__comp__simplify1_I2_J,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_731_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_732_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_733_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_734_verit__comp__simplify1_I1_J,axiom,
    ! [A: set_rat] :
      ~ ( ord_less_set_rat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_735_verit__comp__simplify1_I1_J,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_736_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_737_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_738_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_739_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_740_inverse__le__iff__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_741_inverse__le__iff__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_742_inverse__le__iff__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_743_inverse__le__iff__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_744_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% dbl_simps(2)
thf(fact_745_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_746_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_747_bdd__above_Opreordering__bdd__axioms,axiom,
    condit1497324847667023189d_real @ ord_less_eq_real @ ord_less_real ).

% bdd_above.preordering_bdd_axioms
thf(fact_748_bdd__above_Opreordering__bdd__axioms,axiom,
    condit1630490436397131959et_rat @ ord_less_eq_set_rat @ ord_less_set_rat ).

% bdd_above.preordering_bdd_axioms
thf(fact_749_bdd__above_Opreordering__bdd__axioms,axiom,
    condit7300422414057628929dd_rat @ ord_less_eq_rat @ ord_less_rat ).

% bdd_above.preordering_bdd_axioms
thf(fact_750_bdd__above_Opreordering__bdd__axioms,axiom,
    condit4492884260299903299dd_num @ ord_less_eq_num @ ord_less_num ).

% bdd_above.preordering_bdd_axioms
thf(fact_751_bdd__above_Opreordering__bdd__axioms,axiom,
    condit7935552474144124665dd_nat @ ord_less_eq_nat @ ord_less_nat ).

% bdd_above.preordering_bdd_axioms
thf(fact_752_bdd__above_Opreordering__bdd__axioms,axiom,
    condit7933062003635074389dd_int @ ord_less_eq_int @ ord_less_int ).

% bdd_above.preordering_bdd_axioms
thf(fact_753_le__rel__bool__arg__iff,axiom,
    ( ord_le642427739152028983et_rat
    = ( ^ [X6: $o > set_rat,Y6: $o > set_rat] :
          ( ( ord_less_eq_set_rat @ ( X6 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_set_rat @ ( X6 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_754_le__rel__bool__arg__iff,axiom,
    ( ord_less_eq_o_rat
    = ( ^ [X6: $o > rat,Y6: $o > rat] :
          ( ( ord_less_eq_rat @ ( X6 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_rat @ ( X6 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_755_le__rel__bool__arg__iff,axiom,
    ( ord_less_eq_o_num
    = ( ^ [X6: $o > num,Y6: $o > num] :
          ( ( ord_less_eq_num @ ( X6 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_num @ ( X6 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_756_le__rel__bool__arg__iff,axiom,
    ( ord_less_eq_o_nat
    = ( ^ [X6: $o > nat,Y6: $o > nat] :
          ( ( ord_less_eq_nat @ ( X6 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_nat @ ( X6 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_757_le__rel__bool__arg__iff,axiom,
    ( ord_less_eq_o_int
    = ( ^ [X6: $o > int,Y6: $o > int] :
          ( ( ord_less_eq_int @ ( X6 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_int @ ( X6 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_758_not__in__Rep__preal__ub,axiom,
    ! [X2: rat,Xa: dedekind_preal,Y: rat] :
      ( ~ ( member_rat @ X2 @ ( dedekind_Rep_preal @ Xa ) )
     => ( ( member_rat @ Y @ ( dedekind_Rep_preal @ Xa ) )
       => ( ( ord_less_rat @ zero_zero_rat @ X2 )
         => ( ord_less_rat @ Y @ X2 ) ) ) ) ).

% not_in_Rep_preal_ub
thf(fact_759_Rep__preal__exists__bound,axiom,
    ! [X7: dedekind_preal] :
    ? [X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
      & ~ ( member_rat @ X @ ( dedekind_Rep_preal @ X7 ) ) ) ).

% Rep_preal_exists_bound
thf(fact_760_inverse__inverse__eq,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_761_inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_762_inverse__eq__iff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_763_inverse__eq__iff__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_764_inverse__nonzero__iff__nonzero,axiom,
    ! [A: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_765_inverse__nonzero__iff__nonzero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_766_inverse__zero,axiom,
    ( ( inverse_inverse_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% inverse_zero
thf(fact_767_inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% inverse_zero
thf(fact_768_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_769_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_770_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_771_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_772_inverse__positive__iff__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_773_inverse__positive__iff__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_774_inverse__negative__iff__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% inverse_negative_iff_negative
thf(fact_775_inverse__negative__iff__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% inverse_negative_iff_negative
thf(fact_776_inverse__less__iff__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_rat @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_777_inverse__less__iff__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_778_inverse__less__iff__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_rat @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_779_inverse__less__iff__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_780_preal__le__def,axiom,
    ( ord_le5604041210740703414_preal
    = ( ^ [R2: dedekind_preal,S2: dedekind_preal] : ( ord_less_eq_set_rat @ ( dedekind_Rep_preal @ R2 ) @ ( dedekind_Rep_preal @ S2 ) ) ) ) ).

% preal_le_def
thf(fact_781_inverse__eq__imp__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_782_inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_783_of__rat__inverse,axiom,
    ! [A: rat] :
      ( ( field_2639924705303425560at_rat @ ( inverse_inverse_rat @ A ) )
      = ( inverse_inverse_rat @ ( field_2639924705303425560at_rat @ A ) ) ) ).

% of_rat_inverse
thf(fact_784_of__rat__inverse,axiom,
    ! [A: rat] :
      ( ( field_7254667332652039916t_real @ ( inverse_inverse_rat @ A ) )
      = ( inverse_inverse_real @ ( field_7254667332652039916t_real @ A ) ) ) ).

% of_rat_inverse
thf(fact_785_Rep__preal__inject,axiom,
    ! [X2: dedekind_preal,Y: dedekind_preal] :
      ( ( ( dedekind_Rep_preal @ X2 )
        = ( dedekind_Rep_preal @ Y ) )
      = ( X2 = Y ) ) ).

% Rep_preal_inject
thf(fact_786_mem__Rep__preal__Ex,axiom,
    ! [X7: dedekind_preal] :
    ? [X: rat] : ( member_rat @ X @ ( dedekind_Rep_preal @ X7 ) ) ).

% mem_Rep_preal_Ex
thf(fact_787_preal__less__def,axiom,
    ( ord_le5708704896291381698_preal
    = ( ^ [R2: dedekind_preal,S2: dedekind_preal] : ( ord_less_set_rat @ ( dedekind_Rep_preal @ R2 ) @ ( dedekind_Rep_preal @ S2 ) ) ) ) ).

% preal_less_def
thf(fact_788_nonzero__of__rat__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( field_2639924705303425560at_rat @ ( inverse_inverse_rat @ A ) )
        = ( inverse_inverse_rat @ ( field_2639924705303425560at_rat @ A ) ) ) ) ).

% nonzero_of_rat_inverse
thf(fact_789_nonzero__of__rat__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( field_7254667332652039916t_real @ ( inverse_inverse_rat @ A ) )
        = ( inverse_inverse_real @ ( field_7254667332652039916t_real @ A ) ) ) ) ).

% nonzero_of_rat_inverse
thf(fact_790_nonzero__imp__inverse__nonzero,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ A )
       != zero_zero_rat ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_791_nonzero__imp__inverse__nonzero,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
       != zero_zero_real ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_792_nonzero__inverse__inverse__eq,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_793_nonzero__inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_794_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
     => ( ( A != zero_zero_rat )
       => ( ( B != zero_zero_rat )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_795_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( ( A != zero_zero_real )
       => ( ( B != zero_zero_real )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_796_inverse__zero__imp__zero,axiom,
    ! [A: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = zero_zero_rat )
     => ( A = zero_zero_rat ) ) ).

% inverse_zero_imp_zero
thf(fact_797_inverse__zero__imp__zero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
     => ( A = zero_zero_real ) ) ).

% inverse_zero_imp_zero
thf(fact_798_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% field_class.field_inverse_zero
thf(fact_799_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% field_class.field_inverse_zero
thf(fact_800_Rep__preal,axiom,
    ! [X2: dedekind_preal] : ( member_set_rat @ ( dedekind_Rep_preal @ X2 ) @ ( collect_set_rat @ dedekind_cut ) ) ).

% Rep_preal
thf(fact_801_Rep__preal__cases,axiom,
    ! [Y: set_rat] :
      ( ( member_set_rat @ Y @ ( collect_set_rat @ dedekind_cut ) )
     => ~ ! [X: dedekind_preal] :
            ( Y
           != ( dedekind_Rep_preal @ X ) ) ) ).

% Rep_preal_cases
thf(fact_802_Rep__preal__induct,axiom,
    ! [Y: set_rat,P: set_rat > $o] :
      ( ( member_set_rat @ Y @ ( collect_set_rat @ dedekind_cut ) )
     => ( ! [X: dedekind_preal] : ( P @ ( dedekind_Rep_preal @ X ) )
       => ( P @ Y ) ) ) ).

% Rep_preal_induct
thf(fact_803_cut__Rep__preal,axiom,
    ! [X2: dedekind_preal] : ( dedekind_cut @ ( dedekind_Rep_preal @ X2 ) ) ).

% cut_Rep_preal
thf(fact_804_positive__imp__inverse__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_805_positive__imp__inverse__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_806_negative__imp__inverse__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat ) ) ).

% negative_imp_inverse_negative
thf(fact_807_negative__imp__inverse__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real ) ) ).

% negative_imp_inverse_negative
thf(fact_808_inverse__positive__imp__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
     => ( ( A != zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_809_inverse__positive__imp__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_810_inverse__negative__imp__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
     => ( ( A != zero_zero_rat )
       => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% inverse_negative_imp_negative
thf(fact_811_inverse__negative__imp__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% inverse_negative_imp_negative
thf(fact_812_less__imp__inverse__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_813_less__imp__inverse__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_814_inverse__less__imp__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_815_inverse__less__imp__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_816_less__imp__inverse__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_817_less__imp__inverse__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_818_inverse__less__imp__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_819_inverse__less__imp__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_820_le__imp__inverse__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_821_le__imp__inverse__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_822_inverse__le__imp__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_823_inverse__le__imp__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_824_le__imp__inverse__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_825_le__imp__inverse__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_826_inverse__le__imp__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_827_inverse__le__imp__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_828_Abs__preal__inverse,axiom,
    ! [Y: set_rat] :
      ( ( member_set_rat @ Y @ ( collect_set_rat @ dedekind_cut ) )
     => ( ( dedekind_Rep_preal @ ( dedekind_Abs_preal @ Y ) )
        = Y ) ) ).

% Abs_preal_inverse
thf(fact_829_one__le__inverse,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% one_le_inverse
thf(fact_830_one__le__inverse,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% one_le_inverse
thf(fact_831_inverse__less__1__iff,axiom,
    ! [X2: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ X2 ) @ one_one_rat )
      = ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
        | ( ord_less_rat @ one_one_rat @ X2 ) ) ) ).

% inverse_less_1_iff
thf(fact_832_inverse__less__1__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ X2 ) @ one_one_real )
      = ( ( ord_less_eq_real @ X2 @ zero_zero_real )
        | ( ord_less_real @ one_one_real @ X2 ) ) ) ).

% inverse_less_1_iff
thf(fact_833_one__le__inverse__iff,axiom,
    ! [X2: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ X2 ) )
      = ( ( ord_less_rat @ zero_zero_rat @ X2 )
        & ( ord_less_eq_rat @ X2 @ one_one_rat ) ) ) ).

% one_le_inverse_iff
thf(fact_834_one__le__inverse__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ X2 ) )
      = ( ( ord_less_real @ zero_zero_real @ X2 )
        & ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).

% one_le_inverse_iff
thf(fact_835_inverse__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ B @ A ) )
        & ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
         => ( ord_less_eq_rat @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_836_inverse__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_eq_real @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_837_inverse__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ B @ A ) )
        & ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
         => ( ord_less_rat @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_838_inverse__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_real @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_839_one__less__inverse__iff,axiom,
    ! [X2: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ X2 ) )
      = ( ( ord_less_rat @ zero_zero_rat @ X2 )
        & ( ord_less_rat @ X2 @ one_one_rat ) ) ) ).

% one_less_inverse_iff
thf(fact_840_one__less__inverse__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ X2 ) )
      = ( ( ord_less_real @ zero_zero_real @ X2 )
        & ( ord_less_real @ X2 @ one_one_real ) ) ) ).

% one_less_inverse_iff
thf(fact_841_one__less__inverse,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% one_less_inverse
thf(fact_842_one__less__inverse,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% one_less_inverse
thf(fact_843_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_844_mult__zero__left,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% mult_zero_left
thf(fact_845_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_846_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_847_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_848_mult__zero__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% mult_zero_right
thf(fact_849_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_850_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_851_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_852_mult__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% mult_eq_0_iff
thf(fact_853_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_854_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_855_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_856_mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( times_times_rat @ C @ A )
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_857_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_858_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_859_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_860_mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( times_times_rat @ A @ C )
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_861_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_862_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_863_mult_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.right_neutral
thf(fact_864_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_865_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_866_mult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% mult_1
thf(fact_867_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_868_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_869_inverse__mult__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_870_inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_871_inverse__eq__1__iff,axiom,
    ! [X2: rat] :
      ( ( ( inverse_inverse_rat @ X2 )
        = one_one_rat )
      = ( X2 = one_one_rat ) ) ).

% inverse_eq_1_iff
thf(fact_872_inverse__eq__1__iff,axiom,
    ! [X2: real] :
      ( ( ( inverse_inverse_real @ X2 )
        = one_one_real )
      = ( X2 = one_one_real ) ) ).

% inverse_eq_1_iff
thf(fact_873_inverse__1,axiom,
    ( ( inverse_inverse_rat @ one_one_rat )
    = one_one_rat ) ).

% inverse_1
thf(fact_874_inverse__1,axiom,
    ( ( inverse_inverse_real @ one_one_real )
    = one_one_real ) ).

% inverse_1
thf(fact_875_Abs__preal__inject,axiom,
    ! [X2: set_rat,Y: set_rat] :
      ( ( member_set_rat @ X2 @ ( collect_set_rat @ dedekind_cut ) )
     => ( ( member_set_rat @ Y @ ( collect_set_rat @ dedekind_cut ) )
       => ( ( ( dedekind_Abs_preal @ X2 )
            = ( dedekind_Abs_preal @ Y ) )
          = ( X2 = Y ) ) ) ) ).

% Abs_preal_inject
thf(fact_876_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_877_mult__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ( times_times_rat @ A @ C )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_right2
thf(fact_878_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_879_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_880_mult__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_right1
thf(fact_881_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_882_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_883_mult__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ( times_times_rat @ C @ A )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_left2
thf(fact_884_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_885_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_886_mult__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_left1
thf(fact_887_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_888_right__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ A @ ( inverse_inverse_rat @ A ) )
        = one_one_rat ) ) ).

% right_inverse
thf(fact_889_right__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ A @ ( inverse_inverse_real @ A ) )
        = one_one_real ) ) ).

% right_inverse
thf(fact_890_left__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
        = one_one_rat ) ) ).

% left_inverse
thf(fact_891_left__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% left_inverse
thf(fact_892_of__rat__less__1__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_rat @ ( field_2639924705303425560at_rat @ R ) @ one_one_rat )
      = ( ord_less_rat @ R @ one_one_rat ) ) ).

% of_rat_less_1_iff
thf(fact_893_of__rat__less__1__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_real @ ( field_7254667332652039916t_real @ R ) @ one_one_real )
      = ( ord_less_rat @ R @ one_one_rat ) ) ).

% of_rat_less_1_iff
thf(fact_894_one__less__of__rat__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( field_2639924705303425560at_rat @ R ) )
      = ( ord_less_rat @ one_one_rat @ R ) ) ).

% one_less_of_rat_iff
thf(fact_895_one__less__of__rat__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_real @ one_one_real @ ( field_7254667332652039916t_real @ R ) )
      = ( ord_less_rat @ one_one_rat @ R ) ) ).

% one_less_of_rat_iff
thf(fact_896_of__rat__le__1__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_eq_rat @ ( field_2639924705303425560at_rat @ R ) @ one_one_rat )
      = ( ord_less_eq_rat @ R @ one_one_rat ) ) ).

% of_rat_le_1_iff
thf(fact_897_one__le__of__rat__iff,axiom,
    ! [R: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( field_2639924705303425560at_rat @ R ) )
      = ( ord_less_eq_rat @ one_one_rat @ R ) ) ).

% one_le_of_rat_iff
thf(fact_898_less__1__mult,axiom,
    ! [M: rat,N: rat] :
      ( ( ord_less_rat @ one_one_rat @ M )
     => ( ( ord_less_rat @ one_one_rat @ N )
       => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_899_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_900_less__1__mult,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_901_less__1__mult,axiom,
    ! [M: real,N: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_902_inverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = one_one_rat )
     => ( ( inverse_inverse_rat @ A )
        = B ) ) ).

% inverse_unique
thf(fact_903_inverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = one_one_real )
     => ( ( inverse_inverse_real @ A )
        = B ) ) ).

% inverse_unique
thf(fact_904_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: dedekind_preal,B: dedekind_preal,C: dedekind_preal] :
      ( ( times_3000655703912201937_preal @ ( times_3000655703912201937_preal @ A @ B ) @ C )
      = ( times_3000655703912201937_preal @ A @ ( times_3000655703912201937_preal @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_905_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_906_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_907_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_908_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_909_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_910_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_911_mult_Oassoc,axiom,
    ! [A: dedekind_preal,B: dedekind_preal,C: dedekind_preal] :
      ( ( times_3000655703912201937_preal @ ( times_3000655703912201937_preal @ A @ B ) @ C )
      = ( times_3000655703912201937_preal @ A @ ( times_3000655703912201937_preal @ B @ C ) ) ) ).

% mult.assoc
thf(fact_912_mult_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_913_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_914_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_915_mult_Ocommute,axiom,
    ( times_3000655703912201937_preal
    = ( ^ [A4: dedekind_preal,B4: dedekind_preal] : ( times_3000655703912201937_preal @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_916_mult_Ocommute,axiom,
    ( times_times_rat
    = ( ^ [A4: rat,B4: rat] : ( times_times_rat @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_917_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B4: nat] : ( times_times_nat @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_918_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A4: int,B4: int] : ( times_times_int @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_919_mult_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.comm_neutral
thf(fact_920_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_921_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_922_mult_Oleft__commute,axiom,
    ! [B: dedekind_preal,A: dedekind_preal,C: dedekind_preal] :
      ( ( times_3000655703912201937_preal @ B @ ( times_3000655703912201937_preal @ A @ C ) )
      = ( times_3000655703912201937_preal @ A @ ( times_3000655703912201937_preal @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_923_mult_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_924_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_925_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_926_one__reorient,axiom,
    ! [X2: nat] :
      ( ( one_one_nat = X2 )
      = ( X2 = one_one_nat ) ) ).

% one_reorient
thf(fact_927_one__reorient,axiom,
    ! [X2: int] :
      ( ( one_one_int = X2 )
      = ( X2 = one_one_int ) ) ).

% one_reorient
thf(fact_928_of__rat__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( field_2639924705303425560at_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( field_2639924705303425560at_rat @ A ) @ ( field_2639924705303425560at_rat @ B ) ) ) ).

% of_rat_mult
thf(fact_929_mult__left__le__one__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_930_mult__left__le__one__le,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ord_less_eq_rat @ Y @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ Y @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_931_mult__left__le__one__le,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ Y @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_932_mult__right__le__one__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X2 @ Y ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_933_mult__right__le__one__le,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ord_less_eq_rat @ Y @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ X2 @ Y ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_934_mult__right__le__one__le,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ X2 @ Y ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_935_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_936_mult__le__one,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ B @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).

% mult_le_one
thf(fact_937_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_938_mult__le__one,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).

% mult_le_one
thf(fact_939_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_940_mult__left__le,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_941_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_942_mult__left__le,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ C @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_943_field__class_Ofield__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
        = one_one_rat ) ) ).

% field_class.field_inverse
thf(fact_944_field__class_Ofield__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% field_class.field_inverse
thf(fact_945_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_946_mult__not__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
       != zero_zero_rat )
     => ( ( A != zero_zero_rat )
        & ( B != zero_zero_rat ) ) ) ).

% mult_not_zero
thf(fact_947_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_948_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_949_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_950_divisors__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
     => ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divisors_zero
thf(fact_951_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_952_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_953_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_954_no__zero__divisors,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( times_times_rat @ A @ B )
         != zero_zero_rat ) ) ) ).

% no_zero_divisors
thf(fact_955_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_956_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_957_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_958_mult__left__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ C @ A )
          = ( times_times_rat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_959_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_960_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_961_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_962_mult__right__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = ( times_times_rat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_963_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_964_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_965_le__numeral__extra_I4_J,axiom,
    ord_less_eq_rat @ one_one_rat @ one_one_rat ).

% le_numeral_extra(4)
thf(fact_966_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_967_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_968_zero__neq__one,axiom,
    zero_zero_rat != one_one_rat ).

% zero_neq_one
thf(fact_969_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_970_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_971_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_972_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).

% less_numeral_extra(4)
thf(fact_973_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_974_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_975_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_976_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: rat,X2: rat] :
      ( ( ( times_times_rat @ Y @ X2 )
        = ( times_times_rat @ X2 @ Y ) )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ Y ) @ X2 )
        = ( times_times_rat @ X2 @ ( inverse_inverse_rat @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_977_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: real,X2: real] :
      ( ( ( times_times_real @ Y @ X2 )
        = ( times_times_real @ X2 @ Y ) )
     => ( ( times_times_real @ ( inverse_inverse_real @ Y ) @ X2 )
        = ( times_times_real @ X2 @ ( inverse_inverse_real @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_978_field__le__mult__one__interval,axiom,
    ! [X2: real,Y: real] :
      ( ! [Z2: real] :
          ( ( ord_less_real @ zero_zero_real @ Z2 )
         => ( ( ord_less_real @ Z2 @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z2 @ X2 ) @ Y ) ) )
     => ( ord_less_eq_real @ X2 @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_979_field__le__mult__one__interval,axiom,
    ! [X2: rat,Y: rat] :
      ( ! [Z2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ Z2 )
         => ( ( ord_less_rat @ Z2 @ one_one_rat )
           => ( ord_less_eq_rat @ ( times_times_rat @ Z2 @ X2 ) @ Y ) ) )
     => ( ord_less_eq_rat @ X2 @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_980_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_981_mult__less__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_982_mult__less__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_983_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_984_mult__less__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_985_mult__less__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_986_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_987_mult__less__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_988_mult__less__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_989_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_990_mult__less__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_991_mult__less__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_992_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_993_mult__le__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_994_mult__le__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_995_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_996_mult__le__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_997_mult__le__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_998_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_999_mult__le__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_1000_mult__le__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_1001_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_1002_mult__le__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_1003_mult__le__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_1004_preal__mult__def,axiom,
    ( times_3000655703912201937_preal
    = ( ^ [R2: dedekind_preal,S2: dedekind_preal] : ( dedekind_Abs_preal @ ( dedekind_mult_set @ ( dedekind_Rep_preal @ R2 ) @ ( dedekind_Rep_preal @ S2 ) ) ) ) ) ).

% preal_mult_def
thf(fact_1005_mult__mono,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D3 ) ) ) ) ) ) ).

% mult_mono
thf(fact_1006_mult__mono,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D3 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D3 ) ) ) ) ) ) ).

% mult_mono
thf(fact_1007_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D3 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D3 ) ) ) ) ) ) ).

% mult_mono
thf(fact_1008_mult__mono,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D3 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% mult_mono
thf(fact_1009_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D3 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1010_mult__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D3 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D3 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1011_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D3 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D3 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1012_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D3 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1013_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_1014_zero__le__square,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).

% zero_le_square
thf(fact_1015_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_1016_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_1017_split__mult__pos__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_1018_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_1019_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1020_mult__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1021_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1022_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1023_mult__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1024_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1025_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1026_mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1027_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1028_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1029_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1030_mult__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1031_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1032_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1033_mult__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1034_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1035_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1036_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_1037_mult__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_1038_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_1039_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_1040_split__mult__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
     => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).

% split_mult_neg_le
thf(fact_1041_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_1042_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_1043_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1044_mult__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1045_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1046_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1047_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1048_mult__nonneg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1049_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1050_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1051_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1052_mult__nonpos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1053_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1054_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1055_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1056_mult__nonneg__nonpos2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1057_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1058_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1059_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1060_zero__le__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1061_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1062_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1063_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1064_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1065_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1066_mult__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_1067_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_1068_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_1069_not__square__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).

% not_square_less_zero
thf(fact_1070_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_1071_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_1072_mult__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_1073_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_1074_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_1075_mult__neg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_neg_pos
thf(fact_1076_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_1077_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_1078_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_1079_mult__pos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg
thf(fact_1080_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_1081_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_1082_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_1083_mult__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1084_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1085_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1086_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1087_mult__pos__neg2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg2
thf(fact_1088_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_1089_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_1090_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_1091_zero__less__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1092_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1093_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1094_zero__less__mult__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1095_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1096_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1097_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1098_zero__less__mult__pos2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1099_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1100_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1101_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1102_mult__less__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1103_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1104_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1105_mult__less__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1106_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1107_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1108_mult__strict__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1109_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1110_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1111_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1112_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1113_Dedekind__Real_OAbs__preal__induct,axiom,
    ! [P: dedekind_preal > $o,X2: dedekind_preal] :
      ( ! [X: set_rat] :
          ( ( dedekind_cut @ X )
         => ( P @ ( dedekind_Abs_preal @ X ) ) )
     => ( P @ X2 ) ) ).

% Dedekind_Real.Abs_preal_induct
thf(fact_1114_preal_OAbs__preal__induct,axiom,
    ! [P: dedekind_preal > $o,X2: dedekind_preal] :
      ( ! [Y2: set_rat] :
          ( ( member_set_rat @ Y2 @ ( collect_set_rat @ dedekind_cut ) )
         => ( P @ ( dedekind_Abs_preal @ Y2 ) ) )
     => ( P @ X2 ) ) ).

% preal.Abs_preal_induct
thf(fact_1115_Abs__preal__cases,axiom,
    ! [X2: dedekind_preal] :
      ~ ! [Y2: set_rat] :
          ( ( X2
            = ( dedekind_Abs_preal @ Y2 ) )
         => ~ ( member_set_rat @ Y2 @ ( collect_set_rat @ dedekind_cut ) ) ) ).

% Abs_preal_cases
thf(fact_1116_Rep__preal__inverse,axiom,
    ! [X2: dedekind_preal] :
      ( ( dedekind_Abs_preal @ ( dedekind_Rep_preal @ X2 ) )
      = X2 ) ).

% Rep_preal_inverse
thf(fact_1117_preal__inverse__def,axiom,
    ( invers3090987106763476162_preal
    = ( ^ [R2: dedekind_preal] : ( dedekind_Abs_preal @ ( dedekind_inverse_set @ ( dedekind_Rep_preal @ R2 ) ) ) ) ) ).

% preal_inverse_def
thf(fact_1118_preal__mult__commute,axiom,
    ( times_3000655703912201937_preal
    = ( ^ [X3: dedekind_preal,Y5: dedekind_preal] : ( times_3000655703912201937_preal @ Y5 @ X3 ) ) ) ).

% preal_mult_commute
thf(fact_1119_preal__mult__assoc,axiom,
    ! [X2: dedekind_preal,Y: dedekind_preal,Z: dedekind_preal] :
      ( ( times_3000655703912201937_preal @ ( times_3000655703912201937_preal @ X2 @ Y ) @ Z )
      = ( times_3000655703912201937_preal @ X2 @ ( times_3000655703912201937_preal @ Y @ Z ) ) ) ).

% preal_mult_assoc
thf(fact_1120_obtain__pos__sum,axiom,
    ! [R: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ R )
     => ~ ! [S3: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ S3 )
           => ! [T2: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ T2 )
               => ( R
                 != ( plus_plus_rat @ S3 @ T2 ) ) ) ) ) ).

% obtain_pos_sum
thf(fact_1121_divide__rat__def,axiom,
    ( divide_divide_rat
    = ( ^ [Q3: rat,R2: rat] : ( times_times_rat @ Q3 @ ( inverse_inverse_rat @ R2 ) ) ) ) ).

% divide_rat_def
thf(fact_1122_divide__preal__def,axiom,
    ( divide4190755330972744004_preal
    = ( ^ [R2: dedekind_preal,S2: dedekind_preal] : ( times_3000655703912201937_preal @ R2 @ ( invers3090987106763476162_preal @ S2 ) ) ) ) ).

% divide_preal_def
thf(fact_1123_preal__add__def,axiom,
    ( plus_p3173629198307831117_preal
    = ( ^ [R2: dedekind_preal,S2: dedekind_preal] : ( dedekind_Abs_preal @ ( dedekind_add_set @ ( dedekind_Rep_preal @ R2 ) @ ( dedekind_Rep_preal @ S2 ) ) ) ) ) ).

% preal_add_def
thf(fact_1124_preal__add__commute,axiom,
    ( plus_p3173629198307831117_preal
    = ( ^ [X3: dedekind_preal,Y5: dedekind_preal] : ( plus_p3173629198307831117_preal @ Y5 @ X3 ) ) ) ).

% preal_add_commute
thf(fact_1125_preal__add__assoc,axiom,
    ! [X2: dedekind_preal,Y: dedekind_preal,Z: dedekind_preal] :
      ( ( plus_p3173629198307831117_preal @ ( plus_p3173629198307831117_preal @ X2 @ Y ) @ Z )
      = ( plus_p3173629198307831117_preal @ X2 @ ( plus_p3173629198307831117_preal @ Y @ Z ) ) ) ).

% preal_add_assoc
thf(fact_1126_add__inc,axiom,
    ! [X2: num,Y: num] :
      ( ( plus_plus_num @ X2 @ ( inc @ Y ) )
      = ( inc @ ( plus_plus_num @ X2 @ Y ) ) ) ).

% add_inc
thf(fact_1127_mult__inc,axiom,
    ! [X2: num,Y: num] :
      ( ( times_times_num @ X2 @ ( inc @ Y ) )
      = ( plus_plus_num @ ( times_times_num @ X2 @ Y ) @ X2 ) ) ).

% mult_inc
thf(fact_1128_num__induct,axiom,
    ! [P: num > $o,X2: num] :
      ( ( P @ one )
     => ( ! [X: num] :
            ( ( P @ X )
           => ( P @ ( inc @ X ) ) )
       => ( P @ X2 ) ) ) ).

% num_induct
thf(fact_1129_le__num__One__iff,axiom,
    ! [X2: num] :
      ( ( ord_less_eq_num @ X2 @ one )
      = ( X2 = one ) ) ).

% le_num_One_iff
thf(fact_1130_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_1131_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_1132_add__One,axiom,
    ! [X2: num] :
      ( ( plus_plus_num @ X2 @ one )
      = ( inc @ X2 ) ) ).

% add_One
thf(fact_1133_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_1134_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_1135_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1136_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1137_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1138_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_1139_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_1140_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_1141_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_1142_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1143_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1144_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_1145_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1146_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_1147_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_1148_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_1149_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_1150_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_1151_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1152_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1153_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1154_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1155_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1156_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1157_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1158_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1159_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_1160_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_1161_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1162_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_1163_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_1164_nat__mult__div__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( divide_divide_nat @ M @ N ) ) ) ).

% nat_mult_div_cancel1
thf(fact_1165_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1166_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_1167_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_1168_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1169_linorder__neqE__nat,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_nat @ X2 @ Y )
       => ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_1170_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N3 )
                  & ~ ( P @ M3 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_1171_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
              & ~ ( P @ M3 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_1172_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ( P @ M3 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_1173_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1174_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1175_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_1176_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1177_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_1178_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_1179_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_1180_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_1181_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1182_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_1183_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1184_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_1185_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1186_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_1187_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1188_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1189_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1190_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M2 @ N2 )
          & ( M2 != N2 ) ) ) ) ).

% nat_less_le
thf(fact_1191_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K2 )
               => ~ ( P @ I2 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1192_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_1193_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
          | ( M2 = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1194_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_1195_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_1196_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1197_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_1198_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_1199_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_1200_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_1201_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_1202_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1203_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1204_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1205_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1206_split__div,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ zero_zero_nat ) )
        & ( ( N != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ( ord_less_nat @ J3 @ N )
                & ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) ) ) ) ).

% split_div
thf(fact_1207_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_1208_div__less__iff__less__mult,axiom,
    ! [Q4: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q4 )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q4 ) @ N )
        = ( ord_less_nat @ M @ ( times_times_nat @ N @ Q4 ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_1209_less__mult__imp__div__less,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).

% less_mult_imp_div_less
thf(fact_1210_dividend__less__div__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).

% dividend_less_div_times
thf(fact_1211_dividend__less__times__div,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_1212_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1213_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_1214_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_1215_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_1216_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_1217_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_1218_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_1219_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_1220_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_1221_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1222_div__le__mono2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_1223_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_1224_less__eq__div__iff__mult__less__eq,axiom,
    ! [Q4: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q4 )
     => ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q4 ) )
        = ( ord_less_eq_nat @ ( times_times_nat @ M @ Q4 ) @ N ) ) ) ).

% less_eq_div_iff_mult_less_eq
thf(fact_1225_times__div__less__eq__dividend,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_1226_div__times__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_1227_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_1228_div__le__mono,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).

% div_le_mono
thf(fact_1229_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1230_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_1231_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_1232_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_1233_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_1234_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_1235_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_1236_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_1237_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_1238_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_1239_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_1240_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N2: nat] :
        ? [K3: nat] :
          ( N2
          = ( plus_plus_nat @ M2 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1241_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_1242_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_1243_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_1244_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_1245_GreatestI__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_nat
thf(fact_1246_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_1247_Greatest__le__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).

% Greatest_le_nat
thf(fact_1248_GreatestI__ex__nat,axiom,
    ! [P: nat > $o,B: nat] :
      ( ? [X_12: nat] : ( P @ X_12 )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_1249_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B ) )
       => ? [X: nat] :
            ( ( P @ X )
            & ! [Y3: nat] :
                ( ( P @ Y3 )
               => ( ord_less_eq_nat @ Y3 @ X ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_1250_bounded__Max__nat,axiom,
    ! [P: nat > $o,X2: nat,M5: nat] :
      ( ( P @ X2 )
     => ( ! [X: nat] :
            ( ( P @ X )
           => ( ord_less_eq_nat @ X @ M5 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X5: nat] :
                    ( ( P @ X5 )
                   => ( ord_less_eq_nat @ X5 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_1251_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I2: nat] :
                  ( ( ord_less_nat @ K2 @ I2 )
                 => ( P @ I2 ) )
             => ( P @ K2 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_1252_verit__eq__simplify_I8_J,axiom,
    ! [X22: num,Y22: num] :
      ( ( ( bit0 @ X22 )
        = ( bit0 @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% verit_eq_simplify(8)
thf(fact_1253_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_1254_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_1255_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_1256_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_1257_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_1258_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_1259_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_1260_inc_Osimps_I1_J,axiom,
    ( ( inc @ one )
    = ( bit0 @ one ) ) ).

% inc.simps(1)
thf(fact_1261_verit__eq__simplify_I10_J,axiom,
    ! [X22: num] :
      ( one
     != ( bit0 @ X22 ) ) ).

% verit_eq_simplify(10)
thf(fact_1262_plus__inverse__ge__2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) ) ) ).

% plus_inverse_ge_2
thf(fact_1263_neg__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).

% neg_zdiv_mult_2
thf(fact_1264_pos__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% pos_zdiv_mult_2

% Conjectures (1)
thf(conj_0,conjecture,
    ord_less_rat @ zero_zero_rat @ v ).

%------------------------------------------------------------------------------