TPTP Problem File: SLH0076^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Universal_Hash_Families/0033_Preliminary_Results/prob_00067_002413__18448904_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1575 ( 389 unt; 296 typ;   0 def)
%            Number of atoms       : 3976 ( 942 equ;   0 cnn)
%            Maximal formula atoms :   36 (   3 avg)
%            Number of connectives : 12668 ( 223   ~;  22   |; 131   &;10195   @)
%                                         (   0 <=>;2097  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   25 (   7 avg)
%            Number of types       :   38 (  37 usr)
%            Number of type conns  : 1064 (1064   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  262 ( 259 usr;  27 con; 0-5 aty)
%            Number of variables   : 3800 ( 170   ^;3600   !;  30   ?;3800   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 14:44:18.580
%------------------------------------------------------------------------------
% Could-be-implicit typings (37)
thf(ty_n_t__Sigma____Algebra__Omeasure_It__Set__Oset_Itf__b_J_J,type,
    sigma_measure_set_b: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_It__Set__Oset_Itf__a_J_J,type,
    sigma_measure_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__b_J_J_J,type,
    set_set_set_b: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__a_J_J_J,type,
    set_set_set_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_nat_nat: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_It__Nat__Onat_J,type,
    sigma_measure_nat: $tType ).

thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
    extend8495563244428889912nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__c_Mt__Nat__Onat_J_J,type,
    set_c_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mtf__c_J_J,type,
    set_nat_c: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_M_Eo_J_J,type,
    set_nat_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_Eo_Mt__Nat__Onat_J_J,type,
    set_o_nat: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_Itf__c_J,type,
    sigma_measure_c: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_Itf__b_J,type,
    sigma_measure_b: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_Itf__a_J,type,
    sigma_measure_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    set_set_b: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_I_Eo_J,type,
    sigma_measure_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__c_Mtf__c_J_J,type,
    set_c_c: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__c_Mtf__a_J_J,type,
    set_c_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__b_Mtf__b_J_J,type,
    set_b_b: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__b_Mtf__a_J_J,type,
    set_b_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mtf__b_J_J,type,
    set_a_b: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    set_a_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__c_M_Eo_J_J,type,
    set_c_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_Eo_Mtf__c_J_J,type,
    set_o_c: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_Eo_M_Eo_J_J,type,
    set_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_Itf__c_J,type,
    set_c: $tType ).

thf(ty_n_t__Set__Oset_Itf__b_J,type,
    set_b: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_tf__c,type,
    c: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (259)
thf(sy_c_Complete__Measure_Ocomplete__measure_001t__Set__Oset_Itf__a_J,type,
    comple6693822263253554161_set_a: sigma_measure_set_a > $o ).

thf(sy_c_Complete__Measure_Ocomplete__measure_001t__Set__Oset_Itf__b_J,type,
    comple6693822267556782962_set_b: sigma_measure_set_b > $o ).

thf(sy_c_Complete__Measure_Ocomplete__measure_001tf__a,type,
    comple8155536527497655953sure_a: sigma_measure_a > $o ).

thf(sy_c_Complete__Measure_Ocomplete__measure_001tf__b,type,
    comple8155536527497655954sure_b: sigma_measure_b > $o ).

thf(sy_c_Complete__Measure_Ocompletion_001t__Set__Oset_Itf__a_J,type,
    comple8942076146008132200_set_a: sigma_measure_set_a > sigma_measure_set_a ).

thf(sy_c_Complete__Measure_Ocompletion_001t__Set__Oset_Itf__b_J,type,
    comple8942076150311361001_set_b: sigma_measure_set_b > sigma_measure_set_b ).

thf(sy_c_Complete__Measure_Ocompletion_001tf__a,type,
    comple3428971583294703880tion_a: sigma_measure_a > sigma_measure_a ).

thf(sy_c_Complete__Measure_Ocompletion_001tf__b,type,
    comple3428971583294703881tion_b: sigma_measure_b > sigma_measure_b ).

thf(sy_c_Complete__Measure_Omain__part_001tf__a,type,
    complete_main_part_a: sigma_measure_a > set_a > set_a ).

thf(sy_c_Complete__Measure_Omain__part_001tf__b,type,
    complete_main_part_b: sigma_measure_b > set_b > set_b ).

thf(sy_c_Complete__Measure_Onull__part_001t__Set__Oset_Itf__a_J,type,
    comple7912714278253110634_set_a: sigma_measure_set_a > set_set_a > set_set_a ).

thf(sy_c_Complete__Measure_Onull__part_001t__Set__Oset_Itf__b_J,type,
    comple7912714282556339435_set_b: sigma_measure_set_b > set_set_b > set_set_b ).

thf(sy_c_Complete__Measure_Onull__part_001tf__a,type,
    complete_null_part_a: sigma_measure_a > set_a > set_a ).

thf(sy_c_Complete__Measure_Onull__part_001tf__b,type,
    complete_null_part_b: sigma_measure_b > set_b > set_b ).

thf(sy_c_Extended__Nat_Oinfinity__class_Oinfinity_001t__Extended____Nonnegative____Real__Oennreal,type,
    extend2057119558705770725nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Extended__Nonnegative__Real_Oenn2real,type,
    extend1669699412028896998n2real: extend8495563244428889912nnreal > real ).

thf(sy_c_Extended__Nonnegative__Real_Oennreal,type,
    extend7643940197134561352nnreal: real > extend8495563244428889912nnreal ).

thf(sy_c_Fun_Ocomp_001tf__a_001tf__a_001tf__a,type,
    comp_a_a_a: ( a > a ) > ( a > a ) > a > a ).

thf(sy_c_Fun_Ocomp_001tf__a_001tf__a_001tf__b,type,
    comp_a_a_b: ( a > a ) > ( b > a ) > b > a ).

thf(sy_c_Fun_Ocomp_001tf__a_001tf__b_001tf__a,type,
    comp_a_b_a: ( a > b ) > ( a > a ) > a > b ).

thf(sy_c_Fun_Ocomp_001tf__a_001tf__b_001tf__b,type,
    comp_a_b_b: ( a > b ) > ( b > a ) > b > b ).

thf(sy_c_Fun_Ocomp_001tf__b_001tf__a_001tf__a,type,
    comp_b_a_a: ( b > a ) > ( a > b ) > a > a ).

thf(sy_c_Fun_Ocomp_001tf__b_001tf__b_001tf__a,type,
    comp_b_b_a: ( b > b ) > ( a > b ) > a > b ).

thf(sy_c_Giry__Monad_Osubprob__space_001tf__a,type,
    giry_subprob_space_a: sigma_measure_a > $o ).

thf(sy_c_Giry__Monad_Osubprob__space_001tf__b,type,
    giry_subprob_space_b: sigma_measure_b > $o ).

thf(sy_c_Giry__Monad_Osubprob__space__axioms_001tf__a,type,
    giry_s1767857069175831631ioms_a: sigma_measure_a > $o ).

thf(sy_c_Giry__Monad_Osubprob__space__axioms_001tf__b,type,
    giry_s1767857069175831632ioms_b: sigma_measure_b > $o ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nonnegative____Real__Oennreal,type,
    minus_8429688780609304081nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    minus_minus_set_a_a: set_a_a > set_a_a > set_a_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_062_Itf__a_Mtf__b_J_J,type,
    minus_minus_set_a_b: set_a_b > set_a_b > set_a_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_Eo_J,type,
    minus_minus_set_o: set_o > set_o > set_o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    minus_5736297505244876581_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    minus_5807331545291222566_set_b: set_set_b > set_set_b > set_set_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__b_J,type,
    minus_minus_set_b: set_b > set_b > set_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__c_J,type,
    minus_minus_set_c: set_c > set_c > set_c ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nonnegative____Real__Oennreal,type,
    one_on2969667320475766781nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
    plus_p1859984266308609217nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nonnegative____Real__Oennreal,type,
    times_1893300245718287421nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
    zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__event_001tf__a,type,
    indepe3567167809233210430vent_a: sigma_measure_a > set_a > set_a > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__events_001tf__a_001_Eo,type,
    indepe3695496658712714478ts_a_o: sigma_measure_a > ( $o > set_a ) > set_o > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__set_001tf__a,type,
    indepe2041756565122539606_set_a: sigma_measure_a > set_set_a > set_set_a > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__set_001tf__b,type,
    indepe2041756565122539607_set_b: sigma_measure_b > set_set_b > set_set_b > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__a_001_062_Itf__a_Mtf__a_J,type,
    indepe1219004911012930679_a_a_a: sigma_measure_a > ( ( a > a ) > set_set_a ) > set_a_a > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__a_001_062_Itf__a_Mtf__b_J,type,
    indepe1219004915316159480_a_a_b: sigma_measure_a > ( ( a > b ) > set_set_a ) > set_a_b > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__a_001_Eo,type,
    indepe7780107833195774214ts_a_o: sigma_measure_a > ( $o > set_set_a ) > set_o > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__a_001t__Nat__Onat,type,
    indepe6267730027088848354_a_nat: sigma_measure_a > ( nat > set_set_a ) > set_nat > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__a_001t__Set__Oset_Itf__a_J,type,
    indepe4967106450811773644_set_a: sigma_measure_a > ( set_a > set_set_a ) > set_set_a > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__a_001t__Set__Oset_Itf__b_J,type,
    indepe4967106455115002445_set_b: sigma_measure_a > ( set_b > set_set_a ) > set_set_b > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__a_001tf__a,type,
    indepe8927441866673418604ts_a_a: sigma_measure_a > ( a > set_set_a ) > set_a > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__a_001tf__c,type,
    indepe8927441866673418606ts_a_c: sigma_measure_a > ( c > set_set_a ) > set_c > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__b_001_062_Itf__a_Mtf__a_J,type,
    indepe7072862680909553272_b_a_a: sigma_measure_b > ( ( a > a ) > set_set_b ) > set_a_a > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__b_001_062_Itf__a_Mtf__b_J,type,
    indepe7072862685212782073_b_a_b: sigma_measure_b > ( ( a > b ) > set_set_b ) > set_a_b > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__b_001_Eo,type,
    indepe4880885433731379909ts_b_o: sigma_measure_b > ( $o > set_set_b ) > set_o > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__b_001t__Nat__Onat,type,
    indepe7503174356045242851_b_nat: sigma_measure_b > ( nat > set_set_b ) > set_nat > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__b_001t__Set__Oset_Itf__a_J,type,
    indepe6311571487621261579_set_a: sigma_measure_b > ( set_a > set_set_b ) > set_set_a > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__b_001t__Set__Oset_Itf__b_J,type,
    indepe6311571491924490380_set_b: sigma_measure_b > ( set_b > set_set_b ) > set_set_b > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__b_001tf__a,type,
    indepe6139986284700742571ts_b_a: sigma_measure_b > ( a > set_set_b ) > set_a > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__sets_001tf__b_001tf__c,type,
    indepe6139986284700742573ts_b_c: sigma_measure_b > ( c > set_set_b ) > set_c > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__var_001tf__a_001tf__a,type,
    indepe2440653194691626188ar_a_a: sigma_measure_a > sigma_measure_a > ( a > a ) > sigma_measure_a > ( a > a ) > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__var_001tf__a_001tf__b,type,
    indepe2440653194691626189ar_a_b: sigma_measure_a > sigma_measure_b > ( a > b ) > sigma_measure_b > ( a > b ) > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__var_001tf__b_001tf__a,type,
    indepe8876569649573725963ar_b_a: sigma_measure_b > sigma_measure_a > ( b > a ) > sigma_measure_a > ( b > a ) > $o ).

thf(sy_c_Independent__Family_Oprob__space_Oindep__var_001tf__b_001tf__b,type,
    indepe8876569649573725964ar_b_b: sigma_measure_b > sigma_measure_b > ( b > b ) > sigma_measure_b > ( b > b ) > $o ).

thf(sy_c_Independent__Family_Oprob__space_Otail__events_001tf__a_001t__Nat__Onat,type,
    indepe7538416700049374166_a_nat: sigma_measure_a > ( nat > set_set_a ) > set_set_a ).

thf(sy_c_Independent__Family_Oprob__space_Otail__events_001tf__b_001t__Nat__Onat,type,
    indepe8773861029005768663_b_nat: sigma_measure_b > ( nat > set_set_b ) > set_set_b ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Int__Oint,type,
    inf_inf_int: int > int > int ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    inf_inf_set_a_a: set_a_a > set_a_a > set_a_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_I_062_Itf__a_Mtf__b_J_J,type,
    inf_inf_set_a_b: set_a_b > set_a_b > set_a_b ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_I_Eo_J,type,
    inf_inf_set_o: set_o > set_o > set_o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
    inf_inf_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    inf_inf_set_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    inf_inf_set_set_b: set_set_b > set_set_b > set_set_b ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__b_J,type,
    inf_inf_set_b: set_b > set_b > set_b ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__c_J,type,
    inf_inf_set_c: set_c > set_c > set_c ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Int__Oint,type,
    sup_sup_int: int > int > int ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    sup_sup_set_a_a: set_a_a > set_a_a > set_a_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_I_062_Itf__a_Mtf__b_J_J,type,
    sup_sup_set_a_b: set_a_b > set_a_b > set_a_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_I_Eo_J,type,
    sup_sup_set_o: set_o > set_o > set_o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    sup_sup_set_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    sup_sup_set_set_b: set_set_b > set_set_b > set_set_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__b_J,type,
    sup_sup_set_b: set_b > set_b > set_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__c_J,type,
    sup_sup_set_c: set_c > set_c > set_c ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Sigma____Algebra__Omeasure_Itf__a_J,type,
    sup_su27664952386392231sure_a: sigma_measure_a > sigma_measure_a > sigma_measure_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Sigma____Algebra__Omeasure_Itf__b_J,type,
    sup_su27664956689621032sure_b: sigma_measure_b > sigma_measure_b > sigma_measure_b ).

thf(sy_c_Measure__Space_Odistr_001_Eo_001tf__a,type,
    measure_distr_o_a: sigma_measure_o > sigma_measure_a > ( $o > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001_Eo_001tf__b,type,
    measure_distr_o_b: sigma_measure_o > sigma_measure_b > ( $o > b ) > sigma_measure_b ).

thf(sy_c_Measure__Space_Odistr_001t__Nat__Onat_001tf__a,type,
    measure_distr_nat_a: sigma_measure_nat > sigma_measure_a > ( nat > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001t__Nat__Onat_001tf__b,type,
    measure_distr_nat_b: sigma_measure_nat > sigma_measure_b > ( nat > b ) > sigma_measure_b ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_Itf__a_J_001tf__a,type,
    measur7064479691503150872et_a_a: sigma_measure_set_a > sigma_measure_a > ( set_a > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_Itf__a_J_001tf__b,type,
    measur7064479691503150873et_a_b: sigma_measure_set_a > sigma_measure_b > ( set_a > b ) > sigma_measure_b ).

thf(sy_c_Measure__Space_Odistr_001tf__a_001tf__a,type,
    measure_distr_a_a: sigma_measure_a > sigma_measure_a > ( a > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001tf__a_001tf__b,type,
    measure_distr_a_b: sigma_measure_a > sigma_measure_b > ( a > b ) > sigma_measure_b ).

thf(sy_c_Measure__Space_Odistr_001tf__b_001tf__a,type,
    measure_distr_b_a: sigma_measure_b > sigma_measure_a > ( b > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001tf__b_001tf__b,type,
    measure_distr_b_b: sigma_measure_b > sigma_measure_b > ( b > b ) > sigma_measure_b ).

thf(sy_c_Measure__Space_Odistr_001tf__c_001tf__a,type,
    measure_distr_c_a: sigma_measure_c > sigma_measure_a > ( c > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001tf__c_001tf__b,type,
    measure_distr_c_b: sigma_measure_c > sigma_measure_b > ( c > b ) > sigma_measure_b ).

thf(sy_c_Measure__Space_Ofinite__measure_001t__Set__Oset_Itf__a_J,type,
    measur2212693993384602946_set_a: sigma_measure_set_a > $o ).

thf(sy_c_Measure__Space_Ofinite__measure_001t__Set__Oset_Itf__b_J,type,
    measur2212693997687831747_set_b: sigma_measure_set_b > $o ).

thf(sy_c_Measure__Space_Ofinite__measure_001tf__a,type,
    measur930452917991658466sure_a: sigma_measure_a > $o ).

thf(sy_c_Measure__Space_Ofinite__measure_001tf__b,type,
    measur930452917991658467sure_b: sigma_measure_b > $o ).

thf(sy_c_Measure__Space_Ofinite__measure__axioms_001tf__a,type,
    measur2595372213310369023ioms_a: sigma_measure_a > $o ).

thf(sy_c_Measure__Space_Ofinite__measure__axioms_001tf__b,type,
    measur2595372213310369024ioms_b: sigma_measure_b > $o ).

thf(sy_c_Measure__Space_Ofmeasurable_001t__Set__Oset_Itf__a_J,type,
    measur7460903245211743562_set_a: sigma_measure_set_a > set_set_set_a ).

thf(sy_c_Measure__Space_Ofmeasurable_001t__Set__Oset_Itf__b_J,type,
    measur7460903249514972363_set_b: sigma_measure_set_b > set_set_set_b ).

thf(sy_c_Measure__Space_Ofmeasurable_001tf__a,type,
    measur3645360004775918570able_a: sigma_measure_a > set_set_a ).

thf(sy_c_Measure__Space_Ofmeasurable_001tf__b,type,
    measur3645360004775918571able_b: sigma_measure_b > set_set_b ).

thf(sy_c_Measure__Space_Oincreasing_001t__Set__Oset_Itf__a_J_001t__Int__Oint,type,
    measur1242461429550240791_a_int: set_set_set_a > ( set_set_a > int ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001t__Set__Oset_Itf__a_J_001t__Nat__Onat,type,
    measur1244951900059291067_a_nat: set_set_set_a > ( set_set_a > nat ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    measur5181028491126448947_set_a: set_set_set_a > ( set_set_a > set_a ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001t__Set__Oset_Itf__b_J_001t__Int__Oint,type,
    measur6838680044738371480_b_int: set_set_set_b > ( set_set_b > int ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001t__Set__Oset_Itf__b_J_001t__Nat__Onat,type,
    measur6841170515247421756_b_nat: set_set_set_b > ( set_set_b > nat ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001t__Set__Oset_Itf__b_J_001t__Set__Oset_Itf__a_J,type,
    measur6668990528421247474_set_a: set_set_set_b > ( set_set_b > set_a ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001tf__a_001t__Int__Oint,type,
    measur8148950955492825783_a_int: set_set_a > ( set_a > int ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001tf__a_001t__Nat__Onat,type,
    measur8151441426001876059_a_nat: set_set_a > ( set_a > nat ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001tf__a_001t__Real__Oreal,type,
    measur1776380161843274167a_real: set_set_a > ( set_a > real ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001tf__a_001t__Set__Oset_Itf__a_J,type,
    measur7842569353079325843_set_a: set_set_a > ( set_a > set_a ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001tf__b_001t__Real__Oreal,type,
    measur7372598777031404856b_real: set_set_b > ( set_b > real ) > $o ).

thf(sy_c_Measure__Space_Onull__sets_001t__Set__Oset_Itf__a_J,type,
    measur1516554128032400785_set_a: sigma_measure_set_a > set_set_set_a ).

thf(sy_c_Measure__Space_Onull__sets_001t__Set__Oset_Itf__b_J,type,
    measur1516554132335629586_set_b: sigma_measure_set_b > set_set_set_b ).

thf(sy_c_Measure__Space_Onull__sets_001tf__a,type,
    measure_null_sets_a: sigma_measure_a > set_set_a ).

thf(sy_c_Measure__Space_Onull__sets_001tf__b,type,
    measure_null_sets_b: sigma_measure_b > set_set_b ).

thf(sy_c_Measure__Space_Osigma__finite__measure_001tf__a,type,
    measur4308613598931908895sure_a: sigma_measure_a > $o ).

thf(sy_c_Measure__Space_Osigma__finite__measure_001tf__b,type,
    measur4308613598931908896sure_b: sigma_measure_b > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    bot_bot_set_a_a: set_a_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_Itf__a_Mtf__b_J_J,type,
    bot_bot_set_a_b: set_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_Eo_J,type,
    bot_bot_set_o: set_o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    bot_bot_set_set_b: set_set_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__b_J,type,
    bot_bot_set_b: set_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__c_J,type,
    bot_bot_set_c: set_c ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le7381754540660121996nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le3935885782089961368nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    ord_less_eq_set_a_a: set_a_a > set_a_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_Itf__a_Mtf__b_J_J,type,
    ord_less_eq_set_a_b: set_a_b > set_a_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_Itf__b_Mtf__a_J_J,type,
    ord_less_eq_set_b_a: set_b_a > set_b_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_Itf__b_Mtf__b_J_J,type,
    ord_less_eq_set_b_b: set_b_b > set_b_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_Eo_J,type,
    ord_less_eq_set_o: set_o > set_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__a_J_J_J,type,
    ord_le5722252365846178494_set_a: set_set_set_a > set_set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__b_J_J_J,type,
    ord_le3201067847557142847_set_b: set_set_set_b > set_set_set_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    ord_le3795704787696855135_set_b: set_set_b > set_set_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__b_J,type,
    ord_less_eq_set_b: set_b > set_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__c_J,type,
    ord_less_eq_set_c: set_c > set_c > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Sigma____Algebra__Omeasure_It__Set__Oset_Itf__a_J_J,type,
    ord_le5642585610961328955_set_a: sigma_measure_set_a > sigma_measure_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Sigma____Algebra__Omeasure_It__Set__Oset_Itf__b_J_J,type,
    ord_le5713619651007674940_set_b: sigma_measure_set_b > sigma_measure_set_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Sigma____Algebra__Omeasure_Itf__a_J,type,
    ord_le254669795585780187sure_a: sigma_measure_a > sigma_measure_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Sigma____Algebra__Omeasure_Itf__b_J,type,
    ord_le254669799889008988sure_b: sigma_measure_b > sigma_measure_b > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Extended____Nonnegative____Real__Oennreal,type,
    top_to1496364449551166952nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Probability__Measure_Oprob__space_001tf__a,type,
    probab7247484486040049089pace_a: sigma_measure_a > $o ).

thf(sy_c_Probability__Measure_Oprob__space_001tf__b,type,
    probab7247484486040049090pace_b: sigma_measure_b > $o ).

thf(sy_c_Probability__Measure_Oprob__space__axioms_001tf__a,type,
    probab8302655048591552734ioms_a: sigma_measure_a > $o ).

thf(sy_c_Probability__Measure_Oprob__space__axioms_001tf__b,type,
    probab8302655048591552735ioms_b: sigma_measure_b > $o ).

thf(sy_c_Product__Type_Obool_Ocase__bool_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    produc6113963288868236716_set_a: set_set_a > set_set_a > $o > set_set_a ).

thf(sy_c_Product__Type_Obool_Ocase__bool_001t__Set__Oset_Itf__a_J,type,
    produc2496386666562076748_set_a: set_a > set_a > $o > set_a ).

thf(sy_c_Set_OCollect_001_062_Itf__a_Mtf__a_J,type,
    collect_a_a: ( ( a > a ) > $o ) > set_a_a ).

thf(sy_c_Set_OCollect_001_062_Itf__a_Mtf__b_J,type,
    collect_a_b: ( ( a > b ) > $o ) > set_a_b ).

thf(sy_c_Set_OCollect_001_Eo,type,
    collect_o: ( $o > $o ) > set_o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__a_J,type,
    collect_set_a: ( set_a > $o ) > set_set_a ).

thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__b_J,type,
    collect_set_b: ( set_b > $o ) > set_set_b ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_OCollect_001tf__c,type,
    collect_c: ( c > $o ) > set_c ).

thf(sy_c_Sigma__Algebra_Oemeasure_001tf__a,type,
    sigma_emeasure_a: sigma_measure_a > set_a > extend8495563244428889912nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001_Eo_001_Eo,type,
    sigma_measurable_o_o: sigma_measure_o > sigma_measure_o > set_o_o ).

thf(sy_c_Sigma__Algebra_Omeasurable_001_Eo_001t__Nat__Onat,type,
    sigma_1999164137574644376_o_nat: sigma_measure_o > sigma_measure_nat > set_o_nat ).

thf(sy_c_Sigma__Algebra_Omeasurable_001_Eo_001tf__c,type,
    sigma_measurable_o_c: sigma_measure_o > sigma_measure_c > set_o_c ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Nat__Onat_001_Eo,type,
    sigma_5101835498682829686_nat_o: sigma_measure_nat > sigma_measure_o > set_nat_o ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Nat__Onat_001t__Nat__Onat,type,
    sigma_4350458207664084850at_nat: sigma_measure_nat > sigma_measure_nat > set_nat_nat ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Nat__Onat_001tf__c,type,
    sigma_4105081583803843550_nat_c: sigma_measure_nat > sigma_measure_c > set_nat_c ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__a_001tf__a,type,
    sigma_measurable_a_a: sigma_measure_a > sigma_measure_a > set_a_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__a_001tf__b,type,
    sigma_measurable_a_b: sigma_measure_a > sigma_measure_b > set_a_b ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__b_001tf__a,type,
    sigma_measurable_b_a: sigma_measure_b > sigma_measure_a > set_b_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__b_001tf__b,type,
    sigma_measurable_b_b: sigma_measure_b > sigma_measure_b > set_b_b ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__c_001_Eo,type,
    sigma_measurable_c_o: sigma_measure_c > sigma_measure_o > set_c_o ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__c_001t__Nat__Onat,type,
    sigma_2544038740538346112_c_nat: sigma_measure_c > sigma_measure_nat > set_c_nat ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__c_001tf__a,type,
    sigma_measurable_c_a: sigma_measure_c > sigma_measure_a > set_c_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__c_001tf__c,type,
    sigma_measurable_c_c: sigma_measure_c > sigma_measure_c > set_c_c ).

thf(sy_c_Sigma__Algebra_Omeasure_001t__Set__Oset_Itf__a_J,type,
    sigma_measure_set_a2: sigma_measure_set_a > set_set_a > real ).

thf(sy_c_Sigma__Algebra_Omeasure_001t__Set__Oset_Itf__b_J,type,
    sigma_measure_set_b2: sigma_measure_set_b > set_set_b > real ).

thf(sy_c_Sigma__Algebra_Omeasure_001tf__a,type,
    sigma_measure_a2: sigma_measure_a > set_a > real ).

thf(sy_c_Sigma__Algebra_Omeasure_001tf__b,type,
    sigma_measure_b2: sigma_measure_b > set_b > real ).

thf(sy_c_Sigma__Algebra_Osets_001t__Set__Oset_Itf__a_J,type,
    sigma_sets_set_a: sigma_measure_set_a > set_set_set_a ).

thf(sy_c_Sigma__Algebra_Osets_001t__Set__Oset_Itf__b_J,type,
    sigma_sets_set_b: sigma_measure_set_b > set_set_set_b ).

thf(sy_c_Sigma__Algebra_Osets_001tf__a,type,
    sigma_sets_a: sigma_measure_a > set_set_a ).

thf(sy_c_Sigma__Algebra_Osets_001tf__b,type,
    sigma_sets_b: sigma_measure_b > set_set_b ).

thf(sy_c_Sigma__Algebra_Osigma__algebra_001tf__a,type,
    sigma_4968961713055010667ebra_a: set_a > set_set_a > $o ).

thf(sy_c_Sigma__Algebra_Ospace_001_Eo,type,
    sigma_space_o: sigma_measure_o > set_o ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Nat__Onat,type,
    sigma_space_nat: sigma_measure_nat > set_nat ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Set__Oset_Itf__a_J,type,
    sigma_space_set_a: sigma_measure_set_a > set_set_a ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Set__Oset_Itf__b_J,type,
    sigma_space_set_b: sigma_measure_set_b > set_set_b ).

thf(sy_c_Sigma__Algebra_Ospace_001tf__a,type,
    sigma_space_a: sigma_measure_a > set_a ).

thf(sy_c_Sigma__Algebra_Ospace_001tf__b,type,
    sigma_space_b: sigma_measure_b > set_b ).

thf(sy_c_Sigma__Algebra_Ospace_001tf__c,type,
    sigma_space_c: sigma_measure_c > set_c ).

thf(sy_c_member_001_062_I_Eo_M_Eo_J,type,
    member_o_o: ( $o > $o ) > set_o_o > $o ).

thf(sy_c_member_001_062_I_Eo_Mt__Nat__Onat_J,type,
    member_o_nat: ( $o > nat ) > set_o_nat > $o ).

thf(sy_c_member_001_062_I_Eo_Mtf__c_J,type,
    member_o_c: ( $o > c ) > set_o_c > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_M_Eo_J,type,
    member_nat_o: ( nat > $o ) > set_nat_o > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member_nat_nat: ( nat > nat ) > set_nat_nat > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_Mtf__c_J,type,
    member_nat_c: ( nat > c ) > set_nat_c > $o ).

thf(sy_c_member_001_062_Itf__a_Mtf__a_J,type,
    member_a_a: ( a > a ) > set_a_a > $o ).

thf(sy_c_member_001_062_Itf__a_Mtf__b_J,type,
    member_a_b: ( a > b ) > set_a_b > $o ).

thf(sy_c_member_001_062_Itf__b_Mtf__a_J,type,
    member_b_a: ( b > a ) > set_b_a > $o ).

thf(sy_c_member_001_062_Itf__b_Mtf__b_J,type,
    member_b_b: ( b > b ) > set_b_b > $o ).

thf(sy_c_member_001_062_Itf__c_M_Eo_J,type,
    member_c_o: ( c > $o ) > set_c_o > $o ).

thf(sy_c_member_001_062_Itf__c_Mt__Nat__Onat_J,type,
    member_c_nat: ( c > nat ) > set_c_nat > $o ).

thf(sy_c_member_001_062_Itf__c_Mtf__a_J,type,
    member_c_a: ( c > a ) > set_c_a > $o ).

thf(sy_c_member_001_062_Itf__c_Mtf__c_J,type,
    member_c_c: ( c > c ) > set_c_c > $o ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    member_set_set_a: set_set_a > set_set_set_a > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    member_set_set_b: set_set_b > set_set_set_b > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__b_J,type,
    member_set_b: set_b > set_set_b > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_c_member_001tf__c,type,
    member_c: c > set_c > $o ).

thf(sy_v_A,type,
    a2: c > set_set_b ).

thf(sy_v_F,type,
    f: c > set_set_a ).

thf(sy_v_I,type,
    i: set_c ).

thf(sy_v_M,type,
    m: sigma_measure_a ).

thf(sy_v_N,type,
    n: sigma_measure_b ).

thf(sy_v_f,type,
    f2: a > b ).

% Relevant facts (1275)
thf(fact_0_prob__space__axioms,axiom,
    probab7247484486040049089pace_a @ m ).

% prob_space_axioms
thf(fact_1_assms_I1_J,axiom,
    member_a_b @ f2 @ ( sigma_measurable_a_b @ m @ n ) ).

% assms(1)
thf(fact_2_prob__space__distr,axiom,
    ! [F: a > b,M: sigma_measure_b] :
      ( ( member_a_b @ F @ ( sigma_measurable_a_b @ m @ M ) )
     => ( probab7247484486040049090pace_b @ ( measure_distr_a_b @ m @ M @ F ) ) ) ).

% prob_space_distr
thf(fact_3_prob__space__distr,axiom,
    ! [F: a > a,M: sigma_measure_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ m @ M ) )
     => ( probab7247484486040049089pace_a @ ( measure_distr_a_a @ m @ M @ F ) ) ) ).

% prob_space_distr
thf(fact_4_subprob__space__axioms,axiom,
    giry_subprob_space_a @ m ).

% subprob_space_axioms
thf(fact_5_indep__sets__cong,axiom,
    ! [I: set_a_a,J: set_a_a,F2: ( a > a ) > set_set_a,G: ( a > a ) > set_set_a] :
      ( ( I = J )
     => ( ! [I2: a > a] :
            ( ( member_a_a @ I2 @ I )
           => ( ( F2 @ I2 )
              = ( G @ I2 ) ) )
       => ( ( indepe1219004911012930679_a_a_a @ m @ F2 @ I )
          = ( indepe1219004911012930679_a_a_a @ m @ G @ J ) ) ) ) ).

% indep_sets_cong
thf(fact_6_indep__sets__cong,axiom,
    ! [I: set_a_b,J: set_a_b,F2: ( a > b ) > set_set_a,G: ( a > b ) > set_set_a] :
      ( ( I = J )
     => ( ! [I2: a > b] :
            ( ( member_a_b @ I2 @ I )
           => ( ( F2 @ I2 )
              = ( G @ I2 ) ) )
       => ( ( indepe1219004915316159480_a_a_b @ m @ F2 @ I )
          = ( indepe1219004915316159480_a_a_b @ m @ G @ J ) ) ) ) ).

% indep_sets_cong
thf(fact_7_indep__sets__cong,axiom,
    ! [I: set_set_a,J: set_set_a,F2: set_a > set_set_a,G: set_a > set_set_a] :
      ( ( I = J )
     => ( ! [I2: set_a] :
            ( ( member_set_a @ I2 @ I )
           => ( ( F2 @ I2 )
              = ( G @ I2 ) ) )
       => ( ( indepe4967106450811773644_set_a @ m @ F2 @ I )
          = ( indepe4967106450811773644_set_a @ m @ G @ J ) ) ) ) ).

% indep_sets_cong
thf(fact_8_indep__sets__cong,axiom,
    ! [I: set_c,J: set_c,F2: c > set_set_a,G: c > set_set_a] :
      ( ( I = J )
     => ( ! [I2: c] :
            ( ( member_c @ I2 @ I )
           => ( ( F2 @ I2 )
              = ( G @ I2 ) ) )
       => ( ( indepe8927441866673418606ts_a_c @ m @ F2 @ I )
          = ( indepe8927441866673418606ts_a_c @ m @ G @ J ) ) ) ) ).

% indep_sets_cong
thf(fact_9_indep__sets__cong,axiom,
    ! [I: set_nat,J: set_nat,F2: nat > set_set_a,G: nat > set_set_a] :
      ( ( I = J )
     => ( ! [I2: nat] :
            ( ( member_nat @ I2 @ I )
           => ( ( F2 @ I2 )
              = ( G @ I2 ) ) )
       => ( ( indepe6267730027088848354_a_nat @ m @ F2 @ I )
          = ( indepe6267730027088848354_a_nat @ m @ G @ J ) ) ) ) ).

% indep_sets_cong
thf(fact_10_indep__sets__cong,axiom,
    ! [I: set_o,J: set_o,F2: $o > set_set_a,G: $o > set_set_a] :
      ( ( I = J )
     => ( ! [I2: $o] :
            ( ( member_o @ I2 @ I )
           => ( ( F2 @ I2 )
              = ( G @ I2 ) ) )
       => ( ( indepe7780107833195774214ts_a_o @ m @ F2 @ I )
          = ( indepe7780107833195774214ts_a_o @ m @ G @ J ) ) ) ) ).

% indep_sets_cong
thf(fact_11_finite__measure__axioms,axiom,
    measur930452917991658466sure_a @ m ).

% finite_measure_axioms
thf(fact_12_sigma__finite__measure__axioms,axiom,
    measur4308613598931908895sure_a @ m ).

% sigma_finite_measure_axioms
thf(fact_13_indep__F,axiom,
    indepe8927441866673418606ts_a_c @ m @ f @ i ).

% indep_F
thf(fact_14_finite__measure__distr,axiom,
    ! [F: a > b,M: sigma_measure_b] :
      ( ( member_a_b @ F @ ( sigma_measurable_a_b @ m @ M ) )
     => ( measur930452917991658467sure_b @ ( measure_distr_a_b @ m @ M @ F ) ) ) ).

% finite_measure_distr
thf(fact_15_finite__measure__distr,axiom,
    ! [F: a > a,M: sigma_measure_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ m @ M ) )
     => ( measur930452917991658466sure_a @ ( measure_distr_a_a @ m @ M @ F ) ) ) ).

% finite_measure_distr
thf(fact_16_prob__space_Oprob__space__distr,axiom,
    ! [M2: sigma_measure_b,F: b > b,M: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( member_b_b @ F @ ( sigma_measurable_b_b @ M2 @ M ) )
       => ( probab7247484486040049090pace_b @ ( measure_distr_b_b @ M2 @ M @ F ) ) ) ) ).

% prob_space.prob_space_distr
thf(fact_17_prob__space_Oprob__space__distr,axiom,
    ! [M2: sigma_measure_b,F: b > a,M: sigma_measure_a] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( member_b_a @ F @ ( sigma_measurable_b_a @ M2 @ M ) )
       => ( probab7247484486040049089pace_a @ ( measure_distr_b_a @ M2 @ M @ F ) ) ) ) ).

% prob_space.prob_space_distr
thf(fact_18_prob__space_Oprob__space__distr,axiom,
    ! [M2: sigma_measure_a,F: a > b,M: sigma_measure_b] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ M ) )
       => ( probab7247484486040049090pace_b @ ( measure_distr_a_b @ M2 @ M @ F ) ) ) ) ).

% prob_space.prob_space_distr
thf(fact_19_prob__space_Oprob__space__distr,axiom,
    ! [M2: sigma_measure_a,F: a > a,M: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ M ) )
       => ( probab7247484486040049089pace_a @ ( measure_distr_a_a @ M2 @ M @ F ) ) ) ) ).

% prob_space.prob_space_distr
thf(fact_20_prob__space__distrD,axiom,
    ! [F: b > b,M2: sigma_measure_b,N: sigma_measure_b] :
      ( ( member_b_b @ F @ ( sigma_measurable_b_b @ M2 @ N ) )
     => ( ( probab7247484486040049090pace_b @ ( measure_distr_b_b @ M2 @ N @ F ) )
       => ( probab7247484486040049090pace_b @ M2 ) ) ) ).

% prob_space_distrD
thf(fact_21_prob__space__distrD,axiom,
    ! [F: a > b,M2: sigma_measure_a,N: sigma_measure_b] :
      ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
     => ( ( probab7247484486040049090pace_b @ ( measure_distr_a_b @ M2 @ N @ F ) )
       => ( probab7247484486040049089pace_a @ M2 ) ) ) ).

% prob_space_distrD
thf(fact_22_prob__space__distrD,axiom,
    ! [F: b > a,M2: sigma_measure_b,N: sigma_measure_a] :
      ( ( member_b_a @ F @ ( sigma_measurable_b_a @ M2 @ N ) )
     => ( ( probab7247484486040049089pace_a @ ( measure_distr_b_a @ M2 @ N @ F ) )
       => ( probab7247484486040049090pace_b @ M2 ) ) ) ).

% prob_space_distrD
thf(fact_23_prob__space__distrD,axiom,
    ! [F: a > a,M2: sigma_measure_a,N: sigma_measure_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
     => ( ( probab7247484486040049089pace_a @ ( measure_distr_a_a @ M2 @ N @ F ) )
       => ( probab7247484486040049089pace_a @ M2 ) ) ) ).

% prob_space_distrD
thf(fact_24_indep__var__rv1,axiom,
    ! [S: sigma_measure_b,X: a > b,T: sigma_measure_b,Y: a > b] :
      ( ( indepe2440653194691626189ar_a_b @ m @ S @ X @ T @ Y )
     => ( member_a_b @ X @ ( sigma_measurable_a_b @ m @ S ) ) ) ).

% indep_var_rv1
thf(fact_25_indep__var__rv1,axiom,
    ! [S: sigma_measure_a,X: a > a,T: sigma_measure_a,Y: a > a] :
      ( ( indepe2440653194691626188ar_a_a @ m @ S @ X @ T @ Y )
     => ( member_a_a @ X @ ( sigma_measurable_a_a @ m @ S ) ) ) ).

% indep_var_rv1
thf(fact_26_indep__var__rv2,axiom,
    ! [S: sigma_measure_b,X: a > b,T: sigma_measure_b,Y: a > b] :
      ( ( indepe2440653194691626189ar_a_b @ m @ S @ X @ T @ Y )
     => ( member_a_b @ Y @ ( sigma_measurable_a_b @ m @ T ) ) ) ).

% indep_var_rv2
thf(fact_27_indep__var__rv2,axiom,
    ! [S: sigma_measure_a,X: a > a,T: sigma_measure_a,Y: a > a] :
      ( ( indepe2440653194691626188ar_a_a @ m @ S @ X @ T @ Y )
     => ( member_a_a @ Y @ ( sigma_measurable_a_a @ m @ T ) ) ) ).

% indep_var_rv2
thf(fact_28_prob__space__imp__sigma__finite,axiom,
    ! [M2: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( measur4308613598931908896sure_b @ M2 ) ) ).

% prob_space_imp_sigma_finite
thf(fact_29_prob__space__imp__sigma__finite,axiom,
    ! [M2: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( measur4308613598931908895sure_a @ M2 ) ) ).

% prob_space_imp_sigma_finite
thf(fact_30_prob__space_Ofinite__measure,axiom,
    ! [M2: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( measur930452917991658467sure_b @ M2 ) ) ).

% prob_space.finite_measure
thf(fact_31_prob__space_Ofinite__measure,axiom,
    ! [M2: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( measur930452917991658466sure_a @ M2 ) ) ).

% prob_space.finite_measure
thf(fact_32_measurable__distr__eq2,axiom,
    ! [Mg: sigma_measure_a,Mg2: sigma_measure_a,Ng: sigma_measure_b,G2: a > b] :
      ( ( sigma_measurable_a_b @ Mg @ ( measure_distr_a_b @ Mg2 @ Ng @ G2 ) )
      = ( sigma_measurable_a_b @ Mg @ Ng ) ) ).

% measurable_distr_eq2
thf(fact_33_measurable__distr__eq2,axiom,
    ! [Mg: sigma_measure_a,Mg2: sigma_measure_a,Ng: sigma_measure_a,G2: a > a] :
      ( ( sigma_measurable_a_a @ Mg @ ( measure_distr_a_a @ Mg2 @ Ng @ G2 ) )
      = ( sigma_measurable_a_a @ Mg @ Ng ) ) ).

% measurable_distr_eq2
thf(fact_34_measurable__distr__eq1,axiom,
    ! [Mf: sigma_measure_a,Nf: sigma_measure_a,F: a > a,Mf2: sigma_measure_b] :
      ( ( sigma_measurable_a_b @ ( measure_distr_a_a @ Mf @ Nf @ F ) @ Mf2 )
      = ( sigma_measurable_a_b @ Nf @ Mf2 ) ) ).

% measurable_distr_eq1
thf(fact_35_measurable__distr__eq1,axiom,
    ! [Mf: sigma_measure_a,Nf: sigma_measure_a,F: a > a,Mf2: sigma_measure_a] :
      ( ( sigma_measurable_a_a @ ( measure_distr_a_a @ Mf @ Nf @ F ) @ Mf2 )
      = ( sigma_measurable_a_a @ Nf @ Mf2 ) ) ).

% measurable_distr_eq1
thf(fact_36_prob__space_Oindep__var__rv1,axiom,
    ! [M2: sigma_measure_a,S: sigma_measure_b,X: a > b,T: sigma_measure_b,Y: a > b] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2440653194691626189ar_a_b @ M2 @ S @ X @ T @ Y )
       => ( member_a_b @ X @ ( sigma_measurable_a_b @ M2 @ S ) ) ) ) ).

% prob_space.indep_var_rv1
thf(fact_37_prob__space_Oindep__var__rv1,axiom,
    ! [M2: sigma_measure_a,S: sigma_measure_a,X: a > a,T: sigma_measure_a,Y: a > a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2440653194691626188ar_a_a @ M2 @ S @ X @ T @ Y )
       => ( member_a_a @ X @ ( sigma_measurable_a_a @ M2 @ S ) ) ) ) ).

% prob_space.indep_var_rv1
thf(fact_38_prob__space_Oindep__var__rv2,axiom,
    ! [M2: sigma_measure_a,S: sigma_measure_b,X: a > b,T: sigma_measure_b,Y: a > b] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2440653194691626189ar_a_b @ M2 @ S @ X @ T @ Y )
       => ( member_a_b @ Y @ ( sigma_measurable_a_b @ M2 @ T ) ) ) ) ).

% prob_space.indep_var_rv2
thf(fact_39_prob__space_Oindep__var__rv2,axiom,
    ! [M2: sigma_measure_a,S: sigma_measure_a,X: a > a,T: sigma_measure_a,Y: a > a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2440653194691626188ar_a_a @ M2 @ S @ X @ T @ Y )
       => ( member_a_a @ Y @ ( sigma_measurable_a_a @ M2 @ T ) ) ) ) ).

% prob_space.indep_var_rv2
thf(fact_40_finite__measure_Ofinite__measure__distr,axiom,
    ! [M2: sigma_measure_a,F: a > a,M: sigma_measure_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ M ) )
       => ( measur930452917991658466sure_a @ ( measure_distr_a_a @ M2 @ M @ F ) ) ) ) ).

% finite_measure.finite_measure_distr
thf(fact_41_finite__measure_Ofinite__measure__distr,axiom,
    ! [M2: sigma_measure_a,F: a > b,M: sigma_measure_b] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ M ) )
       => ( measur930452917991658467sure_b @ ( measure_distr_a_b @ M2 @ M @ F ) ) ) ) ).

% finite_measure.finite_measure_distr
thf(fact_42_finite__measure_Ofinite__measure__distr,axiom,
    ! [M2: sigma_measure_b,F: b > a,M: sigma_measure_a] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_b_a @ F @ ( sigma_measurable_b_a @ M2 @ M ) )
       => ( measur930452917991658466sure_a @ ( measure_distr_b_a @ M2 @ M @ F ) ) ) ) ).

% finite_measure.finite_measure_distr
thf(fact_43_finite__measure_Ofinite__measure__distr,axiom,
    ! [M2: sigma_measure_b,F: b > b,M: sigma_measure_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_b_b @ F @ ( sigma_measurable_b_b @ M2 @ M ) )
       => ( measur930452917991658467sure_b @ ( measure_distr_b_b @ M2 @ M @ F ) ) ) ) ).

% finite_measure.finite_measure_distr
thf(fact_44_sigma__finite__measure__distr,axiom,
    ! [M2: sigma_measure_a,N: sigma_measure_b,F: a > b] :
      ( ( measur4308613598931908896sure_b @ ( measure_distr_a_b @ M2 @ N @ F ) )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
       => ( measur4308613598931908895sure_a @ M2 ) ) ) ).

% sigma_finite_measure_distr
thf(fact_45_sigma__finite__measure__distr,axiom,
    ! [M2: sigma_measure_a,N: sigma_measure_a,F: a > a] :
      ( ( measur4308613598931908895sure_a @ ( measure_distr_a_a @ M2 @ N @ F ) )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
       => ( measur4308613598931908895sure_a @ M2 ) ) ) ).

% sigma_finite_measure_distr
thf(fact_46_prob__space__completion,axiom,
    probab7247484486040049089pace_a @ ( comple3428971583294703880tion_a @ m ) ).

% prob_space_completion
thf(fact_47_indep__var__compose,axiom,
    ! [M1: sigma_measure_a,X1: a > a,M22: sigma_measure_a,X2: a > a,Y1: a > b,N1: sigma_measure_b,Y2: a > b,N2: sigma_measure_b] :
      ( ( indepe2440653194691626188ar_a_a @ m @ M1 @ X1 @ M22 @ X2 )
     => ( ( member_a_b @ Y1 @ ( sigma_measurable_a_b @ M1 @ N1 ) )
       => ( ( member_a_b @ Y2 @ ( sigma_measurable_a_b @ M22 @ N2 ) )
         => ( indepe2440653194691626189ar_a_b @ m @ N1 @ ( comp_a_b_a @ Y1 @ X1 ) @ N2 @ ( comp_a_b_a @ Y2 @ X2 ) ) ) ) ) ).

% indep_var_compose
thf(fact_48_indep__var__compose,axiom,
    ! [M1: sigma_measure_a,X1: a > a,M22: sigma_measure_a,X2: a > a,Y1: a > a,N1: sigma_measure_a,Y2: a > a,N2: sigma_measure_a] :
      ( ( indepe2440653194691626188ar_a_a @ m @ M1 @ X1 @ M22 @ X2 )
     => ( ( member_a_a @ Y1 @ ( sigma_measurable_a_a @ M1 @ N1 ) )
       => ( ( member_a_a @ Y2 @ ( sigma_measurable_a_a @ M22 @ N2 ) )
         => ( indepe2440653194691626188ar_a_a @ m @ N1 @ ( comp_a_a_a @ Y1 @ X1 ) @ N2 @ ( comp_a_a_a @ Y2 @ X2 ) ) ) ) ) ).

% indep_var_compose
thf(fact_49_indep__sets__mono__sets,axiom,
    ! [F2: ( a > a ) > set_set_a,I: set_a_a,G: ( a > a ) > set_set_a] :
      ( ( indepe1219004911012930679_a_a_a @ m @ F2 @ I )
     => ( ! [I2: a > a] :
            ( ( member_a_a @ I2 @ I )
           => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
       => ( indepe1219004911012930679_a_a_a @ m @ G @ I ) ) ) ).

% indep_sets_mono_sets
thf(fact_50_indep__sets__mono__sets,axiom,
    ! [F2: c > set_set_a,I: set_c,G: c > set_set_a] :
      ( ( indepe8927441866673418606ts_a_c @ m @ F2 @ I )
     => ( ! [I2: c] :
            ( ( member_c @ I2 @ I )
           => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
       => ( indepe8927441866673418606ts_a_c @ m @ G @ I ) ) ) ).

% indep_sets_mono_sets
thf(fact_51_indep__sets__mono__sets,axiom,
    ! [F2: nat > set_set_a,I: set_nat,G: nat > set_set_a] :
      ( ( indepe6267730027088848354_a_nat @ m @ F2 @ I )
     => ( ! [I2: nat] :
            ( ( member_nat @ I2 @ I )
           => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
       => ( indepe6267730027088848354_a_nat @ m @ G @ I ) ) ) ).

% indep_sets_mono_sets
thf(fact_52_indep__sets__mono__sets,axiom,
    ! [F2: $o > set_set_a,I: set_o,G: $o > set_set_a] :
      ( ( indepe7780107833195774214ts_a_o @ m @ F2 @ I )
     => ( ! [I2: $o] :
            ( ( member_o @ I2 @ I )
           => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
       => ( indepe7780107833195774214ts_a_o @ m @ G @ I ) ) ) ).

% indep_sets_mono_sets
thf(fact_53_indep__sets__mono__sets,axiom,
    ! [F2: set_a > set_set_a,I: set_set_a,G: set_a > set_set_a] :
      ( ( indepe4967106450811773644_set_a @ m @ F2 @ I )
     => ( ! [I2: set_a] :
            ( ( member_set_a @ I2 @ I )
           => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
       => ( indepe4967106450811773644_set_a @ m @ G @ I ) ) ) ).

% indep_sets_mono_sets
thf(fact_54_indep__sets__mono__sets,axiom,
    ! [F2: ( a > b ) > set_set_a,I: set_a_b,G: ( a > b ) > set_set_a] :
      ( ( indepe1219004915316159480_a_a_b @ m @ F2 @ I )
     => ( ! [I2: a > b] :
            ( ( member_a_b @ I2 @ I )
           => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
       => ( indepe1219004915316159480_a_a_b @ m @ G @ I ) ) ) ).

% indep_sets_mono_sets
thf(fact_55_indep__sets__mono__index,axiom,
    ! [J: set_set_b,I: set_set_b,F2: set_b > set_set_a] :
      ( ( ord_le3795704787696855135_set_b @ J @ I )
     => ( ( indepe4967106455115002445_set_b @ m @ F2 @ I )
       => ( indepe4967106455115002445_set_b @ m @ F2 @ J ) ) ) ).

% indep_sets_mono_index
thf(fact_56_indep__sets__mono__index,axiom,
    ! [J: set_a,I: set_a,F2: a > set_set_a] :
      ( ( ord_less_eq_set_a @ J @ I )
     => ( ( indepe8927441866673418604ts_a_a @ m @ F2 @ I )
       => ( indepe8927441866673418604ts_a_a @ m @ F2 @ J ) ) ) ).

% indep_sets_mono_index
thf(fact_57_indep__sets__mono__index,axiom,
    ! [J: set_c,I: set_c,F2: c > set_set_a] :
      ( ( ord_less_eq_set_c @ J @ I )
     => ( ( indepe8927441866673418606ts_a_c @ m @ F2 @ I )
       => ( indepe8927441866673418606ts_a_c @ m @ F2 @ J ) ) ) ).

% indep_sets_mono_index
thf(fact_58_indep__sets__mono__index,axiom,
    ! [J: set_nat,I: set_nat,F2: nat > set_set_a] :
      ( ( ord_less_eq_set_nat @ J @ I )
     => ( ( indepe6267730027088848354_a_nat @ m @ F2 @ I )
       => ( indepe6267730027088848354_a_nat @ m @ F2 @ J ) ) ) ).

% indep_sets_mono_index
thf(fact_59_indep__sets__mono__index,axiom,
    ! [J: set_o,I: set_o,F2: $o > set_set_a] :
      ( ( ord_less_eq_set_o @ J @ I )
     => ( ( indepe7780107833195774214ts_a_o @ m @ F2 @ I )
       => ( indepe7780107833195774214ts_a_o @ m @ F2 @ J ) ) ) ).

% indep_sets_mono_index
thf(fact_60_indep__sets__mono__index,axiom,
    ! [J: set_set_a,I: set_set_a,F2: set_a > set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ J @ I )
     => ( ( indepe4967106450811773644_set_a @ m @ F2 @ I )
       => ( indepe4967106450811773644_set_a @ m @ F2 @ J ) ) ) ).

% indep_sets_mono_index
thf(fact_61_indep__sets__mono__index,axiom,
    ! [J: set_a_b,I: set_a_b,F2: ( a > b ) > set_set_a] :
      ( ( ord_less_eq_set_a_b @ J @ I )
     => ( ( indepe1219004915316159480_a_a_b @ m @ F2 @ I )
       => ( indepe1219004915316159480_a_a_b @ m @ F2 @ J ) ) ) ).

% indep_sets_mono_index
thf(fact_62_subprob__space_Oaxioms_I1_J,axiom,
    ! [M2: sigma_measure_a] :
      ( ( giry_subprob_space_a @ M2 )
     => ( measur930452917991658466sure_a @ M2 ) ) ).

% subprob_space.axioms(1)
thf(fact_63_subprob__space_Oaxioms_I1_J,axiom,
    ! [M2: sigma_measure_b] :
      ( ( giry_subprob_space_b @ M2 )
     => ( measur930452917991658467sure_b @ M2 ) ) ).

% subprob_space.axioms(1)
thf(fact_64_indep__sets__mono,axiom,
    ! [F2: ( a > a ) > set_set_a,I: set_a_a,J: set_a_a,G: ( a > a ) > set_set_a] :
      ( ( indepe1219004911012930679_a_a_a @ m @ F2 @ I )
     => ( ( ord_less_eq_set_a_a @ J @ I )
       => ( ! [I2: a > a] :
              ( ( member_a_a @ I2 @ J )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe1219004911012930679_a_a_a @ m @ G @ J ) ) ) ) ).

% indep_sets_mono
thf(fact_65_indep__sets__mono,axiom,
    ! [F2: set_b > set_set_a,I: set_set_b,J: set_set_b,G: set_b > set_set_a] :
      ( ( indepe4967106455115002445_set_b @ m @ F2 @ I )
     => ( ( ord_le3795704787696855135_set_b @ J @ I )
       => ( ! [I2: set_b] :
              ( ( member_set_b @ I2 @ J )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe4967106455115002445_set_b @ m @ G @ J ) ) ) ) ).

% indep_sets_mono
thf(fact_66_indep__sets__mono,axiom,
    ! [F2: a > set_set_a,I: set_a,J: set_a,G: a > set_set_a] :
      ( ( indepe8927441866673418604ts_a_a @ m @ F2 @ I )
     => ( ( ord_less_eq_set_a @ J @ I )
       => ( ! [I2: a] :
              ( ( member_a @ I2 @ J )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe8927441866673418604ts_a_a @ m @ G @ J ) ) ) ) ).

% indep_sets_mono
thf(fact_67_indep__sets__mono,axiom,
    ! [F2: c > set_set_a,I: set_c,J: set_c,G: c > set_set_a] :
      ( ( indepe8927441866673418606ts_a_c @ m @ F2 @ I )
     => ( ( ord_less_eq_set_c @ J @ I )
       => ( ! [I2: c] :
              ( ( member_c @ I2 @ J )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe8927441866673418606ts_a_c @ m @ G @ J ) ) ) ) ).

% indep_sets_mono
thf(fact_68_indep__sets__mono,axiom,
    ! [F2: nat > set_set_a,I: set_nat,J: set_nat,G: nat > set_set_a] :
      ( ( indepe6267730027088848354_a_nat @ m @ F2 @ I )
     => ( ( ord_less_eq_set_nat @ J @ I )
       => ( ! [I2: nat] :
              ( ( member_nat @ I2 @ J )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe6267730027088848354_a_nat @ m @ G @ J ) ) ) ) ).

% indep_sets_mono
thf(fact_69_indep__sets__mono,axiom,
    ! [F2: $o > set_set_a,I: set_o,J: set_o,G: $o > set_set_a] :
      ( ( indepe7780107833195774214ts_a_o @ m @ F2 @ I )
     => ( ( ord_less_eq_set_o @ J @ I )
       => ( ! [I2: $o] :
              ( ( member_o @ I2 @ J )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe7780107833195774214ts_a_o @ m @ G @ J ) ) ) ) ).

% indep_sets_mono
thf(fact_70_indep__sets__mono,axiom,
    ! [F2: set_a > set_set_a,I: set_set_a,J: set_set_a,G: set_a > set_set_a] :
      ( ( indepe4967106450811773644_set_a @ m @ F2 @ I )
     => ( ( ord_le3724670747650509150_set_a @ J @ I )
       => ( ! [I2: set_a] :
              ( ( member_set_a @ I2 @ J )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe4967106450811773644_set_a @ m @ G @ J ) ) ) ) ).

% indep_sets_mono
thf(fact_71_indep__sets__mono,axiom,
    ! [F2: ( a > b ) > set_set_a,I: set_a_b,J: set_a_b,G: ( a > b ) > set_set_a] :
      ( ( indepe1219004915316159480_a_a_b @ m @ F2 @ I )
     => ( ( ord_less_eq_set_a_b @ J @ I )
       => ( ! [I2: a > b] :
              ( ( member_a_b @ I2 @ J )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe1219004915316159480_a_a_b @ m @ G @ J ) ) ) ) ).

% indep_sets_mono
thf(fact_72_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_b,F2: c > set_set_b,I: set_c,J: set_c,G: c > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe6139986284700742573ts_b_c @ M2 @ F2 @ I )
       => ( ( ord_less_eq_set_c @ J @ I )
         => ( ! [I2: c] :
                ( ( member_c @ I2 @ J )
               => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe6139986284700742573ts_b_c @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_73_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_b,F2: $o > set_set_b,I: set_o,J: set_o,G: $o > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe4880885433731379909ts_b_o @ M2 @ F2 @ I )
       => ( ( ord_less_eq_set_o @ J @ I )
         => ( ! [I2: $o] :
                ( ( member_o @ I2 @ J )
               => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe4880885433731379909ts_b_o @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_74_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_b,F2: nat > set_set_b,I: set_nat,J: set_nat,G: nat > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe7503174356045242851_b_nat @ M2 @ F2 @ I )
       => ( ( ord_less_eq_set_nat @ J @ I )
         => ( ! [I2: nat] :
                ( ( member_nat @ I2 @ J )
               => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe7503174356045242851_b_nat @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_75_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_b,F2: a > set_set_b,I: set_a,J: set_a,G: a > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe6139986284700742571ts_b_a @ M2 @ F2 @ I )
       => ( ( ord_less_eq_set_a @ J @ I )
         => ( ! [I2: a] :
                ( ( member_a @ I2 @ J )
               => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe6139986284700742571ts_b_a @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_76_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_a,F2: a > set_set_a,I: set_a,J: set_a,G: a > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe8927441866673418604ts_a_a @ M2 @ F2 @ I )
       => ( ( ord_less_eq_set_a @ J @ I )
         => ( ! [I2: a] :
                ( ( member_a @ I2 @ J )
               => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe8927441866673418604ts_a_a @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_77_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_a,F2: c > set_set_a,I: set_c,J: set_c,G: c > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe8927441866673418606ts_a_c @ M2 @ F2 @ I )
       => ( ( ord_less_eq_set_c @ J @ I )
         => ( ! [I2: c] :
                ( ( member_c @ I2 @ J )
               => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe8927441866673418606ts_a_c @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_78_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_a,F2: nat > set_set_a,I: set_nat,J: set_nat,G: nat > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe6267730027088848354_a_nat @ M2 @ F2 @ I )
       => ( ( ord_less_eq_set_nat @ J @ I )
         => ( ! [I2: nat] :
                ( ( member_nat @ I2 @ J )
               => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe6267730027088848354_a_nat @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_79_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_a,F2: $o > set_set_a,I: set_o,J: set_o,G: $o > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe7780107833195774214ts_a_o @ M2 @ F2 @ I )
       => ( ( ord_less_eq_set_o @ J @ I )
         => ( ! [I2: $o] :
                ( ( member_o @ I2 @ J )
               => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe7780107833195774214ts_a_o @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_80_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_b,F2: set_b > set_set_b,I: set_set_b,J: set_set_b,G: set_b > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe6311571491924490380_set_b @ M2 @ F2 @ I )
       => ( ( ord_le3795704787696855135_set_b @ J @ I )
         => ( ! [I2: set_b] :
                ( ( member_set_b @ I2 @ J )
               => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe6311571491924490380_set_b @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_81_prob__space_Oindep__sets__mono,axiom,
    ! [M2: sigma_measure_b,F2: set_a > set_set_b,I: set_set_a,J: set_set_a,G: set_a > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe6311571487621261579_set_a @ M2 @ F2 @ I )
       => ( ( ord_le3724670747650509150_set_a @ J @ I )
         => ( ! [I2: set_a] :
                ( ( member_set_a @ I2 @ J )
               => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
           => ( indepe6311571487621261579_set_a @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_mono
thf(fact_82_prob__space_Oprob__space__completion,axiom,
    ! [M2: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( probab7247484486040049090pace_b @ ( comple3428971583294703881tion_b @ M2 ) ) ) ).

% prob_space.prob_space_completion
thf(fact_83_prob__space_Oprob__space__completion,axiom,
    ! [M2: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( probab7247484486040049089pace_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ).

% prob_space.prob_space_completion
thf(fact_84_distr__distr,axiom,
    ! [G2: b > b,N: sigma_measure_b,L: sigma_measure_b,F: a > b,M2: sigma_measure_a] :
      ( ( member_b_b @ G2 @ ( sigma_measurable_b_b @ N @ L ) )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
       => ( ( measure_distr_b_b @ ( measure_distr_a_b @ M2 @ N @ F ) @ L @ G2 )
          = ( measure_distr_a_b @ M2 @ L @ ( comp_b_b_a @ G2 @ F ) ) ) ) ) ).

% distr_distr
thf(fact_85_distr__distr,axiom,
    ! [G2: b > a,N: sigma_measure_b,L: sigma_measure_a,F: a > b,M2: sigma_measure_a] :
      ( ( member_b_a @ G2 @ ( sigma_measurable_b_a @ N @ L ) )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
       => ( ( measure_distr_b_a @ ( measure_distr_a_b @ M2 @ N @ F ) @ L @ G2 )
          = ( measure_distr_a_a @ M2 @ L @ ( comp_b_a_a @ G2 @ F ) ) ) ) ) ).

% distr_distr
thf(fact_86_distr__distr,axiom,
    ! [G2: a > b,N: sigma_measure_a,L: sigma_measure_b,F: a > a,M2: sigma_measure_a] :
      ( ( member_a_b @ G2 @ ( sigma_measurable_a_b @ N @ L ) )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
       => ( ( measure_distr_a_b @ ( measure_distr_a_a @ M2 @ N @ F ) @ L @ G2 )
          = ( measure_distr_a_b @ M2 @ L @ ( comp_a_b_a @ G2 @ F ) ) ) ) ) ).

% distr_distr
thf(fact_87_distr__distr,axiom,
    ! [G2: a > a,N: sigma_measure_a,L: sigma_measure_a,F: a > a,M2: sigma_measure_a] :
      ( ( member_a_a @ G2 @ ( sigma_measurable_a_a @ N @ L ) )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
       => ( ( measure_distr_a_a @ ( measure_distr_a_a @ M2 @ N @ F ) @ L @ G2 )
          = ( measure_distr_a_a @ M2 @ L @ ( comp_a_a_a @ G2 @ F ) ) ) ) ) ).

% distr_distr
thf(fact_88_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_b,J: set_set_b,I: set_set_b,F2: set_b > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( ord_le3795704787696855135_set_b @ J @ I )
       => ( ( indepe6311571491924490380_set_b @ M2 @ F2 @ I )
         => ( indepe6311571491924490380_set_b @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_89_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_b,J: set_set_a,I: set_set_a,F2: set_a > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( ord_le3724670747650509150_set_a @ J @ I )
       => ( ( indepe6311571487621261579_set_a @ M2 @ F2 @ I )
         => ( indepe6311571487621261579_set_a @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_90_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_b,J: set_a,I: set_a,F2: a > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( ord_less_eq_set_a @ J @ I )
       => ( ( indepe6139986284700742571ts_b_a @ M2 @ F2 @ I )
         => ( indepe6139986284700742571ts_b_a @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_91_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_a,J: set_set_b,I: set_set_b,F2: set_b > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_le3795704787696855135_set_b @ J @ I )
       => ( ( indepe4967106455115002445_set_b @ M2 @ F2 @ I )
         => ( indepe4967106455115002445_set_b @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_92_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_a,J: set_a,I: set_a,F2: a > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_less_eq_set_a @ J @ I )
       => ( ( indepe8927441866673418604ts_a_a @ M2 @ F2 @ I )
         => ( indepe8927441866673418604ts_a_a @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_93_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_a,J: set_c,I: set_c,F2: c > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_less_eq_set_c @ J @ I )
       => ( ( indepe8927441866673418606ts_a_c @ M2 @ F2 @ I )
         => ( indepe8927441866673418606ts_a_c @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_94_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_a,J: set_nat,I: set_nat,F2: nat > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_less_eq_set_nat @ J @ I )
       => ( ( indepe6267730027088848354_a_nat @ M2 @ F2 @ I )
         => ( indepe6267730027088848354_a_nat @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_95_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_a,J: set_o,I: set_o,F2: $o > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_less_eq_set_o @ J @ I )
       => ( ( indepe7780107833195774214ts_a_o @ M2 @ F2 @ I )
         => ( indepe7780107833195774214ts_a_o @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_96_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_a,J: set_set_a,I: set_set_a,F2: set_a > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_le3724670747650509150_set_a @ J @ I )
       => ( ( indepe4967106450811773644_set_a @ M2 @ F2 @ I )
         => ( indepe4967106450811773644_set_a @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_97_prob__space_Oindep__sets__mono__index,axiom,
    ! [M2: sigma_measure_a,J: set_a_b,I: set_a_b,F2: ( a > b ) > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_less_eq_set_a_b @ J @ I )
       => ( ( indepe1219004915316159480_a_a_b @ M2 @ F2 @ I )
         => ( indepe1219004915316159480_a_a_b @ M2 @ F2 @ J ) ) ) ) ).

% prob_space.indep_sets_mono_index
thf(fact_98_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_b,F2: c > set_set_b,I: set_c,G: c > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe6139986284700742573ts_b_c @ M2 @ F2 @ I )
       => ( ! [I2: c] :
              ( ( member_c @ I2 @ I )
             => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe6139986284700742573ts_b_c @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_99_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_b,F2: $o > set_set_b,I: set_o,G: $o > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe4880885433731379909ts_b_o @ M2 @ F2 @ I )
       => ( ! [I2: $o] :
              ( ( member_o @ I2 @ I )
             => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe4880885433731379909ts_b_o @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_100_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_b,F2: nat > set_set_b,I: set_nat,G: nat > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe7503174356045242851_b_nat @ M2 @ F2 @ I )
       => ( ! [I2: nat] :
              ( ( member_nat @ I2 @ I )
             => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe7503174356045242851_b_nat @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_101_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_a,F2: c > set_set_a,I: set_c,G: c > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe8927441866673418606ts_a_c @ M2 @ F2 @ I )
       => ( ! [I2: c] :
              ( ( member_c @ I2 @ I )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe8927441866673418606ts_a_c @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_102_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_a,F2: nat > set_set_a,I: set_nat,G: nat > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe6267730027088848354_a_nat @ M2 @ F2 @ I )
       => ( ! [I2: nat] :
              ( ( member_nat @ I2 @ I )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe6267730027088848354_a_nat @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_103_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_a,F2: $o > set_set_a,I: set_o,G: $o > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe7780107833195774214ts_a_o @ M2 @ F2 @ I )
       => ( ! [I2: $o] :
              ( ( member_o @ I2 @ I )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe7780107833195774214ts_a_o @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_104_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_b,F2: set_a > set_set_b,I: set_set_a,G: set_a > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe6311571487621261579_set_a @ M2 @ F2 @ I )
       => ( ! [I2: set_a] :
              ( ( member_set_a @ I2 @ I )
             => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe6311571487621261579_set_a @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_105_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_a,F2: set_a > set_set_a,I: set_set_a,G: set_a > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe4967106450811773644_set_a @ M2 @ F2 @ I )
       => ( ! [I2: set_a] :
              ( ( member_set_a @ I2 @ I )
             => ( ord_le3724670747650509150_set_a @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe4967106450811773644_set_a @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_106_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_b,F2: ( a > b ) > set_set_b,I: set_a_b,G: ( a > b ) > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe7072862685212782073_b_a_b @ M2 @ F2 @ I )
       => ( ! [I2: a > b] :
              ( ( member_a_b @ I2 @ I )
             => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe7072862685212782073_b_a_b @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_107_prob__space_Oindep__sets__mono__sets,axiom,
    ! [M2: sigma_measure_b,F2: ( a > a ) > set_set_b,I: set_a_a,G: ( a > a ) > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe7072862680909553272_b_a_a @ M2 @ F2 @ I )
       => ( ! [I2: a > a] :
              ( ( member_a_a @ I2 @ I )
             => ( ord_le3795704787696855135_set_b @ ( G @ I2 ) @ ( F2 @ I2 ) ) )
         => ( indepe7072862680909553272_b_a_a @ M2 @ G @ I ) ) ) ) ).

% prob_space.indep_sets_mono_sets
thf(fact_108_prob__space_Oindep__var__compose,axiom,
    ! [M2: sigma_measure_b,M1: sigma_measure_a,X1: b > a,M22: sigma_measure_a,X2: b > a,Y1: a > b,N1: sigma_measure_b,Y2: a > b,N2: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe8876569649573725963ar_b_a @ M2 @ M1 @ X1 @ M22 @ X2 )
       => ( ( member_a_b @ Y1 @ ( sigma_measurable_a_b @ M1 @ N1 ) )
         => ( ( member_a_b @ Y2 @ ( sigma_measurable_a_b @ M22 @ N2 ) )
           => ( indepe8876569649573725964ar_b_b @ M2 @ N1 @ ( comp_a_b_b @ Y1 @ X1 ) @ N2 @ ( comp_a_b_b @ Y2 @ X2 ) ) ) ) ) ) ).

% prob_space.indep_var_compose
thf(fact_109_prob__space_Oindep__var__compose,axiom,
    ! [M2: sigma_measure_b,M1: sigma_measure_a,X1: b > a,M22: sigma_measure_a,X2: b > a,Y1: a > a,N1: sigma_measure_a,Y2: a > a,N2: sigma_measure_a] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe8876569649573725963ar_b_a @ M2 @ M1 @ X1 @ M22 @ X2 )
       => ( ( member_a_a @ Y1 @ ( sigma_measurable_a_a @ M1 @ N1 ) )
         => ( ( member_a_a @ Y2 @ ( sigma_measurable_a_a @ M22 @ N2 ) )
           => ( indepe8876569649573725963ar_b_a @ M2 @ N1 @ ( comp_a_a_b @ Y1 @ X1 ) @ N2 @ ( comp_a_a_b @ Y2 @ X2 ) ) ) ) ) ) ).

% prob_space.indep_var_compose
thf(fact_110_prob__space_Oindep__var__compose,axiom,
    ! [M2: sigma_measure_a,M1: sigma_measure_a,X1: a > a,M22: sigma_measure_a,X2: a > a,Y1: a > b,N1: sigma_measure_b,Y2: a > b,N2: sigma_measure_b] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2440653194691626188ar_a_a @ M2 @ M1 @ X1 @ M22 @ X2 )
       => ( ( member_a_b @ Y1 @ ( sigma_measurable_a_b @ M1 @ N1 ) )
         => ( ( member_a_b @ Y2 @ ( sigma_measurable_a_b @ M22 @ N2 ) )
           => ( indepe2440653194691626189ar_a_b @ M2 @ N1 @ ( comp_a_b_a @ Y1 @ X1 ) @ N2 @ ( comp_a_b_a @ Y2 @ X2 ) ) ) ) ) ) ).

% prob_space.indep_var_compose
thf(fact_111_prob__space_Oindep__var__compose,axiom,
    ! [M2: sigma_measure_a,M1: sigma_measure_a,X1: a > a,M22: sigma_measure_a,X2: a > a,Y1: a > a,N1: sigma_measure_a,Y2: a > a,N2: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2440653194691626188ar_a_a @ M2 @ M1 @ X1 @ M22 @ X2 )
       => ( ( member_a_a @ Y1 @ ( sigma_measurable_a_a @ M1 @ N1 ) )
         => ( ( member_a_a @ Y2 @ ( sigma_measurable_a_a @ M22 @ N2 ) )
           => ( indepe2440653194691626188ar_a_a @ M2 @ N1 @ ( comp_a_a_a @ Y1 @ X1 ) @ N2 @ ( comp_a_a_a @ Y2 @ X2 ) ) ) ) ) ) ).

% prob_space.indep_var_compose
thf(fact_112_prob__space_Oindep__sets_Ocong,axiom,
    indepe8927441866673418606ts_a_c = indepe8927441866673418606ts_a_c ).

% prob_space.indep_sets.cong
thf(fact_113_prob__space_Oindep__sets_Ocong,axiom,
    indepe6267730027088848354_a_nat = indepe6267730027088848354_a_nat ).

% prob_space.indep_sets.cong
thf(fact_114_prob__space_Oindep__sets_Ocong,axiom,
    indepe7780107833195774214ts_a_o = indepe7780107833195774214ts_a_o ).

% prob_space.indep_sets.cong
thf(fact_115_prob__space_Oindep__sets_Ocong,axiom,
    indepe4967106450811773644_set_a = indepe4967106450811773644_set_a ).

% prob_space.indep_sets.cong
thf(fact_116_prob__space_Oindep__sets_Ocong,axiom,
    indepe1219004915316159480_a_a_b = indepe1219004915316159480_a_a_b ).

% prob_space.indep_sets.cong
thf(fact_117_finite__measure_Oaxioms_I1_J,axiom,
    ! [M2: sigma_measure_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( measur4308613598931908896sure_b @ M2 ) ) ).

% finite_measure.axioms(1)
thf(fact_118_finite__measure_Oaxioms_I1_J,axiom,
    ! [M2: sigma_measure_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( measur4308613598931908895sure_a @ M2 ) ) ).

% finite_measure.axioms(1)
thf(fact_119_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_b,I: set_c,J: set_c,F2: c > set_set_b,G: c > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( I = J )
       => ( ! [I2: c] :
              ( ( member_c @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe6139986284700742573ts_b_c @ M2 @ F2 @ I )
            = ( indepe6139986284700742573ts_b_c @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_120_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_b,I: set_o,J: set_o,F2: $o > set_set_b,G: $o > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( I = J )
       => ( ! [I2: $o] :
              ( ( member_o @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe4880885433731379909ts_b_o @ M2 @ F2 @ I )
            = ( indepe4880885433731379909ts_b_o @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_121_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_b,I: set_nat,J: set_nat,F2: nat > set_set_b,G: nat > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( I = J )
       => ( ! [I2: nat] :
              ( ( member_nat @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe7503174356045242851_b_nat @ M2 @ F2 @ I )
            = ( indepe7503174356045242851_b_nat @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_122_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_a,I: set_c,J: set_c,F2: c > set_set_a,G: c > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( I = J )
       => ( ! [I2: c] :
              ( ( member_c @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe8927441866673418606ts_a_c @ M2 @ F2 @ I )
            = ( indepe8927441866673418606ts_a_c @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_123_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_a,I: set_nat,J: set_nat,F2: nat > set_set_a,G: nat > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( I = J )
       => ( ! [I2: nat] :
              ( ( member_nat @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe6267730027088848354_a_nat @ M2 @ F2 @ I )
            = ( indepe6267730027088848354_a_nat @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_124_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_a,I: set_o,J: set_o,F2: $o > set_set_a,G: $o > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( I = J )
       => ( ! [I2: $o] :
              ( ( member_o @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe7780107833195774214ts_a_o @ M2 @ F2 @ I )
            = ( indepe7780107833195774214ts_a_o @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_125_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_b,I: set_set_a,J: set_set_a,F2: set_a > set_set_b,G: set_a > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( I = J )
       => ( ! [I2: set_a] :
              ( ( member_set_a @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe6311571487621261579_set_a @ M2 @ F2 @ I )
            = ( indepe6311571487621261579_set_a @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_126_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_a,I: set_set_a,J: set_set_a,F2: set_a > set_set_a,G: set_a > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( I = J )
       => ( ! [I2: set_a] :
              ( ( member_set_a @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe4967106450811773644_set_a @ M2 @ F2 @ I )
            = ( indepe4967106450811773644_set_a @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_127_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_b,I: set_a_b,J: set_a_b,F2: ( a > b ) > set_set_b,G: ( a > b ) > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( I = J )
       => ( ! [I2: a > b] :
              ( ( member_a_b @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe7072862685212782073_b_a_b @ M2 @ F2 @ I )
            = ( indepe7072862685212782073_b_a_b @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_128_prob__space_Oindep__sets__cong,axiom,
    ! [M2: sigma_measure_b,I: set_a_a,J: set_a_a,F2: ( a > a ) > set_set_b,G: ( a > a ) > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( I = J )
       => ( ! [I2: a > a] :
              ( ( member_a_a @ I2 @ I )
             => ( ( F2 @ I2 )
                = ( G @ I2 ) ) )
         => ( ( indepe7072862680909553272_b_a_a @ M2 @ F2 @ I )
            = ( indepe7072862680909553272_b_a_a @ M2 @ G @ J ) ) ) ) ) ).

% prob_space.indep_sets_cong
thf(fact_129_prob__space__imp__subprob__space,axiom,
    ! [M2: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( giry_subprob_space_b @ M2 ) ) ).

% prob_space_imp_subprob_space
thf(fact_130_prob__space__imp__subprob__space,axiom,
    ! [M2: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( giry_subprob_space_a @ M2 ) ) ).

% prob_space_imp_subprob_space
thf(fact_131_subprob__space__imp__sigma__finite,axiom,
    ! [M2: sigma_measure_a] :
      ( ( giry_subprob_space_a @ M2 )
     => ( measur4308613598931908895sure_a @ M2 ) ) ).

% subprob_space_imp_sigma_finite
thf(fact_132_distr__completion,axiom,
    ! [X: a > b,M2: sigma_measure_a,N: sigma_measure_b] :
      ( ( member_a_b @ X @ ( sigma_measurable_a_b @ M2 @ N ) )
     => ( ( measure_distr_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ N @ X )
        = ( measure_distr_a_b @ M2 @ N @ X ) ) ) ).

% distr_completion
thf(fact_133_distr__completion,axiom,
    ! [X: a > a,M2: sigma_measure_a,N: sigma_measure_a] :
      ( ( member_a_a @ X @ ( sigma_measurable_a_a @ M2 @ N ) )
     => ( ( measure_distr_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ N @ X )
        = ( measure_distr_a_a @ M2 @ N @ X ) ) ) ).

% distr_completion
thf(fact_134_mem__Collect__eq,axiom,
    ! [A: a > b,P: ( a > b ) > $o] :
      ( ( member_a_b @ A @ ( collect_a_b @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_135_mem__Collect__eq,axiom,
    ! [A: c,P: c > $o] :
      ( ( member_c @ A @ ( collect_c @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_136_mem__Collect__eq,axiom,
    ! [A: set_a,P: set_a > $o] :
      ( ( member_set_a @ A @ ( collect_set_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_137_mem__Collect__eq,axiom,
    ! [A: a > a,P: ( a > a ) > $o] :
      ( ( member_a_a @ A @ ( collect_a_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_138_mem__Collect__eq,axiom,
    ! [A: $o,P: $o > $o] :
      ( ( member_o @ A @ ( collect_o @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_139_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_140_Collect__mem__eq,axiom,
    ! [A2: set_a_b] :
      ( ( collect_a_b
        @ ^ [X3: a > b] : ( member_a_b @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_141_Collect__mem__eq,axiom,
    ! [A2: set_c] :
      ( ( collect_c
        @ ^ [X3: c] : ( member_c @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_142_Collect__mem__eq,axiom,
    ! [A2: set_set_a] :
      ( ( collect_set_a
        @ ^ [X3: set_a] : ( member_set_a @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_143_Collect__mem__eq,axiom,
    ! [A2: set_a_a] :
      ( ( collect_a_a
        @ ^ [X3: a > a] : ( member_a_a @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_144_Collect__mem__eq,axiom,
    ! [A2: set_o] :
      ( ( collect_o
        @ ^ [X3: $o] : ( member_o @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_145_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X3: nat] : ( member_nat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_146_subset__antisym,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( ord_le3795704787696855135_set_b @ B @ A2 )
       => ( A2 = B ) ) ) ).

% subset_antisym
thf(fact_147_subset__antisym,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( ord_le3724670747650509150_set_a @ B @ A2 )
       => ( A2 = B ) ) ) ).

% subset_antisym
thf(fact_148_subset__antisym,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( ord_less_eq_set_a @ B @ A2 )
       => ( A2 = B ) ) ) ).

% subset_antisym
thf(fact_149_subsetI,axiom,
    ! [A2: set_a_b,B: set_a_b] :
      ( ! [X4: a > b] :
          ( ( member_a_b @ X4 @ A2 )
         => ( member_a_b @ X4 @ B ) )
     => ( ord_less_eq_set_a_b @ A2 @ B ) ) ).

% subsetI
thf(fact_150_subsetI,axiom,
    ! [A2: set_c,B: set_c] :
      ( ! [X4: c] :
          ( ( member_c @ X4 @ A2 )
         => ( member_c @ X4 @ B ) )
     => ( ord_less_eq_set_c @ A2 @ B ) ) ).

% subsetI
thf(fact_151_subsetI,axiom,
    ! [A2: set_a_a,B: set_a_a] :
      ( ! [X4: a > a] :
          ( ( member_a_a @ X4 @ A2 )
         => ( member_a_a @ X4 @ B ) )
     => ( ord_less_eq_set_a_a @ A2 @ B ) ) ).

% subsetI
thf(fact_152_subsetI,axiom,
    ! [A2: set_o,B: set_o] :
      ( ! [X4: $o] :
          ( ( member_o @ X4 @ A2 )
         => ( member_o @ X4 @ B ) )
     => ( ord_less_eq_set_o @ A2 @ B ) ) ).

% subsetI
thf(fact_153_subsetI,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( member_nat @ X4 @ B ) )
     => ( ord_less_eq_set_nat @ A2 @ B ) ) ).

% subsetI
thf(fact_154_subsetI,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ! [X4: set_b] :
          ( ( member_set_b @ X4 @ A2 )
         => ( member_set_b @ X4 @ B ) )
     => ( ord_le3795704787696855135_set_b @ A2 @ B ) ) ).

% subsetI
thf(fact_155_subsetI,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ! [X4: set_a] :
          ( ( member_set_a @ X4 @ A2 )
         => ( member_set_a @ X4 @ B ) )
     => ( ord_le3724670747650509150_set_a @ A2 @ B ) ) ).

% subsetI
thf(fact_156_subsetI,axiom,
    ! [A2: set_a,B: set_a] :
      ( ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ( member_a @ X4 @ B ) )
     => ( ord_less_eq_set_a @ A2 @ B ) ) ).

% subsetI
thf(fact_157_dual__order_Orefl,axiom,
    ! [A: set_set_b] : ( ord_le3795704787696855135_set_b @ A @ A ) ).

% dual_order.refl
thf(fact_158_dual__order_Orefl,axiom,
    ! [A: set_set_a] : ( ord_le3724670747650509150_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_159_dual__order_Orefl,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_160_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_161_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_162_order__refl,axiom,
    ! [X5: set_set_b] : ( ord_le3795704787696855135_set_b @ X5 @ X5 ) ).

% order_refl
thf(fact_163_order__refl,axiom,
    ! [X5: set_set_a] : ( ord_le3724670747650509150_set_a @ X5 @ X5 ) ).

% order_refl
thf(fact_164_order__refl,axiom,
    ! [X5: set_a] : ( ord_less_eq_set_a @ X5 @ X5 ) ).

% order_refl
thf(fact_165_order__refl,axiom,
    ! [X5: nat] : ( ord_less_eq_nat @ X5 @ X5 ) ).

% order_refl
thf(fact_166_order__refl,axiom,
    ! [X5: int] : ( ord_less_eq_int @ X5 @ X5 ) ).

% order_refl
thf(fact_167_increasing__def,axiom,
    ( measur1776380161843274167a_real
    = ( ^ [M3: set_set_a,Mu: set_a > real] :
        ! [X3: set_a] :
          ( ( member_set_a @ X3 @ M3 )
         => ! [Y3: set_a] :
              ( ( member_set_a @ Y3 @ M3 )
             => ( ( ord_less_eq_set_a @ X3 @ Y3 )
               => ( ord_less_eq_real @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_168_increasing__def,axiom,
    ( measur8151441426001876059_a_nat
    = ( ^ [M3: set_set_a,Mu: set_a > nat] :
        ! [X3: set_a] :
          ( ( member_set_a @ X3 @ M3 )
         => ! [Y3: set_a] :
              ( ( member_set_a @ Y3 @ M3 )
             => ( ( ord_less_eq_set_a @ X3 @ Y3 )
               => ( ord_less_eq_nat @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_169_increasing__def,axiom,
    ( measur8148950955492825783_a_int
    = ( ^ [M3: set_set_a,Mu: set_a > int] :
        ! [X3: set_a] :
          ( ( member_set_a @ X3 @ M3 )
         => ! [Y3: set_a] :
              ( ( member_set_a @ Y3 @ M3 )
             => ( ( ord_less_eq_set_a @ X3 @ Y3 )
               => ( ord_less_eq_int @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_170_increasing__def,axiom,
    ( measur6841170515247421756_b_nat
    = ( ^ [M3: set_set_set_b,Mu: set_set_b > nat] :
        ! [X3: set_set_b] :
          ( ( member_set_set_b @ X3 @ M3 )
         => ! [Y3: set_set_b] :
              ( ( member_set_set_b @ Y3 @ M3 )
             => ( ( ord_le3795704787696855135_set_b @ X3 @ Y3 )
               => ( ord_less_eq_nat @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_171_increasing__def,axiom,
    ( measur6838680044738371480_b_int
    = ( ^ [M3: set_set_set_b,Mu: set_set_b > int] :
        ! [X3: set_set_b] :
          ( ( member_set_set_b @ X3 @ M3 )
         => ! [Y3: set_set_b] :
              ( ( member_set_set_b @ Y3 @ M3 )
             => ( ( ord_le3795704787696855135_set_b @ X3 @ Y3 )
               => ( ord_less_eq_int @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_172_increasing__def,axiom,
    ( measur1244951900059291067_a_nat
    = ( ^ [M3: set_set_set_a,Mu: set_set_a > nat] :
        ! [X3: set_set_a] :
          ( ( member_set_set_a @ X3 @ M3 )
         => ! [Y3: set_set_a] :
              ( ( member_set_set_a @ Y3 @ M3 )
             => ( ( ord_le3724670747650509150_set_a @ X3 @ Y3 )
               => ( ord_less_eq_nat @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_173_increasing__def,axiom,
    ( measur1242461429550240791_a_int
    = ( ^ [M3: set_set_set_a,Mu: set_set_a > int] :
        ! [X3: set_set_a] :
          ( ( member_set_set_a @ X3 @ M3 )
         => ! [Y3: set_set_a] :
              ( ( member_set_set_a @ Y3 @ M3 )
             => ( ( ord_le3724670747650509150_set_a @ X3 @ Y3 )
               => ( ord_less_eq_int @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_174_increasing__def,axiom,
    ( measur7842569353079325843_set_a
    = ( ^ [M3: set_set_a,Mu: set_a > set_a] :
        ! [X3: set_a] :
          ( ( member_set_a @ X3 @ M3 )
         => ! [Y3: set_a] :
              ( ( member_set_a @ Y3 @ M3 )
             => ( ( ord_less_eq_set_a @ X3 @ Y3 )
               => ( ord_less_eq_set_a @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_175_increasing__def,axiom,
    ( measur6668990528421247474_set_a
    = ( ^ [M3: set_set_set_b,Mu: set_set_b > set_a] :
        ! [X3: set_set_b] :
          ( ( member_set_set_b @ X3 @ M3 )
         => ! [Y3: set_set_b] :
              ( ( member_set_set_b @ Y3 @ M3 )
             => ( ( ord_le3795704787696855135_set_b @ X3 @ Y3 )
               => ( ord_less_eq_set_a @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_176_increasing__def,axiom,
    ( measur5181028491126448947_set_a
    = ( ^ [M3: set_set_set_a,Mu: set_set_a > set_a] :
        ! [X3: set_set_a] :
          ( ( member_set_set_a @ X3 @ M3 )
         => ! [Y3: set_set_a] :
              ( ( member_set_set_a @ Y3 @ M3 )
             => ( ( ord_le3724670747650509150_set_a @ X3 @ Y3 )
               => ( ord_less_eq_set_a @ ( Mu @ X3 ) @ ( Mu @ Y3 ) ) ) ) ) ) ) ).

% increasing_def
thf(fact_177_increasingD,axiom,
    ! [M2: set_set_a,F: set_a > real,X5: set_a,Y4: set_a] :
      ( ( measur1776380161843274167a_real @ M2 @ F )
     => ( ( ord_less_eq_set_a @ X5 @ Y4 )
       => ( ( member_set_a @ X5 @ M2 )
         => ( ( member_set_a @ Y4 @ M2 )
           => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_178_increasingD,axiom,
    ! [M2: set_set_a,F: set_a > nat,X5: set_a,Y4: set_a] :
      ( ( measur8151441426001876059_a_nat @ M2 @ F )
     => ( ( ord_less_eq_set_a @ X5 @ Y4 )
       => ( ( member_set_a @ X5 @ M2 )
         => ( ( member_set_a @ Y4 @ M2 )
           => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_179_increasingD,axiom,
    ! [M2: set_set_a,F: set_a > int,X5: set_a,Y4: set_a] :
      ( ( measur8148950955492825783_a_int @ M2 @ F )
     => ( ( ord_less_eq_set_a @ X5 @ Y4 )
       => ( ( member_set_a @ X5 @ M2 )
         => ( ( member_set_a @ Y4 @ M2 )
           => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_180_increasingD,axiom,
    ! [M2: set_set_set_b,F: set_set_b > nat,X5: set_set_b,Y4: set_set_b] :
      ( ( measur6841170515247421756_b_nat @ M2 @ F )
     => ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
       => ( ( member_set_set_b @ X5 @ M2 )
         => ( ( member_set_set_b @ Y4 @ M2 )
           => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_181_increasingD,axiom,
    ! [M2: set_set_set_b,F: set_set_b > int,X5: set_set_b,Y4: set_set_b] :
      ( ( measur6838680044738371480_b_int @ M2 @ F )
     => ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
       => ( ( member_set_set_b @ X5 @ M2 )
         => ( ( member_set_set_b @ Y4 @ M2 )
           => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_182_increasingD,axiom,
    ! [M2: set_set_set_a,F: set_set_a > nat,X5: set_set_a,Y4: set_set_a] :
      ( ( measur1244951900059291067_a_nat @ M2 @ F )
     => ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
       => ( ( member_set_set_a @ X5 @ M2 )
         => ( ( member_set_set_a @ Y4 @ M2 )
           => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_183_increasingD,axiom,
    ! [M2: set_set_set_a,F: set_set_a > int,X5: set_set_a,Y4: set_set_a] :
      ( ( measur1242461429550240791_a_int @ M2 @ F )
     => ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
       => ( ( member_set_set_a @ X5 @ M2 )
         => ( ( member_set_set_a @ Y4 @ M2 )
           => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_184_increasingD,axiom,
    ! [M2: set_set_a,F: set_a > set_a,X5: set_a,Y4: set_a] :
      ( ( measur7842569353079325843_set_a @ M2 @ F )
     => ( ( ord_less_eq_set_a @ X5 @ Y4 )
       => ( ( member_set_a @ X5 @ M2 )
         => ( ( member_set_a @ Y4 @ M2 )
           => ( ord_less_eq_set_a @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_185_increasingD,axiom,
    ! [M2: set_set_set_b,F: set_set_b > set_a,X5: set_set_b,Y4: set_set_b] :
      ( ( measur6668990528421247474_set_a @ M2 @ F )
     => ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
       => ( ( member_set_set_b @ X5 @ M2 )
         => ( ( member_set_set_b @ Y4 @ M2 )
           => ( ord_less_eq_set_a @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_186_increasingD,axiom,
    ! [M2: set_set_set_a,F: set_set_a > set_a,X5: set_set_a,Y4: set_set_a] :
      ( ( measur5181028491126448947_set_a @ M2 @ F )
     => ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
       => ( ( member_set_set_a @ X5 @ M2 )
         => ( ( member_set_set_a @ Y4 @ M2 )
           => ( ord_less_eq_set_a @ ( F @ X5 ) @ ( F @ Y4 ) ) ) ) ) ) ).

% increasingD
thf(fact_187_measurable__completion,axiom,
    ! [F: a > b,M2: sigma_measure_a,N: sigma_measure_b] :
      ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
     => ( member_a_b @ F @ ( sigma_measurable_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ N ) ) ) ).

% measurable_completion
thf(fact_188_measurable__completion,axiom,
    ! [F: a > a,M2: sigma_measure_a,N: sigma_measure_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
     => ( member_a_a @ F @ ( sigma_measurable_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ N ) ) ) ).

% measurable_completion
thf(fact_189_measurable__comp,axiom,
    ! [F: a > b,M2: sigma_measure_a,N: sigma_measure_b,G2: b > b,L: sigma_measure_b] :
      ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
     => ( ( member_b_b @ G2 @ ( sigma_measurable_b_b @ N @ L ) )
       => ( member_a_b @ ( comp_b_b_a @ G2 @ F ) @ ( sigma_measurable_a_b @ M2 @ L ) ) ) ) ).

% measurable_comp
thf(fact_190_measurable__comp,axiom,
    ! [F: a > b,M2: sigma_measure_a,N: sigma_measure_b,G2: b > a,L: sigma_measure_a] :
      ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
     => ( ( member_b_a @ G2 @ ( sigma_measurable_b_a @ N @ L ) )
       => ( member_a_a @ ( comp_b_a_a @ G2 @ F ) @ ( sigma_measurable_a_a @ M2 @ L ) ) ) ) ).

% measurable_comp
thf(fact_191_measurable__comp,axiom,
    ! [F: a > a,M2: sigma_measure_a,N: sigma_measure_a,G2: a > b,L: sigma_measure_b] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
     => ( ( member_a_b @ G2 @ ( sigma_measurable_a_b @ N @ L ) )
       => ( member_a_b @ ( comp_a_b_a @ G2 @ F ) @ ( sigma_measurable_a_b @ M2 @ L ) ) ) ) ).

% measurable_comp
thf(fact_192_measurable__comp,axiom,
    ! [F: a > a,M2: sigma_measure_a,N: sigma_measure_a,G2: a > a,L: sigma_measure_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
     => ( ( member_a_a @ G2 @ ( sigma_measurable_a_a @ N @ L ) )
       => ( member_a_a @ ( comp_a_a_a @ G2 @ F ) @ ( sigma_measurable_a_a @ M2 @ L ) ) ) ) ).

% measurable_comp
thf(fact_193_sets__A,axiom,
    ! [I3: c] :
      ( ( member_c @ I3 @ i )
     => ( ord_le3795704787696855135_set_b @ ( a2 @ I3 ) @ ( sigma_sets_b @ n ) ) ) ).

% sets_A
thf(fact_194_sets__completionI__sets,axiom,
    ! [A2: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
     => ( member_set_b @ A2 @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) ) ) ).

% sets_completionI_sets
thf(fact_195_sets__completionI__sets,axiom,
    ! [A2: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
     => ( member_set_a @ A2 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ).

% sets_completionI_sets
thf(fact_196_sets__distr,axiom,
    ! [M2: sigma_measure_a,N: sigma_measure_b,F: a > b] :
      ( ( sigma_sets_b @ ( measure_distr_a_b @ M2 @ N @ F ) )
      = ( sigma_sets_b @ N ) ) ).

% sets_distr
thf(fact_197_sets__distr,axiom,
    ! [M2: sigma_measure_a,N: sigma_measure_a,F: a > a] :
      ( ( sigma_sets_a @ ( measure_distr_a_a @ M2 @ N @ F ) )
      = ( sigma_sets_a @ N ) ) ).

% sets_distr
thf(fact_198_sets__eq__iff__bounded,axiom,
    ! [A2: sigma_measure_b,B: sigma_measure_b,C: sigma_measure_b] :
      ( ( ord_le254669799889008988sure_b @ A2 @ B )
     => ( ( ord_le254669799889008988sure_b @ B @ C )
       => ( ( ( sigma_sets_b @ A2 )
            = ( sigma_sets_b @ C ) )
         => ( ( sigma_sets_b @ B )
            = ( sigma_sets_b @ A2 ) ) ) ) ) ).

% sets_eq_iff_bounded
thf(fact_199_sets__eq__iff__bounded,axiom,
    ! [A2: sigma_measure_a,B: sigma_measure_a,C: sigma_measure_a] :
      ( ( ord_le254669795585780187sure_a @ A2 @ B )
     => ( ( ord_le254669795585780187sure_a @ B @ C )
       => ( ( ( sigma_sets_a @ A2 )
            = ( sigma_sets_a @ C ) )
         => ( ( sigma_sets_a @ B )
            = ( sigma_sets_a @ A2 ) ) ) ) ) ).

% sets_eq_iff_bounded
thf(fact_200_measurable__cong__sets,axiom,
    ! [M2: sigma_measure_b,M: sigma_measure_b,N: sigma_measure_b,N3: sigma_measure_b] :
      ( ( ( sigma_sets_b @ M2 )
        = ( sigma_sets_b @ M ) )
     => ( ( ( sigma_sets_b @ N )
          = ( sigma_sets_b @ N3 ) )
       => ( ( sigma_measurable_b_b @ M2 @ N )
          = ( sigma_measurable_b_b @ M @ N3 ) ) ) ) ).

% measurable_cong_sets
thf(fact_201_measurable__cong__sets,axiom,
    ! [M2: sigma_measure_b,M: sigma_measure_b,N: sigma_measure_a,N3: sigma_measure_a] :
      ( ( ( sigma_sets_b @ M2 )
        = ( sigma_sets_b @ M ) )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ N3 ) )
       => ( ( sigma_measurable_b_a @ M2 @ N )
          = ( sigma_measurable_b_a @ M @ N3 ) ) ) ) ).

% measurable_cong_sets
thf(fact_202_measurable__cong__sets,axiom,
    ! [M2: sigma_measure_a,M: sigma_measure_a,N: sigma_measure_b,N3: sigma_measure_b] :
      ( ( ( sigma_sets_a @ M2 )
        = ( sigma_sets_a @ M ) )
     => ( ( ( sigma_sets_b @ N )
          = ( sigma_sets_b @ N3 ) )
       => ( ( sigma_measurable_a_b @ M2 @ N )
          = ( sigma_measurable_a_b @ M @ N3 ) ) ) ) ).

% measurable_cong_sets
thf(fact_203_measurable__cong__sets,axiom,
    ! [M2: sigma_measure_a,M: sigma_measure_a,N: sigma_measure_a,N3: sigma_measure_a] :
      ( ( ( sigma_sets_a @ M2 )
        = ( sigma_sets_a @ M ) )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ N3 ) )
       => ( ( sigma_measurable_a_a @ M2 @ N )
          = ( sigma_measurable_a_a @ M @ N3 ) ) ) ) ).

% measurable_cong_sets
thf(fact_204_nle__le,axiom,
    ! [A: nat,B2: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B2 ) )
      = ( ( ord_less_eq_nat @ B2 @ A )
        & ( B2 != A ) ) ) ).

% nle_le
thf(fact_205_nle__le,axiom,
    ! [A: int,B2: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B2 ) )
      = ( ( ord_less_eq_int @ B2 @ A )
        & ( B2 != A ) ) ) ).

% nle_le
thf(fact_206_le__cases3,axiom,
    ! [X5: nat,Y4: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X5 @ Y4 )
       => ~ ( ord_less_eq_nat @ Y4 @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y4 @ X5 )
         => ~ ( ord_less_eq_nat @ X5 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X5 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y4 ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y4 )
             => ~ ( ord_less_eq_nat @ Y4 @ X5 ) )
           => ( ( ( ord_less_eq_nat @ Y4 @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X5 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X5 )
                 => ~ ( ord_less_eq_nat @ X5 @ Y4 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_207_le__cases3,axiom,
    ! [X5: int,Y4: int,Z: int] :
      ( ( ( ord_less_eq_int @ X5 @ Y4 )
       => ~ ( ord_less_eq_int @ Y4 @ Z ) )
     => ( ( ( ord_less_eq_int @ Y4 @ X5 )
         => ~ ( ord_less_eq_int @ X5 @ Z ) )
       => ( ( ( ord_less_eq_int @ X5 @ Z )
           => ~ ( ord_less_eq_int @ Z @ Y4 ) )
         => ( ( ( ord_less_eq_int @ Z @ Y4 )
             => ~ ( ord_less_eq_int @ Y4 @ X5 ) )
           => ( ( ( ord_less_eq_int @ Y4 @ Z )
               => ~ ( ord_less_eq_int @ Z @ X5 ) )
             => ~ ( ( ord_less_eq_int @ Z @ X5 )
                 => ~ ( ord_less_eq_int @ X5 @ Y4 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_208_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_set_b,Z2: set_set_b] : ( Y5 = Z2 ) )
    = ( ^ [X3: set_set_b,Y3: set_set_b] :
          ( ( ord_le3795704787696855135_set_b @ X3 @ Y3 )
          & ( ord_le3795704787696855135_set_b @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_209_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_set_a,Z2: set_set_a] : ( Y5 = Z2 ) )
    = ( ^ [X3: set_set_a,Y3: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ X3 @ Y3 )
          & ( ord_le3724670747650509150_set_a @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_210_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_a,Z2: set_a] : ( Y5 = Z2 ) )
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( ord_less_eq_set_a @ X3 @ Y3 )
          & ( ord_less_eq_set_a @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_211_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_212_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    = ( ^ [X3: int,Y3: int] :
          ( ( ord_less_eq_int @ X3 @ Y3 )
          & ( ord_less_eq_int @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_213_ord__eq__le__trans,axiom,
    ! [A: set_set_b,B2: set_set_b,C2: set_set_b] :
      ( ( A = B2 )
     => ( ( ord_le3795704787696855135_set_b @ B2 @ C2 )
       => ( ord_le3795704787696855135_set_b @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_214_ord__eq__le__trans,axiom,
    ! [A: set_set_a,B2: set_set_a,C2: set_set_a] :
      ( ( A = B2 )
     => ( ( ord_le3724670747650509150_set_a @ B2 @ C2 )
       => ( ord_le3724670747650509150_set_a @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_215_ord__eq__le__trans,axiom,
    ! [A: set_a,B2: set_a,C2: set_a] :
      ( ( A = B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_216_ord__eq__le__trans,axiom,
    ! [A: nat,B2: nat,C2: nat] :
      ( ( A = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_217_ord__eq__le__trans,axiom,
    ! [A: int,B2: int,C2: int] :
      ( ( A = B2 )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ord_less_eq_int @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_218_ord__le__eq__trans,axiom,
    ! [A: set_set_b,B2: set_set_b,C2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( B2 = C2 )
       => ( ord_le3795704787696855135_set_b @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_219_ord__le__eq__trans,axiom,
    ! [A: set_set_a,B2: set_set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( ( B2 = C2 )
       => ( ord_le3724670747650509150_set_a @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_220_ord__le__eq__trans,axiom,
    ! [A: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( B2 = C2 )
       => ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_221_ord__le__eq__trans,axiom,
    ! [A: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( B2 = C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_222_ord__le__eq__trans,axiom,
    ! [A: int,B2: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( B2 = C2 )
       => ( ord_less_eq_int @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_223_order__antisym,axiom,
    ! [X5: set_set_b,Y4: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
     => ( ( ord_le3795704787696855135_set_b @ Y4 @ X5 )
       => ( X5 = Y4 ) ) ) ).

% order_antisym
thf(fact_224_order__antisym,axiom,
    ! [X5: set_set_a,Y4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
     => ( ( ord_le3724670747650509150_set_a @ Y4 @ X5 )
       => ( X5 = Y4 ) ) ) ).

% order_antisym
thf(fact_225_order__antisym,axiom,
    ! [X5: set_a,Y4: set_a] :
      ( ( ord_less_eq_set_a @ X5 @ Y4 )
     => ( ( ord_less_eq_set_a @ Y4 @ X5 )
       => ( X5 = Y4 ) ) ) ).

% order_antisym
thf(fact_226_order__antisym,axiom,
    ! [X5: nat,Y4: nat] :
      ( ( ord_less_eq_nat @ X5 @ Y4 )
     => ( ( ord_less_eq_nat @ Y4 @ X5 )
       => ( X5 = Y4 ) ) ) ).

% order_antisym
thf(fact_227_order__antisym,axiom,
    ! [X5: int,Y4: int] :
      ( ( ord_less_eq_int @ X5 @ Y4 )
     => ( ( ord_less_eq_int @ Y4 @ X5 )
       => ( X5 = Y4 ) ) ) ).

% order_antisym
thf(fact_228_order_Otrans,axiom,
    ! [A: set_set_b,B2: set_set_b,C2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( ord_le3795704787696855135_set_b @ B2 @ C2 )
       => ( ord_le3795704787696855135_set_b @ A @ C2 ) ) ) ).

% order.trans
thf(fact_229_order_Otrans,axiom,
    ! [A: set_set_a,B2: set_set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( ( ord_le3724670747650509150_set_a @ B2 @ C2 )
       => ( ord_le3724670747650509150_set_a @ A @ C2 ) ) ) ).

% order.trans
thf(fact_230_order_Otrans,axiom,
    ! [A: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% order.trans
thf(fact_231_order_Otrans,axiom,
    ! [A: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% order.trans
thf(fact_232_order_Otrans,axiom,
    ! [A: int,B2: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ord_less_eq_int @ A @ C2 ) ) ) ).

% order.trans
thf(fact_233_order__trans,axiom,
    ! [X5: set_set_b,Y4: set_set_b,Z: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
     => ( ( ord_le3795704787696855135_set_b @ Y4 @ Z )
       => ( ord_le3795704787696855135_set_b @ X5 @ Z ) ) ) ).

% order_trans
thf(fact_234_order__trans,axiom,
    ! [X5: set_set_a,Y4: set_set_a,Z: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
     => ( ( ord_le3724670747650509150_set_a @ Y4 @ Z )
       => ( ord_le3724670747650509150_set_a @ X5 @ Z ) ) ) ).

% order_trans
thf(fact_235_order__trans,axiom,
    ! [X5: set_a,Y4: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X5 @ Y4 )
     => ( ( ord_less_eq_set_a @ Y4 @ Z )
       => ( ord_less_eq_set_a @ X5 @ Z ) ) ) ).

% order_trans
thf(fact_236_order__trans,axiom,
    ! [X5: nat,Y4: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X5 @ Y4 )
     => ( ( ord_less_eq_nat @ Y4 @ Z )
       => ( ord_less_eq_nat @ X5 @ Z ) ) ) ).

% order_trans
thf(fact_237_order__trans,axiom,
    ! [X5: int,Y4: int,Z: int] :
      ( ( ord_less_eq_int @ X5 @ Y4 )
     => ( ( ord_less_eq_int @ Y4 @ Z )
       => ( ord_less_eq_int @ X5 @ Z ) ) ) ).

% order_trans
thf(fact_238_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B2: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat,B3: nat] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A @ B2 ) ) ) ).

% linorder_wlog
thf(fact_239_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B2: int] :
      ( ! [A3: int,B3: int] :
          ( ( ord_less_eq_int @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: int,B3: int] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A @ B2 ) ) ) ).

% linorder_wlog
thf(fact_240_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_set_b,Z2: set_set_b] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_set_b,B4: set_set_b] :
          ( ( ord_le3795704787696855135_set_b @ B4 @ A4 )
          & ( ord_le3795704787696855135_set_b @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_241_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_set_a,Z2: set_set_a] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_set_a,B4: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ B4 @ A4 )
          & ( ord_le3724670747650509150_set_a @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_242_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_a,Z2: set_a] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ B4 @ A4 )
          & ( ord_less_eq_set_a @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_243_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_244_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ( ord_less_eq_int @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_245_dual__order_Oantisym,axiom,
    ! [B2: set_set_b,A: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ B2 @ A )
     => ( ( ord_le3795704787696855135_set_b @ A @ B2 )
       => ( A = B2 ) ) ) ).

% dual_order.antisym
thf(fact_246_dual__order_Oantisym,axiom,
    ! [B2: set_set_a,A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B2 @ A )
     => ( ( ord_le3724670747650509150_set_a @ A @ B2 )
       => ( A = B2 ) ) ) ).

% dual_order.antisym
thf(fact_247_dual__order_Oantisym,axiom,
    ! [B2: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A )
     => ( ( ord_less_eq_set_a @ A @ B2 )
       => ( A = B2 ) ) ) ).

% dual_order.antisym
thf(fact_248_dual__order_Oantisym,axiom,
    ! [B2: nat,A: nat] :
      ( ( ord_less_eq_nat @ B2 @ A )
     => ( ( ord_less_eq_nat @ A @ B2 )
       => ( A = B2 ) ) ) ).

% dual_order.antisym
thf(fact_249_dual__order_Oantisym,axiom,
    ! [B2: int,A: int] :
      ( ( ord_less_eq_int @ B2 @ A )
     => ( ( ord_less_eq_int @ A @ B2 )
       => ( A = B2 ) ) ) ).

% dual_order.antisym
thf(fact_250_dual__order_Otrans,axiom,
    ! [B2: set_set_b,A: set_set_b,C2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ B2 @ A )
     => ( ( ord_le3795704787696855135_set_b @ C2 @ B2 )
       => ( ord_le3795704787696855135_set_b @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_251_dual__order_Otrans,axiom,
    ! [B2: set_set_a,A: set_set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B2 @ A )
     => ( ( ord_le3724670747650509150_set_a @ C2 @ B2 )
       => ( ord_le3724670747650509150_set_a @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_252_dual__order_Otrans,axiom,
    ! [B2: set_a,A: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A )
     => ( ( ord_less_eq_set_a @ C2 @ B2 )
       => ( ord_less_eq_set_a @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_253_dual__order_Otrans,axiom,
    ! [B2: nat,A: nat,C2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A )
     => ( ( ord_less_eq_nat @ C2 @ B2 )
       => ( ord_less_eq_nat @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_254_dual__order_Otrans,axiom,
    ! [B2: int,A: int,C2: int] :
      ( ( ord_less_eq_int @ B2 @ A )
     => ( ( ord_less_eq_int @ C2 @ B2 )
       => ( ord_less_eq_int @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_255_antisym,axiom,
    ! [A: set_set_b,B2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( ord_le3795704787696855135_set_b @ B2 @ A )
       => ( A = B2 ) ) ) ).

% antisym
thf(fact_256_antisym,axiom,
    ! [A: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( ( ord_le3724670747650509150_set_a @ B2 @ A )
       => ( A = B2 ) ) ) ).

% antisym
thf(fact_257_antisym,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ A )
       => ( A = B2 ) ) ) ).

% antisym
thf(fact_258_antisym,axiom,
    ! [A: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A )
       => ( A = B2 ) ) ) ).

% antisym
thf(fact_259_antisym,axiom,
    ! [A: int,B2: int] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ord_less_eq_int @ B2 @ A )
       => ( A = B2 ) ) ) ).

% antisym
thf(fact_260_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_set_b,Z2: set_set_b] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_set_b,B4: set_set_b] :
          ( ( ord_le3795704787696855135_set_b @ A4 @ B4 )
          & ( ord_le3795704787696855135_set_b @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_261_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_set_a,Z2: set_set_a] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_set_a,B4: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ A4 @ B4 )
          & ( ord_le3724670747650509150_set_a @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_262_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_a,Z2: set_a] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_263_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_264_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ( ord_less_eq_int @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_265_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_266_order__subst1,axiom,
    ! [A: nat,F: int > nat,B2: int,C2: int] :
      ( ( ord_less_eq_nat @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_267_order__subst1,axiom,
    ! [A: int,F: nat > int,B2: nat,C2: nat] :
      ( ( ord_less_eq_int @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_268_order__subst1,axiom,
    ! [A: int,F: int > int,B2: int,C2: int] :
      ( ( ord_less_eq_int @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_269_order__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B2: nat,C2: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_270_order__subst1,axiom,
    ! [A: set_a,F: int > set_a,B2: int,C2: int] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_271_order__subst1,axiom,
    ! [A: nat,F: set_a > nat,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ! [X4: set_a,Y6: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_272_order__subst1,axiom,
    ! [A: int,F: set_a > int,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_int @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ! [X4: set_a,Y6: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_273_order__subst1,axiom,
    ! [A: set_set_b,F: nat > set_set_b,B2: nat,C2: nat] :
      ( ( ord_le3795704787696855135_set_b @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_le3795704787696855135_set_b @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_le3795704787696855135_set_b @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_274_order__subst1,axiom,
    ! [A: set_set_b,F: int > set_set_b,B2: int,C2: int] :
      ( ( ord_le3795704787696855135_set_b @ A @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_le3795704787696855135_set_b @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_le3795704787696855135_set_b @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_275_order__subst2,axiom,
    ! [A: nat,B2: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_276_order__subst2,axiom,
    ! [A: nat,B2: nat,F: nat > int,C2: int] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_277_order__subst2,axiom,
    ! [A: int,B2: int,F: int > nat,C2: nat] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_278_order__subst2,axiom,
    ! [A: int,B2: int,F: int > int,C2: int] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_279_order__subst2,axiom,
    ! [A: set_a,B2: set_a,F: set_a > nat,C2: nat] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X4: set_a,Y6: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_280_order__subst2,axiom,
    ! [A: set_a,B2: set_a,F: set_a > int,C2: int] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C2 )
       => ( ! [X4: set_a,Y6: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_281_order__subst2,axiom,
    ! [A: nat,B2: nat,F: nat > set_a,C2: set_a] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ord_less_eq_set_a @ ( F @ B2 ) @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_282_order__subst2,axiom,
    ! [A: int,B2: int,F: int > set_a,C2: set_a] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ord_less_eq_set_a @ ( F @ B2 ) @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_283_order__subst2,axiom,
    ! [A: set_set_b,B2: set_set_b,F: set_set_b > nat,C2: nat] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X4: set_set_b,Y6: set_set_b] :
              ( ( ord_le3795704787696855135_set_b @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_284_order__subst2,axiom,
    ! [A: set_set_b,B2: set_set_b,F: set_set_b > int,C2: int] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C2 )
       => ( ! [X4: set_set_b,Y6: set_set_b] :
              ( ( ord_le3795704787696855135_set_b @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_285_order__eq__refl,axiom,
    ! [X5: set_set_b,Y4: set_set_b] :
      ( ( X5 = Y4 )
     => ( ord_le3795704787696855135_set_b @ X5 @ Y4 ) ) ).

% order_eq_refl
thf(fact_286_order__eq__refl,axiom,
    ! [X5: set_set_a,Y4: set_set_a] :
      ( ( X5 = Y4 )
     => ( ord_le3724670747650509150_set_a @ X5 @ Y4 ) ) ).

% order_eq_refl
thf(fact_287_order__eq__refl,axiom,
    ! [X5: set_a,Y4: set_a] :
      ( ( X5 = Y4 )
     => ( ord_less_eq_set_a @ X5 @ Y4 ) ) ).

% order_eq_refl
thf(fact_288_order__eq__refl,axiom,
    ! [X5: nat,Y4: nat] :
      ( ( X5 = Y4 )
     => ( ord_less_eq_nat @ X5 @ Y4 ) ) ).

% order_eq_refl
thf(fact_289_order__eq__refl,axiom,
    ! [X5: int,Y4: int] :
      ( ( X5 = Y4 )
     => ( ord_less_eq_int @ X5 @ Y4 ) ) ).

% order_eq_refl
thf(fact_290_linorder__linear,axiom,
    ! [X5: nat,Y4: nat] :
      ( ( ord_less_eq_nat @ X5 @ Y4 )
      | ( ord_less_eq_nat @ Y4 @ X5 ) ) ).

% linorder_linear
thf(fact_291_linorder__linear,axiom,
    ! [X5: int,Y4: int] :
      ( ( ord_less_eq_int @ X5 @ Y4 )
      | ( ord_less_eq_int @ Y4 @ X5 ) ) ).

% linorder_linear
thf(fact_292_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B2: nat,C2: nat] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_293_ord__eq__le__subst,axiom,
    ! [A: int,F: nat > int,B2: nat,C2: nat] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_294_ord__eq__le__subst,axiom,
    ! [A: nat,F: int > nat,B2: int,C2: int] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_295_ord__eq__le__subst,axiom,
    ! [A: int,F: int > int,B2: int,C2: int] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_296_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_a > nat,B2: set_a,C2: set_a] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ! [X4: set_a,Y6: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_297_ord__eq__le__subst,axiom,
    ! [A: int,F: set_a > int,B2: set_a,C2: set_a] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ! [X4: set_a,Y6: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_298_ord__eq__le__subst,axiom,
    ! [A: set_a,F: nat > set_a,B2: nat,C2: nat] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_299_ord__eq__le__subst,axiom,
    ! [A: set_a,F: int > set_a,B2: int,C2: int] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_300_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_set_b > nat,B2: set_set_b,C2: set_set_b] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_le3795704787696855135_set_b @ B2 @ C2 )
       => ( ! [X4: set_set_b,Y6: set_set_b] :
              ( ( ord_le3795704787696855135_set_b @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_301_ord__eq__le__subst,axiom,
    ! [A: int,F: set_set_b > int,B2: set_set_b,C2: set_set_b] :
      ( ( A
        = ( F @ B2 ) )
     => ( ( ord_le3795704787696855135_set_b @ B2 @ C2 )
       => ( ! [X4: set_set_b,Y6: set_set_b] :
              ( ( ord_le3795704787696855135_set_b @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_302_ord__le__eq__subst,axiom,
    ! [A: nat,B2: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_303_ord__le__eq__subst,axiom,
    ! [A: nat,B2: nat,F: nat > int,C2: int] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_304_ord__le__eq__subst,axiom,
    ! [A: int,B2: int,F: int > nat,C2: nat] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_305_ord__le__eq__subst,axiom,
    ! [A: int,B2: int,F: int > int,C2: int] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_306_ord__le__eq__subst,axiom,
    ! [A: set_a,B2: set_a,F: set_a > nat,C2: nat] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: set_a,Y6: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_307_ord__le__eq__subst,axiom,
    ! [A: set_a,B2: set_a,F: set_a > int,C2: int] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: set_a,Y6: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_308_ord__le__eq__subst,axiom,
    ! [A: nat,B2: nat,F: nat > set_a,C2: set_a] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_309_ord__le__eq__subst,axiom,
    ! [A: int,B2: int,F: int > set_a,C2: set_a] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: int,Y6: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_310_ord__le__eq__subst,axiom,
    ! [A: set_set_b,B2: set_set_b,F: set_set_b > nat,C2: nat] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: set_set_b,Y6: set_set_b] :
              ( ( ord_le3795704787696855135_set_b @ X4 @ Y6 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_311_ord__le__eq__subst,axiom,
    ! [A: set_set_b,B2: set_set_b,F: set_set_b > int,C2: int] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X4: set_set_b,Y6: set_set_b] :
              ( ( ord_le3795704787696855135_set_b @ X4 @ Y6 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y6 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_312_linorder__le__cases,axiom,
    ! [X5: nat,Y4: nat] :
      ( ~ ( ord_less_eq_nat @ X5 @ Y4 )
     => ( ord_less_eq_nat @ Y4 @ X5 ) ) ).

% linorder_le_cases
thf(fact_313_linorder__le__cases,axiom,
    ! [X5: int,Y4: int] :
      ( ~ ( ord_less_eq_int @ X5 @ Y4 )
     => ( ord_less_eq_int @ Y4 @ X5 ) ) ).

% linorder_le_cases
thf(fact_314_order__antisym__conv,axiom,
    ! [Y4: set_set_b,X5: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ Y4 @ X5 )
     => ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
        = ( X5 = Y4 ) ) ) ).

% order_antisym_conv
thf(fact_315_order__antisym__conv,axiom,
    ! [Y4: set_set_a,X5: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ Y4 @ X5 )
     => ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
        = ( X5 = Y4 ) ) ) ).

% order_antisym_conv
thf(fact_316_order__antisym__conv,axiom,
    ! [Y4: set_a,X5: set_a] :
      ( ( ord_less_eq_set_a @ Y4 @ X5 )
     => ( ( ord_less_eq_set_a @ X5 @ Y4 )
        = ( X5 = Y4 ) ) ) ).

% order_antisym_conv
thf(fact_317_order__antisym__conv,axiom,
    ! [Y4: nat,X5: nat] :
      ( ( ord_less_eq_nat @ Y4 @ X5 )
     => ( ( ord_less_eq_nat @ X5 @ Y4 )
        = ( X5 = Y4 ) ) ) ).

% order_antisym_conv
thf(fact_318_order__antisym__conv,axiom,
    ! [Y4: int,X5: int] :
      ( ( ord_less_eq_int @ Y4 @ X5 )
     => ( ( ord_less_eq_int @ X5 @ Y4 )
        = ( X5 = Y4 ) ) ) ).

% order_antisym_conv
thf(fact_319_in__mono,axiom,
    ! [A2: set_a_b,B: set_a_b,X5: a > b] :
      ( ( ord_less_eq_set_a_b @ A2 @ B )
     => ( ( member_a_b @ X5 @ A2 )
       => ( member_a_b @ X5 @ B ) ) ) ).

% in_mono
thf(fact_320_in__mono,axiom,
    ! [A2: set_c,B: set_c,X5: c] :
      ( ( ord_less_eq_set_c @ A2 @ B )
     => ( ( member_c @ X5 @ A2 )
       => ( member_c @ X5 @ B ) ) ) ).

% in_mono
thf(fact_321_in__mono,axiom,
    ! [A2: set_a_a,B: set_a_a,X5: a > a] :
      ( ( ord_less_eq_set_a_a @ A2 @ B )
     => ( ( member_a_a @ X5 @ A2 )
       => ( member_a_a @ X5 @ B ) ) ) ).

% in_mono
thf(fact_322_in__mono,axiom,
    ! [A2: set_o,B: set_o,X5: $o] :
      ( ( ord_less_eq_set_o @ A2 @ B )
     => ( ( member_o @ X5 @ A2 )
       => ( member_o @ X5 @ B ) ) ) ).

% in_mono
thf(fact_323_in__mono,axiom,
    ! [A2: set_nat,B: set_nat,X5: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B )
     => ( ( member_nat @ X5 @ A2 )
       => ( member_nat @ X5 @ B ) ) ) ).

% in_mono
thf(fact_324_in__mono,axiom,
    ! [A2: set_set_b,B: set_set_b,X5: set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( member_set_b @ X5 @ A2 )
       => ( member_set_b @ X5 @ B ) ) ) ).

% in_mono
thf(fact_325_in__mono,axiom,
    ! [A2: set_set_a,B: set_set_a,X5: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( member_set_a @ X5 @ A2 )
       => ( member_set_a @ X5 @ B ) ) ) ).

% in_mono
thf(fact_326_in__mono,axiom,
    ! [A2: set_a,B: set_a,X5: a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( member_a @ X5 @ A2 )
       => ( member_a @ X5 @ B ) ) ) ).

% in_mono
thf(fact_327_subsetD,axiom,
    ! [A2: set_a_b,B: set_a_b,C2: a > b] :
      ( ( ord_less_eq_set_a_b @ A2 @ B )
     => ( ( member_a_b @ C2 @ A2 )
       => ( member_a_b @ C2 @ B ) ) ) ).

% subsetD
thf(fact_328_subsetD,axiom,
    ! [A2: set_c,B: set_c,C2: c] :
      ( ( ord_less_eq_set_c @ A2 @ B )
     => ( ( member_c @ C2 @ A2 )
       => ( member_c @ C2 @ B ) ) ) ).

% subsetD
thf(fact_329_subsetD,axiom,
    ! [A2: set_a_a,B: set_a_a,C2: a > a] :
      ( ( ord_less_eq_set_a_a @ A2 @ B )
     => ( ( member_a_a @ C2 @ A2 )
       => ( member_a_a @ C2 @ B ) ) ) ).

% subsetD
thf(fact_330_subsetD,axiom,
    ! [A2: set_o,B: set_o,C2: $o] :
      ( ( ord_less_eq_set_o @ A2 @ B )
     => ( ( member_o @ C2 @ A2 )
       => ( member_o @ C2 @ B ) ) ) ).

% subsetD
thf(fact_331_subsetD,axiom,
    ! [A2: set_nat,B: set_nat,C2: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B )
     => ( ( member_nat @ C2 @ A2 )
       => ( member_nat @ C2 @ B ) ) ) ).

% subsetD
thf(fact_332_subsetD,axiom,
    ! [A2: set_set_b,B: set_set_b,C2: set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( member_set_b @ C2 @ A2 )
       => ( member_set_b @ C2 @ B ) ) ) ).

% subsetD
thf(fact_333_subsetD,axiom,
    ! [A2: set_set_a,B: set_set_a,C2: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( member_set_a @ C2 @ A2 )
       => ( member_set_a @ C2 @ B ) ) ) ).

% subsetD
thf(fact_334_subsetD,axiom,
    ! [A2: set_a,B: set_a,C2: a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( member_a @ C2 @ A2 )
       => ( member_a @ C2 @ B ) ) ) ).

% subsetD
thf(fact_335_equalityE,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ( A2 = B )
     => ~ ( ( ord_le3795704787696855135_set_b @ A2 @ B )
         => ~ ( ord_le3795704787696855135_set_b @ B @ A2 ) ) ) ).

% equalityE
thf(fact_336_equalityE,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( A2 = B )
     => ~ ( ( ord_le3724670747650509150_set_a @ A2 @ B )
         => ~ ( ord_le3724670747650509150_set_a @ B @ A2 ) ) ) ).

% equalityE
thf(fact_337_equalityE,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( A2 = B )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B )
         => ~ ( ord_less_eq_set_a @ B @ A2 ) ) ) ).

% equalityE
thf(fact_338_subset__eq,axiom,
    ( ord_less_eq_set_a_b
    = ( ^ [A5: set_a_b,B5: set_a_b] :
        ! [X3: a > b] :
          ( ( member_a_b @ X3 @ A5 )
         => ( member_a_b @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_339_subset__eq,axiom,
    ( ord_less_eq_set_c
    = ( ^ [A5: set_c,B5: set_c] :
        ! [X3: c] :
          ( ( member_c @ X3 @ A5 )
         => ( member_c @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_340_subset__eq,axiom,
    ( ord_less_eq_set_a_a
    = ( ^ [A5: set_a_a,B5: set_a_a] :
        ! [X3: a > a] :
          ( ( member_a_a @ X3 @ A5 )
         => ( member_a_a @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_341_subset__eq,axiom,
    ( ord_less_eq_set_o
    = ( ^ [A5: set_o,B5: set_o] :
        ! [X3: $o] :
          ( ( member_o @ X3 @ A5 )
         => ( member_o @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_342_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ A5 )
         => ( member_nat @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_343_subset__eq,axiom,
    ( ord_le3795704787696855135_set_b
    = ( ^ [A5: set_set_b,B5: set_set_b] :
        ! [X3: set_b] :
          ( ( member_set_b @ X3 @ A5 )
         => ( member_set_b @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_344_subset__eq,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A5: set_set_a,B5: set_set_a] :
        ! [X3: set_a] :
          ( ( member_set_a @ X3 @ A5 )
         => ( member_set_a @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_345_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
        ! [X3: a] :
          ( ( member_a @ X3 @ A5 )
         => ( member_a @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_346_equalityD1,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ( A2 = B )
     => ( ord_le3795704787696855135_set_b @ A2 @ B ) ) ).

% equalityD1
thf(fact_347_equalityD1,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( A2 = B )
     => ( ord_le3724670747650509150_set_a @ A2 @ B ) ) ).

% equalityD1
thf(fact_348_equalityD1,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( A2 = B )
     => ( ord_less_eq_set_a @ A2 @ B ) ) ).

% equalityD1
thf(fact_349_equalityD2,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ( A2 = B )
     => ( ord_le3795704787696855135_set_b @ B @ A2 ) ) ).

% equalityD2
thf(fact_350_equalityD2,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( A2 = B )
     => ( ord_le3724670747650509150_set_a @ B @ A2 ) ) ).

% equalityD2
thf(fact_351_equalityD2,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( A2 = B )
     => ( ord_less_eq_set_a @ B @ A2 ) ) ).

% equalityD2
thf(fact_352_subset__iff,axiom,
    ( ord_less_eq_set_a_b
    = ( ^ [A5: set_a_b,B5: set_a_b] :
        ! [T2: a > b] :
          ( ( member_a_b @ T2 @ A5 )
         => ( member_a_b @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_353_subset__iff,axiom,
    ( ord_less_eq_set_c
    = ( ^ [A5: set_c,B5: set_c] :
        ! [T2: c] :
          ( ( member_c @ T2 @ A5 )
         => ( member_c @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_354_subset__iff,axiom,
    ( ord_less_eq_set_a_a
    = ( ^ [A5: set_a_a,B5: set_a_a] :
        ! [T2: a > a] :
          ( ( member_a_a @ T2 @ A5 )
         => ( member_a_a @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_355_subset__iff,axiom,
    ( ord_less_eq_set_o
    = ( ^ [A5: set_o,B5: set_o] :
        ! [T2: $o] :
          ( ( member_o @ T2 @ A5 )
         => ( member_o @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_356_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
        ! [T2: nat] :
          ( ( member_nat @ T2 @ A5 )
         => ( member_nat @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_357_subset__iff,axiom,
    ( ord_le3795704787696855135_set_b
    = ( ^ [A5: set_set_b,B5: set_set_b] :
        ! [T2: set_b] :
          ( ( member_set_b @ T2 @ A5 )
         => ( member_set_b @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_358_subset__iff,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A5: set_set_a,B5: set_set_a] :
        ! [T2: set_a] :
          ( ( member_set_a @ T2 @ A5 )
         => ( member_set_a @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_359_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
        ! [T2: a] :
          ( ( member_a @ T2 @ A5 )
         => ( member_a @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_360_subset__refl,axiom,
    ! [A2: set_set_b] : ( ord_le3795704787696855135_set_b @ A2 @ A2 ) ).

% subset_refl
thf(fact_361_subset__refl,axiom,
    ! [A2: set_set_a] : ( ord_le3724670747650509150_set_a @ A2 @ A2 ) ).

% subset_refl
thf(fact_362_subset__refl,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).

% subset_refl
thf(fact_363_Collect__mono,axiom,
    ! [P: set_b > $o,Q: set_b > $o] :
      ( ! [X4: set_b] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_le3795704787696855135_set_b @ ( collect_set_b @ P ) @ ( collect_set_b @ Q ) ) ) ).

% Collect_mono
thf(fact_364_Collect__mono,axiom,
    ! [P: set_a > $o,Q: set_a > $o] :
      ( ! [X4: set_a] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_le3724670747650509150_set_a @ ( collect_set_a @ P ) @ ( collect_set_a @ Q ) ) ) ).

% Collect_mono
thf(fact_365_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X4: a] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_366_subset__trans,axiom,
    ! [A2: set_set_b,B: set_set_b,C: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( ord_le3795704787696855135_set_b @ B @ C )
       => ( ord_le3795704787696855135_set_b @ A2 @ C ) ) ) ).

% subset_trans
thf(fact_367_subset__trans,axiom,
    ! [A2: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( ord_le3724670747650509150_set_a @ B @ C )
       => ( ord_le3724670747650509150_set_a @ A2 @ C ) ) ) ).

% subset_trans
thf(fact_368_subset__trans,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A2 @ C ) ) ) ).

% subset_trans
thf(fact_369_set__eq__subset,axiom,
    ( ( ^ [Y5: set_set_b,Z2: set_set_b] : ( Y5 = Z2 ) )
    = ( ^ [A5: set_set_b,B5: set_set_b] :
          ( ( ord_le3795704787696855135_set_b @ A5 @ B5 )
          & ( ord_le3795704787696855135_set_b @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_370_set__eq__subset,axiom,
    ( ( ^ [Y5: set_set_a,Z2: set_set_a] : ( Y5 = Z2 ) )
    = ( ^ [A5: set_set_a,B5: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ A5 @ B5 )
          & ( ord_le3724670747650509150_set_a @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_371_set__eq__subset,axiom,
    ( ( ^ [Y5: set_a,Z2: set_a] : ( Y5 = Z2 ) )
    = ( ^ [A5: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ A5 @ B5 )
          & ( ord_less_eq_set_a @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_372_Collect__mono__iff,axiom,
    ! [P: set_b > $o,Q: set_b > $o] :
      ( ( ord_le3795704787696855135_set_b @ ( collect_set_b @ P ) @ ( collect_set_b @ Q ) )
      = ( ! [X3: set_b] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_373_Collect__mono__iff,axiom,
    ! [P: set_a > $o,Q: set_a > $o] :
      ( ( ord_le3724670747650509150_set_a @ ( collect_set_a @ P ) @ ( collect_set_a @ Q ) )
      = ( ! [X3: set_a] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_374_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X3: a] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_375_prob__space_Otail__events__sets,axiom,
    ! [M2: sigma_measure_b,A2: nat > set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ! [I2: nat] : ( ord_le3795704787696855135_set_b @ ( A2 @ I2 ) @ ( sigma_sets_b @ M2 ) )
       => ( ord_le3795704787696855135_set_b @ ( indepe8773861029005768663_b_nat @ M2 @ A2 ) @ ( sigma_sets_b @ M2 ) ) ) ) ).

% prob_space.tail_events_sets
thf(fact_376_prob__space_Otail__events__sets,axiom,
    ! [M2: sigma_measure_a,A2: nat > set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ! [I2: nat] : ( ord_le3724670747650509150_set_a @ ( A2 @ I2 ) @ ( sigma_sets_a @ M2 ) )
       => ( ord_le3724670747650509150_set_a @ ( indepe7538416700049374166_a_nat @ M2 @ A2 ) @ ( sigma_sets_a @ M2 ) ) ) ) ).

% prob_space.tail_events_sets
thf(fact_377_subprob__space_Ointro,axiom,
    ! [M2: sigma_measure_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( giry_s1767857069175831631ioms_a @ M2 )
       => ( giry_subprob_space_a @ M2 ) ) ) ).

% subprob_space.intro
thf(fact_378_subprob__space_Ointro,axiom,
    ! [M2: sigma_measure_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( giry_s1767857069175831632ioms_b @ M2 )
       => ( giry_subprob_space_b @ M2 ) ) ) ).

% subprob_space.intro
thf(fact_379_subprob__space__def,axiom,
    ( giry_subprob_space_a
    = ( ^ [M3: sigma_measure_a] :
          ( ( measur930452917991658466sure_a @ M3 )
          & ( giry_s1767857069175831631ioms_a @ M3 ) ) ) ) ).

% subprob_space_def
thf(fact_380_subprob__space__def,axiom,
    ( giry_subprob_space_b
    = ( ^ [M3: sigma_measure_b] :
          ( ( measur930452917991658467sure_b @ M3 )
          & ( giry_s1767857069175831632ioms_b @ M3 ) ) ) ) ).

% subprob_space_def
thf(fact_381_finite__measure_Ointro,axiom,
    ! [M2: sigma_measure_b] :
      ( ( measur4308613598931908896sure_b @ M2 )
     => ( ( measur2595372213310369024ioms_b @ M2 )
       => ( measur930452917991658467sure_b @ M2 ) ) ) ).

% finite_measure.intro
thf(fact_382_finite__measure_Ointro,axiom,
    ! [M2: sigma_measure_a] :
      ( ( measur4308613598931908895sure_a @ M2 )
     => ( ( measur2595372213310369023ioms_a @ M2 )
       => ( measur930452917991658466sure_a @ M2 ) ) ) ).

% finite_measure.intro
thf(fact_383_finite__measure__def,axiom,
    ( measur930452917991658467sure_b
    = ( ^ [M3: sigma_measure_b] :
          ( ( measur4308613598931908896sure_b @ M3 )
          & ( measur2595372213310369024ioms_b @ M3 ) ) ) ) ).

% finite_measure_def
thf(fact_384_finite__measure__def,axiom,
    ( measur930452917991658466sure_a
    = ( ^ [M3: sigma_measure_a] :
          ( ( measur4308613598931908895sure_a @ M3 )
          & ( measur2595372213310369023ioms_a @ M3 ) ) ) ) ).

% finite_measure_def
thf(fact_385_prob__space__def,axiom,
    ( probab7247484486040049090pace_b
    = ( ^ [M3: sigma_measure_b] :
          ( ( measur930452917991658467sure_b @ M3 )
          & ( probab8302655048591552735ioms_b @ M3 ) ) ) ) ).

% prob_space_def
thf(fact_386_prob__space__def,axiom,
    ( probab7247484486040049089pace_a
    = ( ^ [M3: sigma_measure_a] :
          ( ( measur930452917991658466sure_a @ M3 )
          & ( probab8302655048591552734ioms_a @ M3 ) ) ) ) ).

% prob_space_def
thf(fact_387_prob__space_Ointro,axiom,
    ! [M2: sigma_measure_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( probab8302655048591552735ioms_b @ M2 )
       => ( probab7247484486040049090pace_b @ M2 ) ) ) ).

% prob_space.intro
thf(fact_388_prob__space_Ointro,axiom,
    ! [M2: sigma_measure_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( probab8302655048591552734ioms_a @ M2 )
       => ( probab7247484486040049089pace_a @ M2 ) ) ) ).

% prob_space.intro
thf(fact_389_prob__space_Oindep__setD__ev2,axiom,
    ! [M2: sigma_measure_b,A2: set_set_b,B: set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe2041756565122539607_set_b @ M2 @ A2 @ B )
       => ( ord_le3795704787696855135_set_b @ B @ ( sigma_sets_b @ M2 ) ) ) ) ).

% prob_space.indep_setD_ev2
thf(fact_390_prob__space_Oindep__setD__ev2,axiom,
    ! [M2: sigma_measure_a,A2: set_set_a,B: set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2041756565122539606_set_a @ M2 @ A2 @ B )
       => ( ord_le3724670747650509150_set_a @ B @ ( sigma_sets_a @ M2 ) ) ) ) ).

% prob_space.indep_setD_ev2
thf(fact_391_prob__space_Oindep__setD__ev1,axiom,
    ! [M2: sigma_measure_b,A2: set_set_b,B: set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe2041756565122539607_set_b @ M2 @ A2 @ B )
       => ( ord_le3795704787696855135_set_b @ A2 @ ( sigma_sets_b @ M2 ) ) ) ) ).

% prob_space.indep_setD_ev1
thf(fact_392_prob__space_Oindep__setD__ev1,axiom,
    ! [M2: sigma_measure_a,A2: set_set_a,B: set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2041756565122539606_set_a @ M2 @ A2 @ B )
       => ( ord_le3724670747650509150_set_a @ A2 @ ( sigma_sets_a @ M2 ) ) ) ) ).

% prob_space.indep_setD_ev1
thf(fact_393_main__part__sets,axiom,
    ! [S: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ S @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) )
     => ( member_set_b @ ( complete_main_part_b @ M2 @ S ) @ ( sigma_sets_b @ M2 ) ) ) ).

% main_part_sets
thf(fact_394_main__part__sets,axiom,
    ! [S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
     => ( member_set_a @ ( complete_main_part_a @ M2 @ S ) @ ( sigma_sets_a @ M2 ) ) ) ).

% main_part_sets
thf(fact_395_completion_Omeasurable__completion2,axiom,
    ! [F: a > b,M2: sigma_measure_a,N: sigma_measure_b] :
      ( ( member_a_b @ F @ ( sigma_measurable_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ N ) )
     => ( ( ord_le3795704787696855135_set_b @ ( measure_null_sets_b @ N ) @ ( measure_null_sets_b @ ( measure_distr_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ N @ F ) ) )
       => ( member_a_b @ F @ ( sigma_measurable_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ ( comple3428971583294703881tion_b @ N ) ) ) ) ) ).

% completion.measurable_completion2
thf(fact_396_completion_Omeasurable__completion2,axiom,
    ! [F: a > a,M2: sigma_measure_a,N: sigma_measure_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ N ) )
     => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ N @ F ) ) )
       => ( member_a_a @ F @ ( sigma_measurable_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ ( comple3428971583294703880tion_a @ N ) ) ) ) ) ).

% completion.measurable_completion2
thf(fact_397_indep__setD__ev1,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( indepe2041756565122539606_set_a @ m @ A2 @ B )
     => ( ord_le3724670747650509150_set_a @ A2 @ ( sigma_sets_a @ m ) ) ) ).

% indep_setD_ev1
thf(fact_398_indep__setD__ev2,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( indepe2041756565122539606_set_a @ m @ A2 @ B )
     => ( ord_le3724670747650509150_set_a @ B @ ( sigma_sets_a @ m ) ) ) ).

% indep_setD_ev2
thf(fact_399_tail__events__sets,axiom,
    ! [A2: nat > set_set_a] :
      ( ! [I2: nat] : ( ord_le3724670747650509150_set_a @ ( A2 @ I2 ) @ ( sigma_sets_a @ m ) )
     => ( ord_le3724670747650509150_set_a @ ( indepe7538416700049374166_a_nat @ m @ A2 ) @ ( sigma_sets_a @ m ) ) ) ).

% tail_events_sets
thf(fact_400_main__part,axiom,
    ! [S: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ S @ ( sigma_sets_b @ M2 ) )
     => ( ( complete_main_part_b @ M2 @ S )
        = S ) ) ).

% main_part
thf(fact_401_main__part,axiom,
    ! [S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ M2 ) )
     => ( ( complete_main_part_a @ M2 @ S )
        = S ) ) ).

% main_part
thf(fact_402_prob__space_Oindep__set_Ocong,axiom,
    indepe2041756565122539606_set_a = indepe2041756565122539606_set_a ).

% prob_space.indep_set.cong
thf(fact_403_prob__space_Otail__events_Ocong,axiom,
    indepe7538416700049374166_a_nat = indepe7538416700049374166_a_nat ).

% prob_space.tail_events.cong
thf(fact_404_null__setsD2,axiom,
    ! [A2: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ A2 @ ( measure_null_sets_b @ M2 ) )
     => ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) ) ) ).

% null_setsD2
thf(fact_405_null__setsD2,axiom,
    ! [A2: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ A2 @ ( measure_null_sets_a @ M2 ) )
     => ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) ) ) ).

% null_setsD2
thf(fact_406_null__sets__completionI,axiom,
    ! [N: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ N @ ( measure_null_sets_a @ M2 ) )
     => ( member_set_a @ N @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ).

% null_sets_completionI
thf(fact_407_null__sets__subset,axiom,
    ! [B: set_b,M2: sigma_measure_b,A2: set_b] :
      ( ( member_set_b @ B @ ( measure_null_sets_b @ M2 ) )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( ( ord_less_eq_set_b @ A2 @ B )
         => ( member_set_b @ A2 @ ( measure_null_sets_b @ M2 ) ) ) ) ) ).

% null_sets_subset
thf(fact_408_null__sets__subset,axiom,
    ! [B: set_set_b,M2: sigma_measure_set_b,A2: set_set_b] :
      ( ( member_set_set_b @ B @ ( measur1516554132335629586_set_b @ M2 ) )
     => ( ( member_set_set_b @ A2 @ ( sigma_sets_set_b @ M2 ) )
       => ( ( ord_le3795704787696855135_set_b @ A2 @ B )
         => ( member_set_set_b @ A2 @ ( measur1516554132335629586_set_b @ M2 ) ) ) ) ) ).

% null_sets_subset
thf(fact_409_null__sets__subset,axiom,
    ! [B: set_set_a,M2: sigma_measure_set_a,A2: set_set_a] :
      ( ( member_set_set_a @ B @ ( measur1516554128032400785_set_a @ M2 ) )
     => ( ( member_set_set_a @ A2 @ ( sigma_sets_set_a @ M2 ) )
       => ( ( ord_le3724670747650509150_set_a @ A2 @ B )
         => ( member_set_set_a @ A2 @ ( measur1516554128032400785_set_a @ M2 ) ) ) ) ) ).

% null_sets_subset
thf(fact_410_null__sets__subset,axiom,
    ! [B: set_a,M2: sigma_measure_a,A2: set_a] :
      ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( ( ord_less_eq_set_a @ A2 @ B )
         => ( member_set_a @ A2 @ ( measure_null_sets_a @ M2 ) ) ) ) ) ).

% null_sets_subset
thf(fact_411_null__sets__completion__subset,axiom,
    ! [B: set_set_b,A2: set_set_b,M2: sigma_measure_set_b] :
      ( ( ord_le3795704787696855135_set_b @ B @ A2 )
     => ( ( member_set_set_b @ A2 @ ( measur1516554132335629586_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) )
       => ( member_set_set_b @ B @ ( measur1516554132335629586_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) ) ) ) ).

% null_sets_completion_subset
thf(fact_412_null__sets__completion__subset,axiom,
    ! [B: set_set_a,A2: set_set_a,M2: sigma_measure_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ A2 )
     => ( ( member_set_set_a @ A2 @ ( measur1516554128032400785_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) )
       => ( member_set_set_a @ B @ ( measur1516554128032400785_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) ) ) ) ).

% null_sets_completion_subset
thf(fact_413_null__sets__completion__subset,axiom,
    ! [B: set_a,A2: set_a,M2: sigma_measure_a] :
      ( ( ord_less_eq_set_a @ B @ A2 )
     => ( ( member_set_a @ A2 @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
       => ( member_set_a @ B @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ) ).

% null_sets_completion_subset
thf(fact_414_null__sets__completion__iff2,axiom,
    ! [A2: set_set_b,M2: sigma_measure_set_b] :
      ( ( member_set_set_b @ A2 @ ( measur1516554132335629586_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) )
      = ( ? [X3: set_set_b] :
            ( ( member_set_set_b @ X3 @ ( measur1516554132335629586_set_b @ M2 ) )
            & ( ord_le3795704787696855135_set_b @ A2 @ X3 ) ) ) ) ).

% null_sets_completion_iff2
thf(fact_415_null__sets__completion__iff2,axiom,
    ! [A2: set_set_a,M2: sigma_measure_set_a] :
      ( ( member_set_set_a @ A2 @ ( measur1516554128032400785_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) )
      = ( ? [X3: set_set_a] :
            ( ( member_set_set_a @ X3 @ ( measur1516554128032400785_set_a @ M2 ) )
            & ( ord_le3724670747650509150_set_a @ A2 @ X3 ) ) ) ) ).

% null_sets_completion_iff2
thf(fact_416_null__sets__completion__iff2,axiom,
    ! [A2: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ A2 @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
      = ( ? [X3: set_a] :
            ( ( member_set_a @ X3 @ ( measure_null_sets_a @ M2 ) )
            & ( ord_less_eq_set_a @ A2 @ X3 ) ) ) ) ).

% null_sets_completion_iff2
thf(fact_417_completion_Ocomplete2,axiom,
    ! [A2: set_set_b,B: set_set_b,M2: sigma_measure_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( member_set_set_b @ B @ ( measur1516554132335629586_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) )
       => ( member_set_set_b @ A2 @ ( measur1516554132335629586_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) ) ) ) ).

% completion.complete2
thf(fact_418_completion_Ocomplete2,axiom,
    ! [A2: set_set_a,B: set_set_a,M2: sigma_measure_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( member_set_set_a @ B @ ( measur1516554128032400785_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) )
       => ( member_set_set_a @ A2 @ ( measur1516554128032400785_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) ) ) ) ).

% completion.complete2
thf(fact_419_completion_Ocomplete2,axiom,
    ! [A2: set_a,B: set_a,M2: sigma_measure_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( member_set_a @ B @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
       => ( member_set_a @ A2 @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ) ).

% completion.complete2
thf(fact_420_null__sets__completion__iff,axiom,
    ! [N: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ N @ ( sigma_sets_b @ M2 ) )
     => ( ( member_set_b @ N @ ( measure_null_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) )
        = ( member_set_b @ N @ ( measure_null_sets_b @ M2 ) ) ) ) ).

% null_sets_completion_iff
thf(fact_421_null__sets__completion__iff,axiom,
    ! [N: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ N @ ( sigma_sets_a @ M2 ) )
     => ( ( member_set_a @ N @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
        = ( member_set_a @ N @ ( measure_null_sets_a @ M2 ) ) ) ) ).

% null_sets_completion_iff
thf(fact_422_sets__completionI__sub,axiom,
    ! [N3: set_b,M2: sigma_measure_b,N: set_b] :
      ( ( member_set_b @ N3 @ ( measure_null_sets_b @ M2 ) )
     => ( ( ord_less_eq_set_b @ N @ N3 )
       => ( member_set_b @ N @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) ) ) ) ).

% sets_completionI_sub
thf(fact_423_sets__completionI__sub,axiom,
    ! [N3: set_set_b,M2: sigma_measure_set_b,N: set_set_b] :
      ( ( member_set_set_b @ N3 @ ( measur1516554132335629586_set_b @ M2 ) )
     => ( ( ord_le3795704787696855135_set_b @ N @ N3 )
       => ( member_set_set_b @ N @ ( sigma_sets_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) ) ) ) ).

% sets_completionI_sub
thf(fact_424_sets__completionI__sub,axiom,
    ! [N3: set_set_a,M2: sigma_measure_set_a,N: set_set_a] :
      ( ( member_set_set_a @ N3 @ ( measur1516554128032400785_set_a @ M2 ) )
     => ( ( ord_le3724670747650509150_set_a @ N @ N3 )
       => ( member_set_set_a @ N @ ( sigma_sets_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) ) ) ) ).

% sets_completionI_sub
thf(fact_425_sets__completionI__sub,axiom,
    ! [N3: set_a,M2: sigma_measure_a,N: set_a] :
      ( ( member_set_a @ N3 @ ( measure_null_sets_a @ M2 ) )
     => ( ( ord_less_eq_set_a @ N @ N3 )
       => ( member_set_a @ N @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ) ).

% sets_completionI_sub
thf(fact_426_completion_Ocomplete,axiom,
    ! [B: set_b,A2: set_b,M2: sigma_measure_b] :
      ( ( ord_less_eq_set_b @ B @ A2 )
     => ( ( member_set_b @ A2 @ ( measure_null_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) )
       => ( member_set_b @ B @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) ) ) ) ).

% completion.complete
thf(fact_427_completion_Ocomplete,axiom,
    ! [B: set_set_b,A2: set_set_b,M2: sigma_measure_set_b] :
      ( ( ord_le3795704787696855135_set_b @ B @ A2 )
     => ( ( member_set_set_b @ A2 @ ( measur1516554132335629586_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) )
       => ( member_set_set_b @ B @ ( sigma_sets_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) ) ) ) ).

% completion.complete
thf(fact_428_completion_Ocomplete,axiom,
    ! [B: set_set_a,A2: set_set_a,M2: sigma_measure_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ A2 )
     => ( ( member_set_set_a @ A2 @ ( measur1516554128032400785_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) )
       => ( member_set_set_a @ B @ ( sigma_sets_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) ) ) ) ).

% completion.complete
thf(fact_429_completion_Ocomplete,axiom,
    ! [B: set_a,A2: set_a,M2: sigma_measure_a] :
      ( ( ord_less_eq_set_a @ B @ A2 )
     => ( ( member_set_a @ A2 @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
       => ( member_set_a @ B @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ) ).

% completion.complete
thf(fact_430_completion_Ocompletion__distr__eq,axiom,
    ! [X: a > b,M2: sigma_measure_a,N: sigma_measure_b] :
      ( ( member_a_b @ X @ ( sigma_measurable_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ N ) )
     => ( ( ( measure_null_sets_b @ ( measure_distr_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ N @ X ) )
          = ( measure_null_sets_b @ N ) )
       => ( ( comple3428971583294703881tion_b @ ( measure_distr_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ N @ X ) )
          = ( measure_distr_a_b @ ( comple3428971583294703880tion_a @ M2 ) @ ( comple3428971583294703881tion_b @ N ) @ X ) ) ) ) ).

% completion.completion_distr_eq
thf(fact_431_completion_Ocompletion__distr__eq,axiom,
    ! [X: a > a,M2: sigma_measure_a,N: sigma_measure_a] :
      ( ( member_a_a @ X @ ( sigma_measurable_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ N ) )
     => ( ( ( measure_null_sets_a @ ( measure_distr_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ N @ X ) )
          = ( measure_null_sets_a @ N ) )
       => ( ( comple3428971583294703880tion_a @ ( measure_distr_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ N @ X ) )
          = ( measure_distr_a_a @ ( comple3428971583294703880tion_a @ M2 ) @ ( comple3428971583294703880tion_a @ N ) @ X ) ) ) ) ).

% completion.completion_distr_eq
thf(fact_432_prob__space_Oaxioms_I2_J,axiom,
    ! [M2: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( probab8302655048591552735ioms_b @ M2 ) ) ).

% prob_space.axioms(2)
thf(fact_433_prob__space_Oaxioms_I2_J,axiom,
    ! [M2: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( probab8302655048591552734ioms_a @ M2 ) ) ).

% prob_space.axioms(2)
thf(fact_434_finite__measure_Oaxioms_I2_J,axiom,
    ! [M2: sigma_measure_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( measur2595372213310369023ioms_a @ M2 ) ) ).

% finite_measure.axioms(2)
thf(fact_435_finite__measure_Oaxioms_I2_J,axiom,
    ! [M2: sigma_measure_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( measur2595372213310369024ioms_b @ M2 ) ) ).

% finite_measure.axioms(2)
thf(fact_436_subprob__space_Oaxioms_I2_J,axiom,
    ! [M2: sigma_measure_a] :
      ( ( giry_subprob_space_a @ M2 )
     => ( giry_s1767857069175831631ioms_a @ M2 ) ) ).

% subprob_space.axioms(2)
thf(fact_437_complete__measure_Omeasurable__completion2,axiom,
    ! [M2: sigma_measure_a,F: a > b,N: sigma_measure_b] :
      ( ( comple8155536527497655953sure_a @ M2 )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
       => ( ( ord_le3795704787696855135_set_b @ ( measure_null_sets_b @ N ) @ ( measure_null_sets_b @ ( measure_distr_a_b @ M2 @ N @ F ) ) )
         => ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ ( comple3428971583294703881tion_b @ N ) ) ) ) ) ) ).

% complete_measure.measurable_completion2
thf(fact_438_complete__measure_Omeasurable__completion2,axiom,
    ! [M2: sigma_measure_a,F: a > a,N: sigma_measure_a] :
      ( ( comple8155536527497655953sure_a @ M2 )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
       => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_a_a @ M2 @ N @ F ) ) )
         => ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ ( comple3428971583294703880tion_a @ N ) ) ) ) ) ) ).

% complete_measure.measurable_completion2
thf(fact_439_null__part,axiom,
    ! [S: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ S @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) )
     => ? [N4: set_b] :
          ( ( member_set_b @ N4 @ ( measure_null_sets_b @ M2 ) )
          & ( ord_less_eq_set_b @ ( complete_null_part_b @ M2 @ S ) @ N4 ) ) ) ).

% null_part
thf(fact_440_null__part,axiom,
    ! [S: set_set_b,M2: sigma_measure_set_b] :
      ( ( member_set_set_b @ S @ ( sigma_sets_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) )
     => ? [N4: set_set_b] :
          ( ( member_set_set_b @ N4 @ ( measur1516554132335629586_set_b @ M2 ) )
          & ( ord_le3795704787696855135_set_b @ ( comple7912714282556339435_set_b @ M2 @ S ) @ N4 ) ) ) ).

% null_part
thf(fact_441_null__part,axiom,
    ! [S: set_set_a,M2: sigma_measure_set_a] :
      ( ( member_set_set_a @ S @ ( sigma_sets_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) )
     => ? [N4: set_set_a] :
          ( ( member_set_set_a @ N4 @ ( measur1516554128032400785_set_a @ M2 ) )
          & ( ord_le3724670747650509150_set_a @ ( comple7912714278253110634_set_a @ M2 @ S ) @ N4 ) ) ) ).

% null_part
thf(fact_442_null__part,axiom,
    ! [S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
     => ? [N4: set_a] :
          ( ( member_set_a @ N4 @ ( measure_null_sets_a @ M2 ) )
          & ( ord_less_eq_set_a @ ( complete_null_part_a @ M2 @ S ) @ N4 ) ) ) ).

% null_part
thf(fact_443_complete__measure_Ocompletion__distr__eq,axiom,
    ! [M2: sigma_measure_a,X: a > b,N: sigma_measure_b] :
      ( ( comple8155536527497655953sure_a @ M2 )
     => ( ( member_a_b @ X @ ( sigma_measurable_a_b @ M2 @ N ) )
       => ( ( ( measure_null_sets_b @ ( measure_distr_a_b @ M2 @ N @ X ) )
            = ( measure_null_sets_b @ N ) )
         => ( ( comple3428971583294703881tion_b @ ( measure_distr_a_b @ M2 @ N @ X ) )
            = ( measure_distr_a_b @ M2 @ ( comple3428971583294703881tion_b @ N ) @ X ) ) ) ) ) ).

% complete_measure.completion_distr_eq
thf(fact_444_complete__measure_Ocompletion__distr__eq,axiom,
    ! [M2: sigma_measure_a,X: a > a,N: sigma_measure_a] :
      ( ( comple8155536527497655953sure_a @ M2 )
     => ( ( member_a_a @ X @ ( sigma_measurable_a_a @ M2 @ N ) )
       => ( ( ( measure_null_sets_a @ ( measure_distr_a_a @ M2 @ N @ X ) )
            = ( measure_null_sets_a @ N ) )
         => ( ( comple3428971583294703880tion_a @ ( measure_distr_a_a @ M2 @ N @ X ) )
            = ( measure_distr_a_a @ M2 @ ( comple3428971583294703880tion_a @ N ) @ X ) ) ) ) ) ).

% complete_measure.completion_distr_eq
thf(fact_445_null__part__null__sets,axiom,
    ! [S: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ S @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) )
     => ( member_set_b @ ( complete_null_part_b @ M2 @ S ) @ ( measure_null_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) ) ) ).

% null_part_null_sets
thf(fact_446_null__part__null__sets,axiom,
    ! [S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
     => ( member_set_a @ ( complete_null_part_a @ M2 @ S ) @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ).

% null_part_null_sets
thf(fact_447_measure__increasing,axiom,
    measur1776380161843274167a_real @ ( sigma_sets_a @ m ) @ ( sigma_measure_a2 @ m ) ).

% measure_increasing
thf(fact_448_finite__measure__mono,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ m ) )
       => ( ord_less_eq_real @ ( sigma_measure_a2 @ m @ A2 ) @ ( sigma_measure_a2 @ m @ B ) ) ) ) ).

% finite_measure_mono
thf(fact_449_complete__measure_Ointro,axiom,
    ! [M2: sigma_measure_b] :
      ( ! [A6: set_b,B6: set_b] :
          ( ( ord_less_eq_set_b @ B6 @ A6 )
         => ( ( member_set_b @ A6 @ ( measure_null_sets_b @ M2 ) )
           => ( member_set_b @ B6 @ ( sigma_sets_b @ M2 ) ) ) )
     => ( comple8155536527497655954sure_b @ M2 ) ) ).

% complete_measure.intro
thf(fact_450_complete__measure_Ointro,axiom,
    ! [M2: sigma_measure_set_b] :
      ( ! [A6: set_set_b,B6: set_set_b] :
          ( ( ord_le3795704787696855135_set_b @ B6 @ A6 )
         => ( ( member_set_set_b @ A6 @ ( measur1516554132335629586_set_b @ M2 ) )
           => ( member_set_set_b @ B6 @ ( sigma_sets_set_b @ M2 ) ) ) )
     => ( comple6693822267556782962_set_b @ M2 ) ) ).

% complete_measure.intro
thf(fact_451_complete__measure_Ointro,axiom,
    ! [M2: sigma_measure_set_a] :
      ( ! [A6: set_set_a,B6: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ B6 @ A6 )
         => ( ( member_set_set_a @ A6 @ ( measur1516554128032400785_set_a @ M2 ) )
           => ( member_set_set_a @ B6 @ ( sigma_sets_set_a @ M2 ) ) ) )
     => ( comple6693822263253554161_set_a @ M2 ) ) ).

% complete_measure.intro
thf(fact_452_complete__measure_Ointro,axiom,
    ! [M2: sigma_measure_a] :
      ( ! [A6: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ B6 @ A6 )
         => ( ( member_set_a @ A6 @ ( measure_null_sets_a @ M2 ) )
           => ( member_set_a @ B6 @ ( sigma_sets_a @ M2 ) ) ) )
     => ( comple8155536527497655953sure_a @ M2 ) ) ).

% complete_measure.intro
thf(fact_453_complete__measure_Ocomplete,axiom,
    ! [M2: sigma_measure_b,B: set_b,A2: set_b] :
      ( ( comple8155536527497655954sure_b @ M2 )
     => ( ( ord_less_eq_set_b @ B @ A2 )
       => ( ( member_set_b @ A2 @ ( measure_null_sets_b @ M2 ) )
         => ( member_set_b @ B @ ( sigma_sets_b @ M2 ) ) ) ) ) ).

% complete_measure.complete
thf(fact_454_complete__measure_Ocomplete,axiom,
    ! [M2: sigma_measure_set_b,B: set_set_b,A2: set_set_b] :
      ( ( comple6693822267556782962_set_b @ M2 )
     => ( ( ord_le3795704787696855135_set_b @ B @ A2 )
       => ( ( member_set_set_b @ A2 @ ( measur1516554132335629586_set_b @ M2 ) )
         => ( member_set_set_b @ B @ ( sigma_sets_set_b @ M2 ) ) ) ) ) ).

% complete_measure.complete
thf(fact_455_complete__measure_Ocomplete,axiom,
    ! [M2: sigma_measure_set_a,B: set_set_a,A2: set_set_a] :
      ( ( comple6693822263253554161_set_a @ M2 )
     => ( ( ord_le3724670747650509150_set_a @ B @ A2 )
       => ( ( member_set_set_a @ A2 @ ( measur1516554128032400785_set_a @ M2 ) )
         => ( member_set_set_a @ B @ ( sigma_sets_set_a @ M2 ) ) ) ) ) ).

% complete_measure.complete
thf(fact_456_complete__measure_Ocomplete,axiom,
    ! [M2: sigma_measure_a,B: set_a,A2: set_a] :
      ( ( comple8155536527497655953sure_a @ M2 )
     => ( ( ord_less_eq_set_a @ B @ A2 )
       => ( ( member_set_a @ A2 @ ( measure_null_sets_a @ M2 ) )
         => ( member_set_a @ B @ ( sigma_sets_a @ M2 ) ) ) ) ) ).

% complete_measure.complete
thf(fact_457_complete__measure__def,axiom,
    ( comple8155536527497655954sure_b
    = ( ^ [M3: sigma_measure_b] :
        ! [A5: set_b,B5: set_b] :
          ( ( ord_less_eq_set_b @ B5 @ A5 )
         => ( ( member_set_b @ A5 @ ( measure_null_sets_b @ M3 ) )
           => ( member_set_b @ B5 @ ( sigma_sets_b @ M3 ) ) ) ) ) ) ).

% complete_measure_def
thf(fact_458_complete__measure__def,axiom,
    ( comple6693822267556782962_set_b
    = ( ^ [M3: sigma_measure_set_b] :
        ! [A5: set_set_b,B5: set_set_b] :
          ( ( ord_le3795704787696855135_set_b @ B5 @ A5 )
         => ( ( member_set_set_b @ A5 @ ( measur1516554132335629586_set_b @ M3 ) )
           => ( member_set_set_b @ B5 @ ( sigma_sets_set_b @ M3 ) ) ) ) ) ) ).

% complete_measure_def
thf(fact_459_complete__measure__def,axiom,
    ( comple6693822263253554161_set_a
    = ( ^ [M3: sigma_measure_set_a] :
        ! [A5: set_set_a,B5: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ B5 @ A5 )
         => ( ( member_set_set_a @ A5 @ ( measur1516554128032400785_set_a @ M3 ) )
           => ( member_set_set_a @ B5 @ ( sigma_sets_set_a @ M3 ) ) ) ) ) ) ).

% complete_measure_def
thf(fact_460_complete__measure__def,axiom,
    ( comple8155536527497655953sure_a
    = ( ^ [M3: sigma_measure_a] :
        ! [A5: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ B5 @ A5 )
         => ( ( member_set_a @ A5 @ ( measure_null_sets_a @ M3 ) )
           => ( member_set_a @ B5 @ ( sigma_sets_a @ M3 ) ) ) ) ) ) ).

% complete_measure_def
thf(fact_461_null__part__sets_I1_J,axiom,
    ! [S: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ S @ ( sigma_sets_b @ M2 ) )
     => ( member_set_b @ ( complete_null_part_b @ M2 @ S ) @ ( sigma_sets_b @ M2 ) ) ) ).

% null_part_sets(1)
thf(fact_462_null__part__sets_I1_J,axiom,
    ! [S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ M2 ) )
     => ( member_set_a @ ( complete_null_part_a @ M2 @ S ) @ ( sigma_sets_a @ M2 ) ) ) ).

% null_part_sets(1)
thf(fact_463_measure__completion,axiom,
    ! [S: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ S @ ( sigma_sets_b @ M2 ) )
     => ( ( sigma_measure_b2 @ ( comple3428971583294703881tion_b @ M2 ) @ S )
        = ( sigma_measure_b2 @ M2 @ S ) ) ) ).

% measure_completion
thf(fact_464_measure__completion,axiom,
    ! [S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ M2 ) )
     => ( ( sigma_measure_a2 @ ( comple3428971583294703880tion_a @ M2 ) @ S )
        = ( sigma_measure_a2 @ M2 @ S ) ) ) ).

% measure_completion
thf(fact_465_completion_Ocomplete__measure__axioms,axiom,
    ! [M2: sigma_measure_a] : ( comple8155536527497655953sure_a @ ( comple3428971583294703880tion_a @ M2 ) ) ).

% completion.complete_measure_axioms
thf(fact_466_finite__measure_Omeasure__increasing,axiom,
    ! [M2: sigma_measure_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( measur1776380161843274167a_real @ ( sigma_sets_a @ M2 ) @ ( sigma_measure_a2 @ M2 ) ) ) ).

% finite_measure.measure_increasing
thf(fact_467_finite__measure_Omeasure__increasing,axiom,
    ! [M2: sigma_measure_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( measur7372598777031404856b_real @ ( sigma_sets_b @ M2 ) @ ( sigma_measure_b2 @ M2 ) ) ) ).

% finite_measure.measure_increasing
thf(fact_468_complete__measure_Ocomplete2,axiom,
    ! [M2: sigma_measure_set_b,A2: set_set_b,B: set_set_b] :
      ( ( comple6693822267556782962_set_b @ M2 )
     => ( ( ord_le3795704787696855135_set_b @ A2 @ B )
       => ( ( member_set_set_b @ B @ ( measur1516554132335629586_set_b @ M2 ) )
         => ( member_set_set_b @ A2 @ ( measur1516554132335629586_set_b @ M2 ) ) ) ) ) ).

% complete_measure.complete2
thf(fact_469_complete__measure_Ocomplete2,axiom,
    ! [M2: sigma_measure_set_a,A2: set_set_a,B: set_set_a] :
      ( ( comple6693822263253554161_set_a @ M2 )
     => ( ( ord_le3724670747650509150_set_a @ A2 @ B )
       => ( ( member_set_set_a @ B @ ( measur1516554128032400785_set_a @ M2 ) )
         => ( member_set_set_a @ A2 @ ( measur1516554128032400785_set_a @ M2 ) ) ) ) ) ).

% complete_measure.complete2
thf(fact_470_complete__measure_Ocomplete2,axiom,
    ! [M2: sigma_measure_a,A2: set_a,B: set_a] :
      ( ( comple8155536527497655953sure_a @ M2 )
     => ( ( ord_less_eq_set_a @ A2 @ B )
       => ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
         => ( member_set_a @ A2 @ ( measure_null_sets_a @ M2 ) ) ) ) ) ).

% complete_measure.complete2
thf(fact_471_finite__measure_Ofinite__measure__mono,axiom,
    ! [M2: sigma_measure_set_b,A2: set_set_b,B: set_set_b] :
      ( ( measur2212693997687831747_set_b @ M2 )
     => ( ( ord_le3795704787696855135_set_b @ A2 @ B )
       => ( ( member_set_set_b @ B @ ( sigma_sets_set_b @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_set_b2 @ M2 @ A2 ) @ ( sigma_measure_set_b2 @ M2 @ B ) ) ) ) ) ).

% finite_measure.finite_measure_mono
thf(fact_472_finite__measure_Ofinite__measure__mono,axiom,
    ! [M2: sigma_measure_set_a,A2: set_set_a,B: set_set_a] :
      ( ( measur2212693993384602946_set_a @ M2 )
     => ( ( ord_le3724670747650509150_set_a @ A2 @ B )
       => ( ( member_set_set_a @ B @ ( sigma_sets_set_a @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_set_a2 @ M2 @ A2 ) @ ( sigma_measure_set_a2 @ M2 @ B ) ) ) ) ) ).

% finite_measure.finite_measure_mono
thf(fact_473_finite__measure_Ofinite__measure__mono,axiom,
    ! [M2: sigma_measure_a,A2: set_a,B: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( ord_less_eq_set_a @ A2 @ B )
       => ( ( member_set_a @ B @ ( sigma_sets_a @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ ( sigma_measure_a2 @ M2 @ B ) ) ) ) ) ).

% finite_measure.finite_measure_mono
thf(fact_474_finite__measure_Ofinite__measure__mono,axiom,
    ! [M2: sigma_measure_b,A2: set_b,B: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( ord_less_eq_set_b @ A2 @ B )
       => ( ( member_set_b @ B @ ( sigma_sets_b @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_b2 @ M2 @ A2 ) @ ( sigma_measure_b2 @ M2 @ B ) ) ) ) ) ).

% finite_measure.finite_measure_mono
thf(fact_475_measure__ge__1__iff,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_real @ one_one_real @ ( sigma_measure_a2 @ m @ A2 ) )
      = ( ( sigma_measure_a2 @ m @ A2 )
        = one_one_real ) ) ).

% measure_ge_1_iff
thf(fact_476_bounded__measure,axiom,
    ! [A2: set_a] : ( ord_less_eq_real @ ( sigma_measure_a2 @ m @ A2 ) @ ( sigma_measure_a2 @ m @ ( sigma_space_a @ m ) ) ) ).

% bounded_measure
thf(fact_477_fmeasurable__eq__sets,axiom,
    ( ( measur3645360004775918570able_a @ m )
    = ( sigma_sets_a @ m ) ) ).

% fmeasurable_eq_sets
thf(fact_478_main__part__null__part__Un,axiom,
    ! [S: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ S @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) )
     => ( ( sup_sup_set_b @ ( complete_main_part_b @ M2 @ S ) @ ( complete_null_part_b @ M2 @ S ) )
        = S ) ) ).

% main_part_null_part_Un
thf(fact_479_main__part__null__part__Un,axiom,
    ! [S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
     => ( ( sup_sup_set_a @ ( complete_main_part_a @ M2 @ S ) @ ( complete_null_part_a @ M2 @ S ) )
        = S ) ) ).

% main_part_null_part_Un
thf(fact_480_subprob__measure__le__1,axiom,
    ! [X: set_a] : ( ord_less_eq_real @ ( sigma_measure_a2 @ m @ X ) @ one_one_real ) ).

% subprob_measure_le_1
thf(fact_481_prob__le__1,axiom,
    ! [A2: set_a] : ( ord_less_eq_real @ ( sigma_measure_a2 @ m @ A2 ) @ one_one_real ) ).

% prob_le_1
thf(fact_482_indep__setI,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ ( sigma_sets_a @ m ) )
     => ( ( ord_le3724670747650509150_set_a @ B @ ( sigma_sets_a @ m ) )
       => ( ! [A3: set_a,B3: set_a] :
              ( ( member_set_a @ A3 @ A2 )
             => ( ( member_set_a @ B3 @ B )
               => ( ( sigma_measure_a2 @ m @ ( inf_inf_set_a @ A3 @ B3 ) )
                  = ( times_times_real @ ( sigma_measure_a2 @ m @ A3 ) @ ( sigma_measure_a2 @ m @ B3 ) ) ) ) )
         => ( indepe2041756565122539606_set_a @ m @ A2 @ B ) ) ) ) ).

% indep_setI
thf(fact_483_indep__sets2__eq,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( indepe2041756565122539606_set_a @ m @ A2 @ B )
      = ( ( ord_le3724670747650509150_set_a @ A2 @ ( sigma_sets_a @ m ) )
        & ( ord_le3724670747650509150_set_a @ B @ ( sigma_sets_a @ m ) )
        & ! [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
           => ! [Y3: set_a] :
                ( ( member_set_a @ Y3 @ B )
               => ( ( sigma_measure_a2 @ m @ ( inf_inf_set_a @ X3 @ Y3 ) )
                  = ( times_times_real @ ( sigma_measure_a2 @ m @ X3 ) @ ( sigma_measure_a2 @ m @ Y3 ) ) ) ) ) ) ) ).

% indep_sets2_eq
thf(fact_484_sets__completionI,axiom,
    ! [A2: set_b,S: set_b,N: set_b,N3: set_b,M2: sigma_measure_b] :
      ( ( A2
        = ( sup_sup_set_b @ S @ N ) )
     => ( ( ord_less_eq_set_b @ N @ N3 )
       => ( ( member_set_b @ N3 @ ( measure_null_sets_b @ M2 ) )
         => ( ( member_set_b @ S @ ( sigma_sets_b @ M2 ) )
           => ( member_set_b @ A2 @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) ) ) ) ) ) ).

% sets_completionI
thf(fact_485_sets__completionI,axiom,
    ! [A2: set_set_b,S: set_set_b,N: set_set_b,N3: set_set_b,M2: sigma_measure_set_b] :
      ( ( A2
        = ( sup_sup_set_set_b @ S @ N ) )
     => ( ( ord_le3795704787696855135_set_b @ N @ N3 )
       => ( ( member_set_set_b @ N3 @ ( measur1516554132335629586_set_b @ M2 ) )
         => ( ( member_set_set_b @ S @ ( sigma_sets_set_b @ M2 ) )
           => ( member_set_set_b @ A2 @ ( sigma_sets_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) ) ) ) ) ) ).

% sets_completionI
thf(fact_486_sets__completionI,axiom,
    ! [A2: set_set_a,S: set_set_a,N: set_set_a,N3: set_set_a,M2: sigma_measure_set_a] :
      ( ( A2
        = ( sup_sup_set_set_a @ S @ N ) )
     => ( ( ord_le3724670747650509150_set_a @ N @ N3 )
       => ( ( member_set_set_a @ N3 @ ( measur1516554128032400785_set_a @ M2 ) )
         => ( ( member_set_set_a @ S @ ( sigma_sets_set_a @ M2 ) )
           => ( member_set_set_a @ A2 @ ( sigma_sets_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) ) ) ) ) ) ).

% sets_completionI
thf(fact_487_sets__completionI,axiom,
    ! [A2: set_a,S: set_a,N: set_a,N3: set_a,M2: sigma_measure_a] :
      ( ( A2
        = ( sup_sup_set_a @ S @ N ) )
     => ( ( ord_less_eq_set_a @ N @ N3 )
       => ( ( member_set_a @ N3 @ ( measure_null_sets_a @ M2 ) )
         => ( ( member_set_a @ S @ ( sigma_sets_a @ M2 ) )
           => ( member_set_a @ A2 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ) ) ) ).

% sets_completionI
thf(fact_488_IntI,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ A2 )
     => ( ( member_a_b @ C2 @ B )
       => ( member_a_b @ C2 @ ( inf_inf_set_a_b @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_489_IntI,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ A2 )
     => ( ( member_c @ C2 @ B )
       => ( member_c @ C2 @ ( inf_inf_set_c @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_490_IntI,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ A2 )
     => ( ( member_set_a @ C2 @ B )
       => ( member_set_a @ C2 @ ( inf_inf_set_set_a @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_491_IntI,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ A2 )
     => ( ( member_a_a @ C2 @ B )
       => ( member_a_a @ C2 @ ( inf_inf_set_a_a @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_492_IntI,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ A2 )
     => ( ( member_o @ C2 @ B )
       => ( member_o @ C2 @ ( inf_inf_set_o @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_493_IntI,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ A2 )
     => ( ( member_nat @ C2 @ B )
       => ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_494_IntI,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ A2 )
     => ( ( member_a @ C2 @ B )
       => ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_495_Int__iff,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( inf_inf_set_a_b @ A2 @ B ) )
      = ( ( member_a_b @ C2 @ A2 )
        & ( member_a_b @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_496_Int__iff,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( inf_inf_set_c @ A2 @ B ) )
      = ( ( member_c @ C2 @ A2 )
        & ( member_c @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_497_Int__iff,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( inf_inf_set_set_a @ A2 @ B ) )
      = ( ( member_set_a @ C2 @ A2 )
        & ( member_set_a @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_498_Int__iff,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( inf_inf_set_a_a @ A2 @ B ) )
      = ( ( member_a_a @ C2 @ A2 )
        & ( member_a_a @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_499_Int__iff,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( inf_inf_set_o @ A2 @ B ) )
      = ( ( member_o @ C2 @ A2 )
        & ( member_o @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_500_Int__iff,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) )
      = ( ( member_nat @ C2 @ A2 )
        & ( member_nat @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_501_Int__iff,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
      = ( ( member_a @ C2 @ A2 )
        & ( member_a @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_502_prob__space,axiom,
    ( ( sigma_measure_a2 @ m @ ( sigma_space_a @ m ) )
    = one_one_real ) ).

% prob_space
thf(fact_503_UnCI,axiom,
    ! [C2: a > b,B: set_a_b,A2: set_a_b] :
      ( ( ~ ( member_a_b @ C2 @ B )
       => ( member_a_b @ C2 @ A2 ) )
     => ( member_a_b @ C2 @ ( sup_sup_set_a_b @ A2 @ B ) ) ) ).

% UnCI
thf(fact_504_UnCI,axiom,
    ! [C2: c,B: set_c,A2: set_c] :
      ( ( ~ ( member_c @ C2 @ B )
       => ( member_c @ C2 @ A2 ) )
     => ( member_c @ C2 @ ( sup_sup_set_c @ A2 @ B ) ) ) ).

% UnCI
thf(fact_505_UnCI,axiom,
    ! [C2: set_a,B: set_set_a,A2: set_set_a] :
      ( ( ~ ( member_set_a @ C2 @ B )
       => ( member_set_a @ C2 @ A2 ) )
     => ( member_set_a @ C2 @ ( sup_sup_set_set_a @ A2 @ B ) ) ) ).

% UnCI
thf(fact_506_UnCI,axiom,
    ! [C2: a > a,B: set_a_a,A2: set_a_a] :
      ( ( ~ ( member_a_a @ C2 @ B )
       => ( member_a_a @ C2 @ A2 ) )
     => ( member_a_a @ C2 @ ( sup_sup_set_a_a @ A2 @ B ) ) ) ).

% UnCI
thf(fact_507_UnCI,axiom,
    ! [C2: $o,B: set_o,A2: set_o] :
      ( ( ~ ( member_o @ C2 @ B )
       => ( member_o @ C2 @ A2 ) )
     => ( member_o @ C2 @ ( sup_sup_set_o @ A2 @ B ) ) ) ).

% UnCI
thf(fact_508_UnCI,axiom,
    ! [C2: nat,B: set_nat,A2: set_nat] :
      ( ( ~ ( member_nat @ C2 @ B )
       => ( member_nat @ C2 @ A2 ) )
     => ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) ) ) ).

% UnCI
thf(fact_509_UnCI,axiom,
    ! [C2: a,B: set_a,A2: set_a] :
      ( ( ~ ( member_a @ C2 @ B )
       => ( member_a @ C2 @ A2 ) )
     => ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).

% UnCI
thf(fact_510_Un__iff,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( sup_sup_set_a_b @ A2 @ B ) )
      = ( ( member_a_b @ C2 @ A2 )
        | ( member_a_b @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_511_Un__iff,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( sup_sup_set_c @ A2 @ B ) )
      = ( ( member_c @ C2 @ A2 )
        | ( member_c @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_512_Un__iff,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( sup_sup_set_set_a @ A2 @ B ) )
      = ( ( member_set_a @ C2 @ A2 )
        | ( member_set_a @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_513_Un__iff,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( sup_sup_set_a_a @ A2 @ B ) )
      = ( ( member_a_a @ C2 @ A2 )
        | ( member_a_a @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_514_Un__iff,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( sup_sup_set_o @ A2 @ B ) )
      = ( ( member_o @ C2 @ A2 )
        | ( member_o @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_515_Un__iff,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) )
      = ( ( member_nat @ C2 @ A2 )
        | ( member_nat @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_516_Un__iff,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) )
      = ( ( member_a @ C2 @ A2 )
        | ( member_a @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_517_measure__space__inter,axiom,
    ! [S2: set_a,T3: set_a] :
      ( ( member_set_a @ S2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ T3 @ ( sigma_sets_a @ m ) )
       => ( ( ( sigma_measure_a2 @ m @ T3 )
            = ( sigma_measure_a2 @ m @ ( sigma_space_a @ m ) ) )
         => ( ( sigma_measure_a2 @ m @ ( inf_inf_set_a @ S2 @ T3 ) )
            = ( sigma_measure_a2 @ m @ S2 ) ) ) ) ) ).

% measure_space_inter
thf(fact_518_indep__setD,axiom,
    ! [A2: set_set_a,B: set_set_a,A: set_a,B2: set_a] :
      ( ( indepe2041756565122539606_set_a @ m @ A2 @ B )
     => ( ( member_set_a @ A @ A2 )
       => ( ( member_set_a @ B2 @ B )
         => ( ( sigma_measure_a2 @ m @ ( inf_inf_set_a @ A @ B2 ) )
            = ( times_times_real @ ( sigma_measure_a2 @ m @ A ) @ ( sigma_measure_a2 @ m @ B2 ) ) ) ) ) ) ).

% indep_setD
thf(fact_519_Int__subset__iff,axiom,
    ! [C: set_set_b,A2: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ C @ ( inf_inf_set_set_b @ A2 @ B ) )
      = ( ( ord_le3795704787696855135_set_b @ C @ A2 )
        & ( ord_le3795704787696855135_set_b @ C @ B ) ) ) ).

% Int_subset_iff
thf(fact_520_Int__subset__iff,axiom,
    ! [C: set_set_a,A2: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ C @ ( inf_inf_set_set_a @ A2 @ B ) )
      = ( ( ord_le3724670747650509150_set_a @ C @ A2 )
        & ( ord_le3724670747650509150_set_a @ C @ B ) ) ) ).

% Int_subset_iff
thf(fact_521_Int__subset__iff,axiom,
    ! [C: set_a,A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ ( inf_inf_set_a @ A2 @ B ) )
      = ( ( ord_less_eq_set_a @ C @ A2 )
        & ( ord_less_eq_set_a @ C @ B ) ) ) ).

% Int_subset_iff
thf(fact_522_sets_OInt,axiom,
    ! [A: set_b,M2: sigma_measure_b,B2: set_b] :
      ( ( member_set_b @ A @ ( sigma_sets_b @ M2 ) )
     => ( ( member_set_b @ B2 @ ( sigma_sets_b @ M2 ) )
       => ( member_set_b @ ( inf_inf_set_b @ A @ B2 ) @ ( sigma_sets_b @ M2 ) ) ) ) ).

% sets.Int
thf(fact_523_sets_OInt,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( sigma_sets_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( sigma_sets_a @ M2 ) )
       => ( member_set_a @ ( inf_inf_set_a @ A @ B2 ) @ ( sigma_sets_a @ M2 ) ) ) ) ).

% sets.Int
thf(fact_524_Un__subset__iff,axiom,
    ! [A2: set_set_b,B: set_set_b,C: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ ( sup_sup_set_set_b @ A2 @ B ) @ C )
      = ( ( ord_le3795704787696855135_set_b @ A2 @ C )
        & ( ord_le3795704787696855135_set_b @ B @ C ) ) ) ).

% Un_subset_iff
thf(fact_525_Un__subset__iff,axiom,
    ! [A2: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( sup_sup_set_set_a @ A2 @ B ) @ C )
      = ( ( ord_le3724670747650509150_set_a @ A2 @ C )
        & ( ord_le3724670747650509150_set_a @ B @ C ) ) ) ).

% Un_subset_iff
thf(fact_526_Un__subset__iff,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
      = ( ( ord_less_eq_set_a @ A2 @ C )
        & ( ord_less_eq_set_a @ B @ C ) ) ) ).

% Un_subset_iff
thf(fact_527_sets_Otop,axiom,
    ! [M2: sigma_measure_b] : ( member_set_b @ ( sigma_space_b @ M2 ) @ ( sigma_sets_b @ M2 ) ) ).

% sets.top
thf(fact_528_sets_Otop,axiom,
    ! [M2: sigma_measure_a] : ( member_set_a @ ( sigma_space_a @ M2 ) @ ( sigma_sets_a @ M2 ) ) ).

% sets.top
thf(fact_529_sets_OUn,axiom,
    ! [A: set_b,M2: sigma_measure_b,B2: set_b] :
      ( ( member_set_b @ A @ ( sigma_sets_b @ M2 ) )
     => ( ( member_set_b @ B2 @ ( sigma_sets_b @ M2 ) )
       => ( member_set_b @ ( sup_sup_set_b @ A @ B2 ) @ ( sigma_sets_b @ M2 ) ) ) ) ).

% sets.Un
thf(fact_530_sets_OUn,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( sigma_sets_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( sigma_sets_a @ M2 ) )
       => ( member_set_a @ ( sup_sup_set_a @ A @ B2 ) @ ( sigma_sets_a @ M2 ) ) ) ) ).

% sets.Un
thf(fact_531_Int__Un__eq_I4_J,axiom,
    ! [T: set_a,S: set_a] :
      ( ( sup_sup_set_a @ T @ ( inf_inf_set_a @ S @ T ) )
      = T ) ).

% Int_Un_eq(4)
thf(fact_532_Int__Un__eq_I3_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ S @ ( inf_inf_set_a @ S @ T ) )
      = S ) ).

% Int_Un_eq(3)
thf(fact_533_Int__Un__eq_I2_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ T )
      = T ) ).

% Int_Un_eq(2)
thf(fact_534_Int__Un__eq_I1_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ S )
      = S ) ).

% Int_Un_eq(1)
thf(fact_535_Un__Int__eq_I4_J,axiom,
    ! [T: set_a,S: set_a] :
      ( ( inf_inf_set_a @ T @ ( sup_sup_set_a @ S @ T ) )
      = T ) ).

% Un_Int_eq(4)
thf(fact_536_Un__Int__eq_I3_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ S @ ( sup_sup_set_a @ S @ T ) )
      = S ) ).

% Un_Int_eq(3)
thf(fact_537_Un__Int__eq_I2_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ T )
      = T ) ).

% Un_Int_eq(2)
thf(fact_538_Un__Int__eq_I1_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ S )
      = S ) ).

% Un_Int_eq(1)
thf(fact_539_space__completion,axiom,
    ! [M2: sigma_measure_a] :
      ( ( sigma_space_a @ ( comple3428971583294703880tion_a @ M2 ) )
      = ( sigma_space_a @ M2 ) ) ).

% space_completion
thf(fact_540_fmeasurable_OInt,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( measur3645360004775918570able_a @ M2 ) )
       => ( member_set_a @ ( inf_inf_set_a @ A @ B2 ) @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ).

% fmeasurable.Int
thf(fact_541_null__sets_OInt,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( measure_null_sets_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M2 ) )
       => ( member_set_a @ ( inf_inf_set_a @ A @ B2 ) @ ( measure_null_sets_a @ M2 ) ) ) ) ).

% null_sets.Int
thf(fact_542_fmeasurable_OUn,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( measur3645360004775918570able_a @ M2 ) )
       => ( member_set_a @ ( sup_sup_set_a @ A @ B2 ) @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ).

% fmeasurable.Un
thf(fact_543_null__sets_OUn,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( measure_null_sets_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M2 ) )
       => ( member_set_a @ ( sup_sup_set_a @ A @ B2 ) @ ( measure_null_sets_a @ M2 ) ) ) ) ).

% null_sets.Un
thf(fact_544_space__distr,axiom,
    ! [M2: sigma_measure_a,N: sigma_measure_b,F: a > b] :
      ( ( sigma_space_b @ ( measure_distr_a_b @ M2 @ N @ F ) )
      = ( sigma_space_b @ N ) ) ).

% space_distr
thf(fact_545_space__distr,axiom,
    ! [M2: sigma_measure_a,N: sigma_measure_a,F: a > a] :
      ( ( sigma_space_a @ ( measure_distr_a_a @ M2 @ N @ F ) )
      = ( sigma_space_a @ N ) ) ).

% space_distr
thf(fact_546_sets_OInt__space__eq2,axiom,
    ! [X5: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ X5 @ ( sigma_sets_b @ M2 ) )
     => ( ( inf_inf_set_b @ X5 @ ( sigma_space_b @ M2 ) )
        = X5 ) ) ).

% sets.Int_space_eq2
thf(fact_547_sets_OInt__space__eq2,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( sigma_sets_a @ M2 ) )
     => ( ( inf_inf_set_a @ X5 @ ( sigma_space_a @ M2 ) )
        = X5 ) ) ).

% sets.Int_space_eq2
thf(fact_548_sets_OInt__space__eq1,axiom,
    ! [X5: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ X5 @ ( sigma_sets_b @ M2 ) )
     => ( ( inf_inf_set_b @ ( sigma_space_b @ M2 ) @ X5 )
        = X5 ) ) ).

% sets.Int_space_eq1
thf(fact_549_sets_OInt__space__eq1,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( sigma_sets_a @ M2 ) )
     => ( ( inf_inf_set_a @ ( sigma_space_a @ M2 ) @ X5 )
        = X5 ) ) ).

% sets.Int_space_eq1
thf(fact_550_fmeasurable_OInt__space__eq1,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( inf_inf_set_a @ ( sigma_space_a @ M2 ) @ X5 )
        = X5 ) ) ).

% fmeasurable.Int_space_eq1
thf(fact_551_fmeasurable_OInt__space__eq2,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( inf_inf_set_a @ X5 @ ( sigma_space_a @ M2 ) )
        = X5 ) ) ).

% fmeasurable.Int_space_eq2
thf(fact_552_null__sets_OInt__space__eq2,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( measure_null_sets_a @ M2 ) )
     => ( ( inf_inf_set_a @ X5 @ ( sigma_space_a @ M2 ) )
        = X5 ) ) ).

% null_sets.Int_space_eq2
thf(fact_553_null__sets_OInt__space__eq1,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( measure_null_sets_a @ M2 ) )
     => ( ( inf_inf_set_a @ ( sigma_space_a @ M2 ) @ X5 )
        = X5 ) ) ).

% null_sets.Int_space_eq1
thf(fact_554_fmeasurable_Osets__into__space,axiom,
    ! [X5: set_set_b,M2: sigma_measure_set_b] :
      ( ( member_set_set_b @ X5 @ ( measur7460903249514972363_set_b @ M2 ) )
     => ( ord_le3795704787696855135_set_b @ X5 @ ( sigma_space_set_b @ M2 ) ) ) ).

% fmeasurable.sets_into_space
thf(fact_555_fmeasurable_Osets__into__space,axiom,
    ! [X5: set_set_a,M2: sigma_measure_set_a] :
      ( ( member_set_set_a @ X5 @ ( measur7460903245211743562_set_a @ M2 ) )
     => ( ord_le3724670747650509150_set_a @ X5 @ ( sigma_space_set_a @ M2 ) ) ) ).

% fmeasurable.sets_into_space
thf(fact_556_fmeasurable_Osets__into__space,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ord_less_eq_set_a @ X5 @ ( sigma_space_a @ M2 ) ) ) ).

% fmeasurable.sets_into_space
thf(fact_557_fmeasurable__Int__fmeasurable,axiom,
    ! [S: set_b,M2: sigma_measure_b,T: set_b] :
      ( ( member_set_b @ S @ ( measur3645360004775918571able_b @ M2 ) )
     => ( ( member_set_b @ T @ ( sigma_sets_b @ M2 ) )
       => ( member_set_b @ ( inf_inf_set_b @ S @ T ) @ ( measur3645360004775918571able_b @ M2 ) ) ) ) ).

% fmeasurable_Int_fmeasurable
thf(fact_558_fmeasurable__Int__fmeasurable,axiom,
    ! [S: set_a,M2: sigma_measure_a,T: set_a] :
      ( ( member_set_a @ S @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( member_set_a @ T @ ( sigma_sets_a @ M2 ) )
       => ( member_set_a @ ( inf_inf_set_a @ S @ T ) @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ).

% fmeasurable_Int_fmeasurable
thf(fact_559_Un__Int__assoc__eq,axiom,
    ! [A2: set_set_b,B: set_set_b,C: set_set_b] :
      ( ( ( sup_sup_set_set_b @ ( inf_inf_set_set_b @ A2 @ B ) @ C )
        = ( inf_inf_set_set_b @ A2 @ ( sup_sup_set_set_b @ B @ C ) ) )
      = ( ord_le3795704787696855135_set_b @ C @ A2 ) ) ).

% Un_Int_assoc_eq
thf(fact_560_Un__Int__assoc__eq,axiom,
    ! [A2: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ( sup_sup_set_set_a @ ( inf_inf_set_set_a @ A2 @ B ) @ C )
        = ( inf_inf_set_set_a @ A2 @ ( sup_sup_set_set_a @ B @ C ) ) )
      = ( ord_le3724670747650509150_set_a @ C @ A2 ) ) ).

% Un_Int_assoc_eq
thf(fact_561_Un__Int__assoc__eq,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
        = ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) )
      = ( ord_less_eq_set_a @ C @ A2 ) ) ).

% Un_Int_assoc_eq
thf(fact_562_UnE,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( sup_sup_set_a_b @ A2 @ B ) )
     => ( ~ ( member_a_b @ C2 @ A2 )
       => ( member_a_b @ C2 @ B ) ) ) ).

% UnE
thf(fact_563_UnE,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( sup_sup_set_c @ A2 @ B ) )
     => ( ~ ( member_c @ C2 @ A2 )
       => ( member_c @ C2 @ B ) ) ) ).

% UnE
thf(fact_564_UnE,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( sup_sup_set_set_a @ A2 @ B ) )
     => ( ~ ( member_set_a @ C2 @ A2 )
       => ( member_set_a @ C2 @ B ) ) ) ).

% UnE
thf(fact_565_UnE,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( sup_sup_set_a_a @ A2 @ B ) )
     => ( ~ ( member_a_a @ C2 @ A2 )
       => ( member_a_a @ C2 @ B ) ) ) ).

% UnE
thf(fact_566_UnE,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( sup_sup_set_o @ A2 @ B ) )
     => ( ~ ( member_o @ C2 @ A2 )
       => ( member_o @ C2 @ B ) ) ) ).

% UnE
thf(fact_567_UnE,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) )
     => ( ~ ( member_nat @ C2 @ A2 )
       => ( member_nat @ C2 @ B ) ) ) ).

% UnE
thf(fact_568_UnE,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) )
     => ( ~ ( member_a @ C2 @ A2 )
       => ( member_a @ C2 @ B ) ) ) ).

% UnE
thf(fact_569_IntE,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( inf_inf_set_a_b @ A2 @ B ) )
     => ~ ( ( member_a_b @ C2 @ A2 )
         => ~ ( member_a_b @ C2 @ B ) ) ) ).

% IntE
thf(fact_570_IntE,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( inf_inf_set_c @ A2 @ B ) )
     => ~ ( ( member_c @ C2 @ A2 )
         => ~ ( member_c @ C2 @ B ) ) ) ).

% IntE
thf(fact_571_IntE,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( inf_inf_set_set_a @ A2 @ B ) )
     => ~ ( ( member_set_a @ C2 @ A2 )
         => ~ ( member_set_a @ C2 @ B ) ) ) ).

% IntE
thf(fact_572_IntE,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( inf_inf_set_a_a @ A2 @ B ) )
     => ~ ( ( member_a_a @ C2 @ A2 )
         => ~ ( member_a_a @ C2 @ B ) ) ) ).

% IntE
thf(fact_573_IntE,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( inf_inf_set_o @ A2 @ B ) )
     => ~ ( ( member_o @ C2 @ A2 )
         => ~ ( member_o @ C2 @ B ) ) ) ).

% IntE
thf(fact_574_IntE,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) )
     => ~ ( ( member_nat @ C2 @ A2 )
         => ~ ( member_nat @ C2 @ B ) ) ) ).

% IntE
thf(fact_575_IntE,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
     => ~ ( ( member_a @ C2 @ A2 )
         => ~ ( member_a @ C2 @ B ) ) ) ).

% IntE
thf(fact_576_UnI1,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ A2 )
     => ( member_a_b @ C2 @ ( sup_sup_set_a_b @ A2 @ B ) ) ) ).

% UnI1
thf(fact_577_UnI1,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ A2 )
     => ( member_c @ C2 @ ( sup_sup_set_c @ A2 @ B ) ) ) ).

% UnI1
thf(fact_578_UnI1,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ A2 )
     => ( member_set_a @ C2 @ ( sup_sup_set_set_a @ A2 @ B ) ) ) ).

% UnI1
thf(fact_579_UnI1,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ A2 )
     => ( member_a_a @ C2 @ ( sup_sup_set_a_a @ A2 @ B ) ) ) ).

% UnI1
thf(fact_580_UnI1,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ A2 )
     => ( member_o @ C2 @ ( sup_sup_set_o @ A2 @ B ) ) ) ).

% UnI1
thf(fact_581_UnI1,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ A2 )
     => ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) ) ) ).

% UnI1
thf(fact_582_UnI1,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ A2 )
     => ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).

% UnI1
thf(fact_583_UnI2,axiom,
    ! [C2: a > b,B: set_a_b,A2: set_a_b] :
      ( ( member_a_b @ C2 @ B )
     => ( member_a_b @ C2 @ ( sup_sup_set_a_b @ A2 @ B ) ) ) ).

% UnI2
thf(fact_584_UnI2,axiom,
    ! [C2: c,B: set_c,A2: set_c] :
      ( ( member_c @ C2 @ B )
     => ( member_c @ C2 @ ( sup_sup_set_c @ A2 @ B ) ) ) ).

% UnI2
thf(fact_585_UnI2,axiom,
    ! [C2: set_a,B: set_set_a,A2: set_set_a] :
      ( ( member_set_a @ C2 @ B )
     => ( member_set_a @ C2 @ ( sup_sup_set_set_a @ A2 @ B ) ) ) ).

% UnI2
thf(fact_586_UnI2,axiom,
    ! [C2: a > a,B: set_a_a,A2: set_a_a] :
      ( ( member_a_a @ C2 @ B )
     => ( member_a_a @ C2 @ ( sup_sup_set_a_a @ A2 @ B ) ) ) ).

% UnI2
thf(fact_587_UnI2,axiom,
    ! [C2: $o,B: set_o,A2: set_o] :
      ( ( member_o @ C2 @ B )
     => ( member_o @ C2 @ ( sup_sup_set_o @ A2 @ B ) ) ) ).

% UnI2
thf(fact_588_UnI2,axiom,
    ! [C2: nat,B: set_nat,A2: set_nat] :
      ( ( member_nat @ C2 @ B )
     => ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) ) ) ).

% UnI2
thf(fact_589_UnI2,axiom,
    ! [C2: a,B: set_a,A2: set_a] :
      ( ( member_a @ C2 @ B )
     => ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).

% UnI2
thf(fact_590_IntD1,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( inf_inf_set_a_b @ A2 @ B ) )
     => ( member_a_b @ C2 @ A2 ) ) ).

% IntD1
thf(fact_591_IntD1,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( inf_inf_set_c @ A2 @ B ) )
     => ( member_c @ C2 @ A2 ) ) ).

% IntD1
thf(fact_592_IntD1,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( inf_inf_set_set_a @ A2 @ B ) )
     => ( member_set_a @ C2 @ A2 ) ) ).

% IntD1
thf(fact_593_IntD1,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( inf_inf_set_a_a @ A2 @ B ) )
     => ( member_a_a @ C2 @ A2 ) ) ).

% IntD1
thf(fact_594_IntD1,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( inf_inf_set_o @ A2 @ B ) )
     => ( member_o @ C2 @ A2 ) ) ).

% IntD1
thf(fact_595_IntD1,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) )
     => ( member_nat @ C2 @ A2 ) ) ).

% IntD1
thf(fact_596_IntD1,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
     => ( member_a @ C2 @ A2 ) ) ).

% IntD1
thf(fact_597_IntD2,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( inf_inf_set_a_b @ A2 @ B ) )
     => ( member_a_b @ C2 @ B ) ) ).

% IntD2
thf(fact_598_IntD2,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( inf_inf_set_c @ A2 @ B ) )
     => ( member_c @ C2 @ B ) ) ).

% IntD2
thf(fact_599_IntD2,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( inf_inf_set_set_a @ A2 @ B ) )
     => ( member_set_a @ C2 @ B ) ) ).

% IntD2
thf(fact_600_IntD2,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( inf_inf_set_a_a @ A2 @ B ) )
     => ( member_a_a @ C2 @ B ) ) ).

% IntD2
thf(fact_601_IntD2,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( inf_inf_set_o @ A2 @ B ) )
     => ( member_o @ C2 @ B ) ) ).

% IntD2
thf(fact_602_IntD2,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) )
     => ( member_nat @ C2 @ B ) ) ).

% IntD2
thf(fact_603_IntD2,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
     => ( member_a @ C2 @ B ) ) ).

% IntD2
thf(fact_604_bex__Un,axiom,
    ! [A2: set_a,B: set_a,P: a > $o] :
      ( ( ? [X3: a] :
            ( ( member_a @ X3 @ ( sup_sup_set_a @ A2 @ B ) )
            & ( P @ X3 ) ) )
      = ( ? [X3: a] :
            ( ( member_a @ X3 @ A2 )
            & ( P @ X3 ) )
        | ? [X3: a] :
            ( ( member_a @ X3 @ B )
            & ( P @ X3 ) ) ) ) ).

% bex_Un
thf(fact_605_ball__Un,axiom,
    ! [A2: set_a,B: set_a,P: a > $o] :
      ( ( ! [X3: a] :
            ( ( member_a @ X3 @ ( sup_sup_set_a @ A2 @ B ) )
           => ( P @ X3 ) ) )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ( P @ X3 ) )
        & ! [X3: a] :
            ( ( member_a @ X3 @ B )
           => ( P @ X3 ) ) ) ) ).

% ball_Un
thf(fact_606_Un__assoc,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).

% Un_assoc
thf(fact_607_Int__assoc,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
      = ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) ) ) ).

% Int_assoc
thf(fact_608_Un__absorb,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_609_Int__absorb,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ A2 )
      = A2 ) ).

% Int_absorb
thf(fact_610_Un__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [A5: set_a,B5: set_a] : ( sup_sup_set_a @ B5 @ A5 ) ) ) ).

% Un_commute
thf(fact_611_Int__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [A5: set_a,B5: set_a] : ( inf_inf_set_a @ B5 @ A5 ) ) ) ).

% Int_commute
thf(fact_612_Un__Int__crazy,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ B @ C ) ) @ ( inf_inf_set_a @ C @ A2 ) )
      = ( inf_inf_set_a @ ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ B @ C ) ) @ ( sup_sup_set_a @ C @ A2 ) ) ) ).

% Un_Int_crazy
thf(fact_613_Int__Un__distrib,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ A2 @ C ) ) ) ).

% Int_Un_distrib
thf(fact_614_Un__Int__distrib,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ A2 @ C ) ) ) ).

% Un_Int_distrib
thf(fact_615_Un__left__absorb,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B ) )
      = ( sup_sup_set_a @ A2 @ B ) ) ).

% Un_left_absorb
thf(fact_616_Int__Un__distrib2,axiom,
    ! [B: set_a,C: set_a,A2: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ B @ C ) @ A2 )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ B @ A2 ) @ ( inf_inf_set_a @ C @ A2 ) ) ) ).

% Int_Un_distrib2
thf(fact_617_Int__left__absorb,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ A2 @ B ) )
      = ( inf_inf_set_a @ A2 @ B ) ) ).

% Int_left_absorb
thf(fact_618_Un__Int__distrib2,axiom,
    ! [B: set_a,C: set_a,A2: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ B @ C ) @ A2 )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ B @ A2 ) @ ( sup_sup_set_a @ C @ A2 ) ) ) ).

% Un_Int_distrib2
thf(fact_619_Un__left__commute,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
      = ( sup_sup_set_a @ B @ ( sup_sup_set_a @ A2 @ C ) ) ) ).

% Un_left_commute
thf(fact_620_Int__left__commute,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
      = ( inf_inf_set_a @ B @ ( inf_inf_set_a @ A2 @ C ) ) ) ).

% Int_left_commute
thf(fact_621_measurable__Un__null__set,axiom,
    ! [B: set_b,M2: sigma_measure_b,A2: set_b] :
      ( ( member_set_b @ B @ ( measure_null_sets_b @ M2 ) )
     => ( ( ( member_set_b @ ( sup_sup_set_b @ A2 @ B ) @ ( measur3645360004775918571able_b @ M2 ) )
          & ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) ) )
        = ( member_set_b @ A2 @ ( measur3645360004775918571able_b @ M2 ) ) ) ) ).

% measurable_Un_null_set
thf(fact_622_measurable__Un__null__set,axiom,
    ! [B: set_a,M2: sigma_measure_a,A2: set_a] :
      ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
     => ( ( ( member_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( measur3645360004775918570able_a @ M2 ) )
          & ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) ) )
        = ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ).

% measurable_Un_null_set
thf(fact_623_prob__space_Oprob__space,axiom,
    ! [M2: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( sigma_measure_b2 @ M2 @ ( sigma_space_b @ M2 ) )
        = one_one_real ) ) ).

% prob_space.prob_space
thf(fact_624_prob__space_Oprob__space,axiom,
    ! [M2: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( sigma_measure_a2 @ M2 @ ( sigma_space_a @ M2 ) )
        = one_one_real ) ) ).

% prob_space.prob_space
thf(fact_625_fmeasurableD,axiom,
    ! [A2: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ A2 @ ( measur3645360004775918571able_b @ M2 ) )
     => ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) ) ) ).

% fmeasurableD
thf(fact_626_fmeasurableD,axiom,
    ! [A2: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ M2 ) )
     => ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) ) ) ).

% fmeasurableD
thf(fact_627_subset__Un__eq,axiom,
    ( ord_le3795704787696855135_set_b
    = ( ^ [A5: set_set_b,B5: set_set_b] :
          ( ( sup_sup_set_set_b @ A5 @ B5 )
          = B5 ) ) ) ).

% subset_Un_eq
thf(fact_628_subset__Un__eq,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A5: set_set_a,B5: set_set_a] :
          ( ( sup_sup_set_set_a @ A5 @ B5 )
          = B5 ) ) ) ).

% subset_Un_eq
thf(fact_629_subset__Un__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
          ( ( sup_sup_set_a @ A5 @ B5 )
          = B5 ) ) ) ).

% subset_Un_eq
thf(fact_630_subset__UnE,axiom,
    ! [C: set_set_b,A2: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ C @ ( sup_sup_set_set_b @ A2 @ B ) )
     => ~ ! [A7: set_set_b] :
            ( ( ord_le3795704787696855135_set_b @ A7 @ A2 )
           => ! [B7: set_set_b] :
                ( ( ord_le3795704787696855135_set_b @ B7 @ B )
               => ( C
                 != ( sup_sup_set_set_b @ A7 @ B7 ) ) ) ) ) ).

% subset_UnE
thf(fact_631_subset__UnE,axiom,
    ! [C: set_set_a,A2: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ C @ ( sup_sup_set_set_a @ A2 @ B ) )
     => ~ ! [A7: set_set_a] :
            ( ( ord_le3724670747650509150_set_a @ A7 @ A2 )
           => ! [B7: set_set_a] :
                ( ( ord_le3724670747650509150_set_a @ B7 @ B )
               => ( C
                 != ( sup_sup_set_set_a @ A7 @ B7 ) ) ) ) ) ).

% subset_UnE
thf(fact_632_subset__UnE,axiom,
    ! [C: set_a,A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A2 @ B ) )
     => ~ ! [A7: set_a] :
            ( ( ord_less_eq_set_a @ A7 @ A2 )
           => ! [B7: set_a] :
                ( ( ord_less_eq_set_a @ B7 @ B )
               => ( C
                 != ( sup_sup_set_a @ A7 @ B7 ) ) ) ) ) ).

% subset_UnE
thf(fact_633_Un__absorb2,axiom,
    ! [B: set_set_b,A2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ B @ A2 )
     => ( ( sup_sup_set_set_b @ A2 @ B )
        = A2 ) ) ).

% Un_absorb2
thf(fact_634_Un__absorb2,axiom,
    ! [B: set_set_a,A2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ A2 )
     => ( ( sup_sup_set_set_a @ A2 @ B )
        = A2 ) ) ).

% Un_absorb2
thf(fact_635_Un__absorb2,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B @ A2 )
     => ( ( sup_sup_set_a @ A2 @ B )
        = A2 ) ) ).

% Un_absorb2
thf(fact_636_Un__absorb1,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( sup_sup_set_set_b @ A2 @ B )
        = B ) ) ).

% Un_absorb1
thf(fact_637_Un__absorb1,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( sup_sup_set_set_a @ A2 @ B )
        = B ) ) ).

% Un_absorb1
thf(fact_638_Un__absorb1,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( sup_sup_set_a @ A2 @ B )
        = B ) ) ).

% Un_absorb1
thf(fact_639_Un__upper2,axiom,
    ! [B: set_set_b,A2: set_set_b] : ( ord_le3795704787696855135_set_b @ B @ ( sup_sup_set_set_b @ A2 @ B ) ) ).

% Un_upper2
thf(fact_640_Un__upper2,axiom,
    ! [B: set_set_a,A2: set_set_a] : ( ord_le3724670747650509150_set_a @ B @ ( sup_sup_set_set_a @ A2 @ B ) ) ).

% Un_upper2
thf(fact_641_Un__upper2,axiom,
    ! [B: set_a,A2: set_a] : ( ord_less_eq_set_a @ B @ ( sup_sup_set_a @ A2 @ B ) ) ).

% Un_upper2
thf(fact_642_Un__upper1,axiom,
    ! [A2: set_set_b,B: set_set_b] : ( ord_le3795704787696855135_set_b @ A2 @ ( sup_sup_set_set_b @ A2 @ B ) ) ).

% Un_upper1
thf(fact_643_Un__upper1,axiom,
    ! [A2: set_set_a,B: set_set_a] : ( ord_le3724670747650509150_set_a @ A2 @ ( sup_sup_set_set_a @ A2 @ B ) ) ).

% Un_upper1
thf(fact_644_Un__upper1,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B ) ) ).

% Un_upper1
thf(fact_645_Un__least,axiom,
    ! [A2: set_set_b,C: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ C )
     => ( ( ord_le3795704787696855135_set_b @ B @ C )
       => ( ord_le3795704787696855135_set_b @ ( sup_sup_set_set_b @ A2 @ B ) @ C ) ) ) ).

% Un_least
thf(fact_646_Un__least,axiom,
    ! [A2: set_set_a,C: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ C )
     => ( ( ord_le3724670747650509150_set_a @ B @ C )
       => ( ord_le3724670747650509150_set_a @ ( sup_sup_set_set_a @ A2 @ B ) @ C ) ) ) ).

% Un_least
thf(fact_647_Un__least,axiom,
    ! [A2: set_a,C: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C ) ) ) ).

% Un_least
thf(fact_648_Un__mono,axiom,
    ! [A2: set_set_b,C: set_set_b,B: set_set_b,D: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ C )
     => ( ( ord_le3795704787696855135_set_b @ B @ D )
       => ( ord_le3795704787696855135_set_b @ ( sup_sup_set_set_b @ A2 @ B ) @ ( sup_sup_set_set_b @ C @ D ) ) ) ) ).

% Un_mono
thf(fact_649_Un__mono,axiom,
    ! [A2: set_set_a,C: set_set_a,B: set_set_a,D: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ C )
     => ( ( ord_le3724670747650509150_set_a @ B @ D )
       => ( ord_le3724670747650509150_set_a @ ( sup_sup_set_set_a @ A2 @ B ) @ ( sup_sup_set_set_a @ C @ D ) ) ) ) ).

% Un_mono
thf(fact_650_Un__mono,axiom,
    ! [A2: set_a,C: set_a,B: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ B @ D )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ C @ D ) ) ) ) ).

% Un_mono
thf(fact_651_sets__eq__imp__space__eq,axiom,
    ! [M2: sigma_measure_b,M: sigma_measure_b] :
      ( ( ( sigma_sets_b @ M2 )
        = ( sigma_sets_b @ M ) )
     => ( ( sigma_space_b @ M2 )
        = ( sigma_space_b @ M ) ) ) ).

% sets_eq_imp_space_eq
thf(fact_652_sets__eq__imp__space__eq,axiom,
    ! [M2: sigma_measure_a,M: sigma_measure_a] :
      ( ( ( sigma_sets_a @ M2 )
        = ( sigma_sets_a @ M ) )
     => ( ( sigma_space_a @ M2 )
        = ( sigma_space_a @ M ) ) ) ).

% sets_eq_imp_space_eq
thf(fact_653_fmeasurableI__null__sets,axiom,
    ! [A2: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ A2 @ ( measure_null_sets_a @ M2 ) )
     => ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ M2 ) ) ) ).

% fmeasurableI_null_sets
thf(fact_654_Int__Collect__mono,axiom,
    ! [A2: set_a_b,B: set_a_b,P: ( a > b ) > $o,Q: ( a > b ) > $o] :
      ( ( ord_less_eq_set_a_b @ A2 @ B )
     => ( ! [X4: a > b] :
            ( ( member_a_b @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_less_eq_set_a_b @ ( inf_inf_set_a_b @ A2 @ ( collect_a_b @ P ) ) @ ( inf_inf_set_a_b @ B @ ( collect_a_b @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_655_Int__Collect__mono,axiom,
    ! [A2: set_c,B: set_c,P: c > $o,Q: c > $o] :
      ( ( ord_less_eq_set_c @ A2 @ B )
     => ( ! [X4: c] :
            ( ( member_c @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_less_eq_set_c @ ( inf_inf_set_c @ A2 @ ( collect_c @ P ) ) @ ( inf_inf_set_c @ B @ ( collect_c @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_656_Int__Collect__mono,axiom,
    ! [A2: set_a_a,B: set_a_a,P: ( a > a ) > $o,Q: ( a > a ) > $o] :
      ( ( ord_less_eq_set_a_a @ A2 @ B )
     => ( ! [X4: a > a] :
            ( ( member_a_a @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_less_eq_set_a_a @ ( inf_inf_set_a_a @ A2 @ ( collect_a_a @ P ) ) @ ( inf_inf_set_a_a @ B @ ( collect_a_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_657_Int__Collect__mono,axiom,
    ! [A2: set_o,B: set_o,P: $o > $o,Q: $o > $o] :
      ( ( ord_less_eq_set_o @ A2 @ B )
     => ( ! [X4: $o] :
            ( ( member_o @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_less_eq_set_o @ ( inf_inf_set_o @ A2 @ ( collect_o @ P ) ) @ ( inf_inf_set_o @ B @ ( collect_o @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_658_Int__Collect__mono,axiom,
    ! [A2: set_nat,B: set_nat,P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ A2 @ B )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_less_eq_set_nat @ ( inf_inf_set_nat @ A2 @ ( collect_nat @ P ) ) @ ( inf_inf_set_nat @ B @ ( collect_nat @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_659_Int__Collect__mono,axiom,
    ! [A2: set_set_b,B: set_set_b,P: set_b > $o,Q: set_b > $o] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ! [X4: set_b] :
            ( ( member_set_b @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ A2 @ ( collect_set_b @ P ) ) @ ( inf_inf_set_set_b @ B @ ( collect_set_b @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_660_Int__Collect__mono,axiom,
    ! [A2: set_set_a,B: set_set_a,P: set_a > $o,Q: set_a > $o] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ! [X4: set_a] :
            ( ( member_set_a @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A2 @ ( collect_set_a @ P ) ) @ ( inf_inf_set_set_a @ B @ ( collect_set_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_661_Int__Collect__mono,axiom,
    ! [A2: set_a,B: set_a,P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ! [X4: a] :
            ( ( member_a @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B @ ( collect_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_662_Int__greatest,axiom,
    ! [C: set_set_b,A2: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ C @ A2 )
     => ( ( ord_le3795704787696855135_set_b @ C @ B )
       => ( ord_le3795704787696855135_set_b @ C @ ( inf_inf_set_set_b @ A2 @ B ) ) ) ) ).

% Int_greatest
thf(fact_663_Int__greatest,axiom,
    ! [C: set_set_a,A2: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ C @ A2 )
     => ( ( ord_le3724670747650509150_set_a @ C @ B )
       => ( ord_le3724670747650509150_set_a @ C @ ( inf_inf_set_set_a @ A2 @ B ) ) ) ) ).

% Int_greatest
thf(fact_664_Int__greatest,axiom,
    ! [C: set_a,A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ A2 )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_eq_set_a @ C @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).

% Int_greatest
thf(fact_665_Int__absorb2,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( inf_inf_set_set_b @ A2 @ B )
        = A2 ) ) ).

% Int_absorb2
thf(fact_666_Int__absorb2,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( inf_inf_set_set_a @ A2 @ B )
        = A2 ) ) ).

% Int_absorb2
thf(fact_667_Int__absorb2,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( inf_inf_set_a @ A2 @ B )
        = A2 ) ) ).

% Int_absorb2
thf(fact_668_Int__absorb1,axiom,
    ! [B: set_set_b,A2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ B @ A2 )
     => ( ( inf_inf_set_set_b @ A2 @ B )
        = B ) ) ).

% Int_absorb1
thf(fact_669_Int__absorb1,axiom,
    ! [B: set_set_a,A2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ A2 )
     => ( ( inf_inf_set_set_a @ A2 @ B )
        = B ) ) ).

% Int_absorb1
thf(fact_670_Int__absorb1,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B @ A2 )
     => ( ( inf_inf_set_a @ A2 @ B )
        = B ) ) ).

% Int_absorb1
thf(fact_671_Int__lower2,axiom,
    ! [A2: set_set_b,B: set_set_b] : ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ A2 @ B ) @ B ) ).

% Int_lower2
thf(fact_672_Int__lower2,axiom,
    ! [A2: set_set_a,B: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A2 @ B ) @ B ) ).

% Int_lower2
thf(fact_673_Int__lower2,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ B ) ).

% Int_lower2
thf(fact_674_Int__lower1,axiom,
    ! [A2: set_set_b,B: set_set_b] : ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ A2 @ B ) @ A2 ) ).

% Int_lower1
thf(fact_675_Int__lower1,axiom,
    ! [A2: set_set_a,B: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A2 @ B ) @ A2 ) ).

% Int_lower1
thf(fact_676_Int__lower1,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ A2 ) ).

% Int_lower1
thf(fact_677_Int__mono,axiom,
    ! [A2: set_set_b,C: set_set_b,B: set_set_b,D: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ C )
     => ( ( ord_le3795704787696855135_set_b @ B @ D )
       => ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ A2 @ B ) @ ( inf_inf_set_set_b @ C @ D ) ) ) ) ).

% Int_mono
thf(fact_678_Int__mono,axiom,
    ! [A2: set_set_a,C: set_set_a,B: set_set_a,D: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ C )
     => ( ( ord_le3724670747650509150_set_a @ B @ D )
       => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A2 @ B ) @ ( inf_inf_set_set_a @ C @ D ) ) ) ) ).

% Int_mono
thf(fact_679_Int__mono,axiom,
    ! [A2: set_a,C: set_a,B: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ B @ D )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ C @ D ) ) ) ) ).

% Int_mono
thf(fact_680_measurable__cong__simp,axiom,
    ! [M2: sigma_measure_a,N: sigma_measure_a,M: sigma_measure_b,N3: sigma_measure_b,F: a > b,G2: a > b] :
      ( ( M2 = N )
     => ( ( M = N3 )
       => ( ! [W: a] :
              ( ( member_a @ W @ ( sigma_space_a @ M2 ) )
             => ( ( F @ W )
                = ( G2 @ W ) ) )
         => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ M ) )
            = ( member_a_b @ G2 @ ( sigma_measurable_a_b @ N @ N3 ) ) ) ) ) ) ).

% measurable_cong_simp
thf(fact_681_measurable__cong__simp,axiom,
    ! [M2: sigma_measure_a,N: sigma_measure_a,M: sigma_measure_a,N3: sigma_measure_a,F: a > a,G2: a > a] :
      ( ( M2 = N )
     => ( ( M = N3 )
       => ( ! [W: a] :
              ( ( member_a @ W @ ( sigma_space_a @ M2 ) )
             => ( ( F @ W )
                = ( G2 @ W ) ) )
         => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ M ) )
            = ( member_a_a @ G2 @ ( sigma_measurable_a_a @ N @ N3 ) ) ) ) ) ) ).

% measurable_cong_simp
thf(fact_682_measurable__space,axiom,
    ! [F: c > c,M2: sigma_measure_c,A2: sigma_measure_c,X5: c] :
      ( ( member_c_c @ F @ ( sigma_measurable_c_c @ M2 @ A2 ) )
     => ( ( member_c @ X5 @ ( sigma_space_c @ M2 ) )
       => ( member_c @ ( F @ X5 ) @ ( sigma_space_c @ A2 ) ) ) ) ).

% measurable_space
thf(fact_683_measurable__space,axiom,
    ! [F: c > $o,M2: sigma_measure_c,A2: sigma_measure_o,X5: c] :
      ( ( member_c_o @ F @ ( sigma_measurable_c_o @ M2 @ A2 ) )
     => ( ( member_c @ X5 @ ( sigma_space_c @ M2 ) )
       => ( member_o @ ( F @ X5 ) @ ( sigma_space_o @ A2 ) ) ) ) ).

% measurable_space
thf(fact_684_measurable__space,axiom,
    ! [F: c > nat,M2: sigma_measure_c,A2: sigma_measure_nat,X5: c] :
      ( ( member_c_nat @ F @ ( sigma_2544038740538346112_c_nat @ M2 @ A2 ) )
     => ( ( member_c @ X5 @ ( sigma_space_c @ M2 ) )
       => ( member_nat @ ( F @ X5 ) @ ( sigma_space_nat @ A2 ) ) ) ) ).

% measurable_space
thf(fact_685_measurable__space,axiom,
    ! [F: $o > c,M2: sigma_measure_o,A2: sigma_measure_c,X5: $o] :
      ( ( member_o_c @ F @ ( sigma_measurable_o_c @ M2 @ A2 ) )
     => ( ( member_o @ X5 @ ( sigma_space_o @ M2 ) )
       => ( member_c @ ( F @ X5 ) @ ( sigma_space_c @ A2 ) ) ) ) ).

% measurable_space
thf(fact_686_measurable__space,axiom,
    ! [F: $o > $o,M2: sigma_measure_o,A2: sigma_measure_o,X5: $o] :
      ( ( member_o_o @ F @ ( sigma_measurable_o_o @ M2 @ A2 ) )
     => ( ( member_o @ X5 @ ( sigma_space_o @ M2 ) )
       => ( member_o @ ( F @ X5 ) @ ( sigma_space_o @ A2 ) ) ) ) ).

% measurable_space
thf(fact_687_measurable__space,axiom,
    ! [F: $o > nat,M2: sigma_measure_o,A2: sigma_measure_nat,X5: $o] :
      ( ( member_o_nat @ F @ ( sigma_1999164137574644376_o_nat @ M2 @ A2 ) )
     => ( ( member_o @ X5 @ ( sigma_space_o @ M2 ) )
       => ( member_nat @ ( F @ X5 ) @ ( sigma_space_nat @ A2 ) ) ) ) ).

% measurable_space
thf(fact_688_measurable__space,axiom,
    ! [F: nat > c,M2: sigma_measure_nat,A2: sigma_measure_c,X5: nat] :
      ( ( member_nat_c @ F @ ( sigma_4105081583803843550_nat_c @ M2 @ A2 ) )
     => ( ( member_nat @ X5 @ ( sigma_space_nat @ M2 ) )
       => ( member_c @ ( F @ X5 ) @ ( sigma_space_c @ A2 ) ) ) ) ).

% measurable_space
thf(fact_689_measurable__space,axiom,
    ! [F: nat > $o,M2: sigma_measure_nat,A2: sigma_measure_o,X5: nat] :
      ( ( member_nat_o @ F @ ( sigma_5101835498682829686_nat_o @ M2 @ A2 ) )
     => ( ( member_nat @ X5 @ ( sigma_space_nat @ M2 ) )
       => ( member_o @ ( F @ X5 ) @ ( sigma_space_o @ A2 ) ) ) ) ).

% measurable_space
thf(fact_690_measurable__space,axiom,
    ! [F: nat > nat,M2: sigma_measure_nat,A2: sigma_measure_nat,X5: nat] :
      ( ( member_nat_nat @ F @ ( sigma_4350458207664084850at_nat @ M2 @ A2 ) )
     => ( ( member_nat @ X5 @ ( sigma_space_nat @ M2 ) )
       => ( member_nat @ ( F @ X5 ) @ ( sigma_space_nat @ A2 ) ) ) ) ).

% measurable_space
thf(fact_691_measurable__space,axiom,
    ! [F: c > a,M2: sigma_measure_c,A2: sigma_measure_a,X5: c] :
      ( ( member_c_a @ F @ ( sigma_measurable_c_a @ M2 @ A2 ) )
     => ( ( member_c @ X5 @ ( sigma_space_c @ M2 ) )
       => ( member_a @ ( F @ X5 ) @ ( sigma_space_a @ A2 ) ) ) ) ).

% measurable_space
thf(fact_692_measurable__cong,axiom,
    ! [M2: sigma_measure_a,F: a > b,G2: a > b,M: sigma_measure_b] :
      ( ! [W: a] :
          ( ( member_a @ W @ ( sigma_space_a @ M2 ) )
         => ( ( F @ W )
            = ( G2 @ W ) ) )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ M ) )
        = ( member_a_b @ G2 @ ( sigma_measurable_a_b @ M2 @ M ) ) ) ) ).

% measurable_cong
thf(fact_693_measurable__cong,axiom,
    ! [M2: sigma_measure_a,F: a > a,G2: a > a,M: sigma_measure_a] :
      ( ! [W: a] :
          ( ( member_a @ W @ ( sigma_space_a @ M2 ) )
         => ( ( F @ W )
            = ( G2 @ W ) ) )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ M ) )
        = ( member_a_a @ G2 @ ( sigma_measurable_a_a @ M2 @ M ) ) ) ) ).

% measurable_cong
thf(fact_694_finite__measure_Omeasure__space__inter,axiom,
    ! [M2: sigma_measure_a,S2: set_a,T3: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_set_a @ S2 @ ( sigma_sets_a @ M2 ) )
       => ( ( member_set_a @ T3 @ ( sigma_sets_a @ M2 ) )
         => ( ( ( sigma_measure_a2 @ M2 @ T3 )
              = ( sigma_measure_a2 @ M2 @ ( sigma_space_a @ M2 ) ) )
           => ( ( sigma_measure_a2 @ M2 @ ( inf_inf_set_a @ S2 @ T3 ) )
              = ( sigma_measure_a2 @ M2 @ S2 ) ) ) ) ) ) ).

% finite_measure.measure_space_inter
thf(fact_695_finite__measure_Omeasure__space__inter,axiom,
    ! [M2: sigma_measure_b,S2: set_b,T3: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_set_b @ S2 @ ( sigma_sets_b @ M2 ) )
       => ( ( member_set_b @ T3 @ ( sigma_sets_b @ M2 ) )
         => ( ( ( sigma_measure_b2 @ M2 @ T3 )
              = ( sigma_measure_b2 @ M2 @ ( sigma_space_b @ M2 ) ) )
           => ( ( sigma_measure_b2 @ M2 @ ( inf_inf_set_b @ S2 @ T3 ) )
              = ( sigma_measure_b2 @ M2 @ S2 ) ) ) ) ) ) ).

% finite_measure.measure_space_inter
thf(fact_696_prob__space_Oindep__setD,axiom,
    ! [M2: sigma_measure_b,A2: set_set_b,B: set_set_b,A: set_b,B2: set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe2041756565122539607_set_b @ M2 @ A2 @ B )
       => ( ( member_set_b @ A @ A2 )
         => ( ( member_set_b @ B2 @ B )
           => ( ( sigma_measure_b2 @ M2 @ ( inf_inf_set_b @ A @ B2 ) )
              = ( times_times_real @ ( sigma_measure_b2 @ M2 @ A ) @ ( sigma_measure_b2 @ M2 @ B2 ) ) ) ) ) ) ) ).

% prob_space.indep_setD
thf(fact_697_prob__space_Oindep__setD,axiom,
    ! [M2: sigma_measure_a,A2: set_set_a,B: set_set_a,A: set_a,B2: set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2041756565122539606_set_a @ M2 @ A2 @ B )
       => ( ( member_set_a @ A @ A2 )
         => ( ( member_set_a @ B2 @ B )
           => ( ( sigma_measure_a2 @ M2 @ ( inf_inf_set_a @ A @ B2 ) )
              = ( times_times_real @ ( sigma_measure_a2 @ M2 @ A ) @ ( sigma_measure_a2 @ M2 @ B2 ) ) ) ) ) ) ) ).

% prob_space.indep_setD
thf(fact_698_fmeasurableI2,axiom,
    ! [A2: set_b,M2: sigma_measure_b,B: set_b] :
      ( ( member_set_b @ A2 @ ( measur3645360004775918571able_b @ M2 ) )
     => ( ( ord_less_eq_set_b @ B @ A2 )
       => ( ( member_set_b @ B @ ( sigma_sets_b @ M2 ) )
         => ( member_set_b @ B @ ( measur3645360004775918571able_b @ M2 ) ) ) ) ) ).

% fmeasurableI2
thf(fact_699_fmeasurableI2,axiom,
    ! [A2: set_set_b,M2: sigma_measure_set_b,B: set_set_b] :
      ( ( member_set_set_b @ A2 @ ( measur7460903249514972363_set_b @ M2 ) )
     => ( ( ord_le3795704787696855135_set_b @ B @ A2 )
       => ( ( member_set_set_b @ B @ ( sigma_sets_set_b @ M2 ) )
         => ( member_set_set_b @ B @ ( measur7460903249514972363_set_b @ M2 ) ) ) ) ) ).

% fmeasurableI2
thf(fact_700_fmeasurableI2,axiom,
    ! [A2: set_set_a,M2: sigma_measure_set_a,B: set_set_a] :
      ( ( member_set_set_a @ A2 @ ( measur7460903245211743562_set_a @ M2 ) )
     => ( ( ord_le3724670747650509150_set_a @ B @ A2 )
       => ( ( member_set_set_a @ B @ ( sigma_sets_set_a @ M2 ) )
         => ( member_set_set_a @ B @ ( measur7460903245211743562_set_a @ M2 ) ) ) ) ) ).

% fmeasurableI2
thf(fact_701_fmeasurableI2,axiom,
    ! [A2: set_a,M2: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( ord_less_eq_set_a @ B @ A2 )
       => ( ( member_set_a @ B @ ( sigma_sets_a @ M2 ) )
         => ( member_set_a @ B @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ) ).

% fmeasurableI2
thf(fact_702_sets_Osets__into__space,axiom,
    ! [X5: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ X5 @ ( sigma_sets_b @ M2 ) )
     => ( ord_less_eq_set_b @ X5 @ ( sigma_space_b @ M2 ) ) ) ).

% sets.sets_into_space
thf(fact_703_sets_Osets__into__space,axiom,
    ! [X5: set_set_b,M2: sigma_measure_set_b] :
      ( ( member_set_set_b @ X5 @ ( sigma_sets_set_b @ M2 ) )
     => ( ord_le3795704787696855135_set_b @ X5 @ ( sigma_space_set_b @ M2 ) ) ) ).

% sets.sets_into_space
thf(fact_704_sets_Osets__into__space,axiom,
    ! [X5: set_set_a,M2: sigma_measure_set_a] :
      ( ( member_set_set_a @ X5 @ ( sigma_sets_set_a @ M2 ) )
     => ( ord_le3724670747650509150_set_a @ X5 @ ( sigma_space_set_a @ M2 ) ) ) ).

% sets.sets_into_space
thf(fact_705_sets_Osets__into__space,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( sigma_sets_a @ M2 ) )
     => ( ord_less_eq_set_a @ X5 @ ( sigma_space_a @ M2 ) ) ) ).

% sets.sets_into_space
thf(fact_706_finite__measure_Ofmeasurable__eq__sets,axiom,
    ! [M2: sigma_measure_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( measur3645360004775918570able_a @ M2 )
        = ( sigma_sets_a @ M2 ) ) ) ).

% finite_measure.fmeasurable_eq_sets
thf(fact_707_finite__measure_Ofmeasurable__eq__sets,axiom,
    ! [M2: sigma_measure_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( measur3645360004775918571able_b @ M2 )
        = ( sigma_sets_b @ M2 ) ) ) ).

% finite_measure.fmeasurable_eq_sets
thf(fact_708_null__sets_Osets__into__space,axiom,
    ! [X5: set_set_b,M2: sigma_measure_set_b] :
      ( ( member_set_set_b @ X5 @ ( measur1516554132335629586_set_b @ M2 ) )
     => ( ord_le3795704787696855135_set_b @ X5 @ ( sigma_space_set_b @ M2 ) ) ) ).

% null_sets.sets_into_space
thf(fact_709_null__sets_Osets__into__space,axiom,
    ! [X5: set_set_a,M2: sigma_measure_set_a] :
      ( ( member_set_set_a @ X5 @ ( measur1516554128032400785_set_a @ M2 ) )
     => ( ord_le3724670747650509150_set_a @ X5 @ ( sigma_space_set_a @ M2 ) ) ) ).

% null_sets.sets_into_space
thf(fact_710_null__sets_Osets__into__space,axiom,
    ! [X5: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ X5 @ ( measure_null_sets_a @ M2 ) )
     => ( ord_less_eq_set_a @ X5 @ ( sigma_space_a @ M2 ) ) ) ).

% null_sets.sets_into_space
thf(fact_711_distr__cong,axiom,
    ! [M2: sigma_measure_c,K: sigma_measure_c,N: sigma_measure_b,L: sigma_measure_b,F: c > b,G2: c > b] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_b @ N )
          = ( sigma_sets_b @ L ) )
       => ( ! [X4: c] :
              ( ( member_c @ X4 @ ( sigma_space_c @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measure_distr_c_b @ M2 @ N @ F )
            = ( measure_distr_c_b @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_712_distr__cong,axiom,
    ! [M2: sigma_measure_o,K: sigma_measure_o,N: sigma_measure_b,L: sigma_measure_b,F: $o > b,G2: $o > b] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_b @ N )
          = ( sigma_sets_b @ L ) )
       => ( ! [X4: $o] :
              ( ( member_o @ X4 @ ( sigma_space_o @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measure_distr_o_b @ M2 @ N @ F )
            = ( measure_distr_o_b @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_713_distr__cong,axiom,
    ! [M2: sigma_measure_nat,K: sigma_measure_nat,N: sigma_measure_b,L: sigma_measure_b,F: nat > b,G2: nat > b] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_b @ N )
          = ( sigma_sets_b @ L ) )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( sigma_space_nat @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measure_distr_nat_b @ M2 @ N @ F )
            = ( measure_distr_nat_b @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_714_distr__cong,axiom,
    ! [M2: sigma_measure_c,K: sigma_measure_c,N: sigma_measure_a,L: sigma_measure_a,F: c > a,G2: c > a] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ L ) )
       => ( ! [X4: c] :
              ( ( member_c @ X4 @ ( sigma_space_c @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measure_distr_c_a @ M2 @ N @ F )
            = ( measure_distr_c_a @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_715_distr__cong,axiom,
    ! [M2: sigma_measure_o,K: sigma_measure_o,N: sigma_measure_a,L: sigma_measure_a,F: $o > a,G2: $o > a] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ L ) )
       => ( ! [X4: $o] :
              ( ( member_o @ X4 @ ( sigma_space_o @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measure_distr_o_a @ M2 @ N @ F )
            = ( measure_distr_o_a @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_716_distr__cong,axiom,
    ! [M2: sigma_measure_nat,K: sigma_measure_nat,N: sigma_measure_a,L: sigma_measure_a,F: nat > a,G2: nat > a] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ L ) )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( sigma_space_nat @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measure_distr_nat_a @ M2 @ N @ F )
            = ( measure_distr_nat_a @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_717_distr__cong,axiom,
    ! [M2: sigma_measure_a,K: sigma_measure_a,N: sigma_measure_b,L: sigma_measure_b,F: a > b,G2: a > b] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_b @ N )
          = ( sigma_sets_b @ L ) )
       => ( ! [X4: a] :
              ( ( member_a @ X4 @ ( sigma_space_a @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measure_distr_a_b @ M2 @ N @ F )
            = ( measure_distr_a_b @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_718_distr__cong,axiom,
    ! [M2: sigma_measure_a,K: sigma_measure_a,N: sigma_measure_a,L: sigma_measure_a,F: a > a,G2: a > a] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ L ) )
       => ( ! [X4: a] :
              ( ( member_a @ X4 @ ( sigma_space_a @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measure_distr_a_a @ M2 @ N @ F )
            = ( measure_distr_a_a @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_719_distr__cong,axiom,
    ! [M2: sigma_measure_set_a,K: sigma_measure_set_a,N: sigma_measure_b,L: sigma_measure_b,F: set_a > b,G2: set_a > b] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_b @ N )
          = ( sigma_sets_b @ L ) )
       => ( ! [X4: set_a] :
              ( ( member_set_a @ X4 @ ( sigma_space_set_a @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measur7064479691503150873et_a_b @ M2 @ N @ F )
            = ( measur7064479691503150873et_a_b @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_720_distr__cong,axiom,
    ! [M2: sigma_measure_set_a,K: sigma_measure_set_a,N: sigma_measure_a,L: sigma_measure_a,F: set_a > a,G2: set_a > a] :
      ( ( M2 = K )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ L ) )
       => ( ! [X4: set_a] :
              ( ( member_set_a @ X4 @ ( sigma_space_set_a @ M2 ) )
             => ( ( F @ X4 )
                = ( G2 @ X4 ) ) )
         => ( ( measur7064479691503150872et_a_a @ M2 @ N @ F )
            = ( measur7064479691503150872et_a_a @ K @ L @ G2 ) ) ) ) ) ).

% distr_cong
thf(fact_721_null__set__Int1,axiom,
    ! [B: set_b,M2: sigma_measure_b,A2: set_b] :
      ( ( member_set_b @ B @ ( measure_null_sets_b @ M2 ) )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( member_set_b @ ( inf_inf_set_b @ A2 @ B ) @ ( measure_null_sets_b @ M2 ) ) ) ) ).

% null_set_Int1
thf(fact_722_null__set__Int1,axiom,
    ! [B: set_a,M2: sigma_measure_a,A2: set_a] :
      ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( member_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( measure_null_sets_a @ M2 ) ) ) ) ).

% null_set_Int1
thf(fact_723_null__set__Int2,axiom,
    ! [B: set_b,M2: sigma_measure_b,A2: set_b] :
      ( ( member_set_b @ B @ ( measure_null_sets_b @ M2 ) )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( member_set_b @ ( inf_inf_set_b @ B @ A2 ) @ ( measure_null_sets_b @ M2 ) ) ) ) ).

% null_set_Int2
thf(fact_724_null__set__Int2,axiom,
    ! [B: set_a,M2: sigma_measure_a,A2: set_a] :
      ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( member_set_a @ ( inf_inf_set_a @ B @ A2 ) @ ( measure_null_sets_a @ M2 ) ) ) ) ).

% null_set_Int2
thf(fact_725_le__measureD1,axiom,
    ! [A2: sigma_measure_set_b,B: sigma_measure_set_b] :
      ( ( ord_le5713619651007674940_set_b @ A2 @ B )
     => ( ord_le3795704787696855135_set_b @ ( sigma_space_set_b @ A2 ) @ ( sigma_space_set_b @ B ) ) ) ).

% le_measureD1
thf(fact_726_le__measureD1,axiom,
    ! [A2: sigma_measure_set_a,B: sigma_measure_set_a] :
      ( ( ord_le5642585610961328955_set_a @ A2 @ B )
     => ( ord_le3724670747650509150_set_a @ ( sigma_space_set_a @ A2 ) @ ( sigma_space_set_a @ B ) ) ) ).

% le_measureD1
thf(fact_727_le__measureD1,axiom,
    ! [A2: sigma_measure_a,B: sigma_measure_a] :
      ( ( ord_le254669795585780187sure_a @ A2 @ B )
     => ( ord_less_eq_set_a @ ( sigma_space_a @ A2 ) @ ( sigma_space_a @ B ) ) ) ).

% le_measureD1
thf(fact_728_prob__space_Oindep__sets2__eq,axiom,
    ! [M2: sigma_measure_b,A2: set_set_b,B: set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( indepe2041756565122539607_set_b @ M2 @ A2 @ B )
        = ( ( ord_le3795704787696855135_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
          & ( ord_le3795704787696855135_set_b @ B @ ( sigma_sets_b @ M2 ) )
          & ! [X3: set_b] :
              ( ( member_set_b @ X3 @ A2 )
             => ! [Y3: set_b] :
                  ( ( member_set_b @ Y3 @ B )
                 => ( ( sigma_measure_b2 @ M2 @ ( inf_inf_set_b @ X3 @ Y3 ) )
                    = ( times_times_real @ ( sigma_measure_b2 @ M2 @ X3 ) @ ( sigma_measure_b2 @ M2 @ Y3 ) ) ) ) ) ) ) ) ).

% prob_space.indep_sets2_eq
thf(fact_729_prob__space_Oindep__sets2__eq,axiom,
    ! [M2: sigma_measure_a,A2: set_set_a,B: set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( indepe2041756565122539606_set_a @ M2 @ A2 @ B )
        = ( ( ord_le3724670747650509150_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
          & ( ord_le3724670747650509150_set_a @ B @ ( sigma_sets_a @ M2 ) )
          & ! [X3: set_a] :
              ( ( member_set_a @ X3 @ A2 )
             => ! [Y3: set_a] :
                  ( ( member_set_a @ Y3 @ B )
                 => ( ( sigma_measure_a2 @ M2 @ ( inf_inf_set_a @ X3 @ Y3 ) )
                    = ( times_times_real @ ( sigma_measure_a2 @ M2 @ X3 ) @ ( sigma_measure_a2 @ M2 @ Y3 ) ) ) ) ) ) ) ) ).

% prob_space.indep_sets2_eq
thf(fact_730_prob__space_Oindep__setI,axiom,
    ! [M2: sigma_measure_b,A2: set_set_b,B: set_set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( ord_le3795704787696855135_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( ( ord_le3795704787696855135_set_b @ B @ ( sigma_sets_b @ M2 ) )
         => ( ! [A3: set_b,B3: set_b] :
                ( ( member_set_b @ A3 @ A2 )
               => ( ( member_set_b @ B3 @ B )
                 => ( ( sigma_measure_b2 @ M2 @ ( inf_inf_set_b @ A3 @ B3 ) )
                    = ( times_times_real @ ( sigma_measure_b2 @ M2 @ A3 ) @ ( sigma_measure_b2 @ M2 @ B3 ) ) ) ) )
           => ( indepe2041756565122539607_set_b @ M2 @ A2 @ B ) ) ) ) ) ).

% prob_space.indep_setI
thf(fact_731_prob__space_Oindep__setI,axiom,
    ! [M2: sigma_measure_a,A2: set_set_a,B: set_set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_le3724670747650509150_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( ( ord_le3724670747650509150_set_a @ B @ ( sigma_sets_a @ M2 ) )
         => ( ! [A3: set_a,B3: set_a] :
                ( ( member_set_a @ A3 @ A2 )
               => ( ( member_set_a @ B3 @ B )
                 => ( ( sigma_measure_a2 @ M2 @ ( inf_inf_set_a @ A3 @ B3 ) )
                    = ( times_times_real @ ( sigma_measure_a2 @ M2 @ A3 ) @ ( sigma_measure_a2 @ M2 @ B3 ) ) ) ) )
           => ( indepe2041756565122539606_set_a @ M2 @ A2 @ B ) ) ) ) ) ).

% prob_space.indep_setI
thf(fact_732_completion_Ocomplete__sets__sandwich__fmeasurable,axiom,
    ! [A2: set_set_b,M2: sigma_measure_set_b,C: set_set_b,B: set_set_b] :
      ( ( member_set_set_b @ A2 @ ( measur7460903249514972363_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) )
     => ( ( member_set_set_b @ C @ ( measur7460903249514972363_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) )
       => ( ( ord_le3795704787696855135_set_b @ A2 @ B )
         => ( ( ord_le3795704787696855135_set_b @ B @ C )
           => ( ( ( sigma_measure_set_b2 @ ( comple8942076150311361001_set_b @ M2 ) @ A2 )
                = ( sigma_measure_set_b2 @ ( comple8942076150311361001_set_b @ M2 ) @ C ) )
             => ( member_set_set_b @ B @ ( measur7460903249514972363_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) ) ) ) ) ) ) ).

% completion.complete_sets_sandwich_fmeasurable
thf(fact_733_completion_Ocomplete__sets__sandwich__fmeasurable,axiom,
    ! [A2: set_set_a,M2: sigma_measure_set_a,C: set_set_a,B: set_set_a] :
      ( ( member_set_set_a @ A2 @ ( measur7460903245211743562_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) )
     => ( ( member_set_set_a @ C @ ( measur7460903245211743562_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) )
       => ( ( ord_le3724670747650509150_set_a @ A2 @ B )
         => ( ( ord_le3724670747650509150_set_a @ B @ C )
           => ( ( ( sigma_measure_set_a2 @ ( comple8942076146008132200_set_a @ M2 ) @ A2 )
                = ( sigma_measure_set_a2 @ ( comple8942076146008132200_set_a @ M2 ) @ C ) )
             => ( member_set_set_a @ B @ ( measur7460903245211743562_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) ) ) ) ) ) ) ).

% completion.complete_sets_sandwich_fmeasurable
thf(fact_734_completion_Ocomplete__sets__sandwich__fmeasurable,axiom,
    ! [A2: set_a,M2: sigma_measure_a,C: set_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
     => ( ( member_set_a @ C @ ( measur3645360004775918570able_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
       => ( ( ord_less_eq_set_a @ A2 @ B )
         => ( ( ord_less_eq_set_a @ B @ C )
           => ( ( ( sigma_measure_a2 @ ( comple3428971583294703880tion_a @ M2 ) @ A2 )
                = ( sigma_measure_a2 @ ( comple3428971583294703880tion_a @ M2 ) @ C ) )
             => ( member_set_a @ B @ ( measur3645360004775918570able_a @ ( comple3428971583294703880tion_a @ M2 ) ) ) ) ) ) ) ) ).

% completion.complete_sets_sandwich_fmeasurable
thf(fact_735_sets__le__imp__space__le,axiom,
    ! [A2: sigma_measure_set_b,B: sigma_measure_set_b] :
      ( ( ord_le3201067847557142847_set_b @ ( sigma_sets_set_b @ A2 ) @ ( sigma_sets_set_b @ B ) )
     => ( ord_le3795704787696855135_set_b @ ( sigma_space_set_b @ A2 ) @ ( sigma_space_set_b @ B ) ) ) ).

% sets_le_imp_space_le
thf(fact_736_sets__le__imp__space__le,axiom,
    ! [A2: sigma_measure_set_a,B: sigma_measure_set_a] :
      ( ( ord_le5722252365846178494_set_a @ ( sigma_sets_set_a @ A2 ) @ ( sigma_sets_set_a @ B ) )
     => ( ord_le3724670747650509150_set_a @ ( sigma_space_set_a @ A2 ) @ ( sigma_space_set_a @ B ) ) ) ).

% sets_le_imp_space_le
thf(fact_737_sets__le__imp__space__le,axiom,
    ! [A2: sigma_measure_b,B: sigma_measure_b] :
      ( ( ord_le3795704787696855135_set_b @ ( sigma_sets_b @ A2 ) @ ( sigma_sets_b @ B ) )
     => ( ord_less_eq_set_b @ ( sigma_space_b @ A2 ) @ ( sigma_space_b @ B ) ) ) ).

% sets_le_imp_space_le
thf(fact_738_sets__le__imp__space__le,axiom,
    ! [A2: sigma_measure_a,B: sigma_measure_a] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ A2 ) @ ( sigma_sets_a @ B ) )
     => ( ord_less_eq_set_a @ ( sigma_space_a @ A2 ) @ ( sigma_space_a @ B ) ) ) ).

% sets_le_imp_space_le
thf(fact_739_measurable__mono,axiom,
    ! [N3: sigma_measure_b,N: sigma_measure_b,M2: sigma_measure_b,M: sigma_measure_b] :
      ( ( ord_le3795704787696855135_set_b @ ( sigma_sets_b @ N3 ) @ ( sigma_sets_b @ N ) )
     => ( ( ( sigma_space_b @ N )
          = ( sigma_space_b @ N3 ) )
       => ( ( ord_le3795704787696855135_set_b @ ( sigma_sets_b @ M2 ) @ ( sigma_sets_b @ M ) )
         => ( ( ( sigma_space_b @ M2 )
              = ( sigma_space_b @ M ) )
           => ( ord_less_eq_set_b_b @ ( sigma_measurable_b_b @ M2 @ N ) @ ( sigma_measurable_b_b @ M @ N3 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_740_measurable__mono,axiom,
    ! [N3: sigma_measure_b,N: sigma_measure_b,M2: sigma_measure_a,M: sigma_measure_a] :
      ( ( ord_le3795704787696855135_set_b @ ( sigma_sets_b @ N3 ) @ ( sigma_sets_b @ N ) )
     => ( ( ( sigma_space_b @ N )
          = ( sigma_space_b @ N3 ) )
       => ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ M2 ) @ ( sigma_sets_a @ M ) )
         => ( ( ( sigma_space_a @ M2 )
              = ( sigma_space_a @ M ) )
           => ( ord_less_eq_set_a_b @ ( sigma_measurable_a_b @ M2 @ N ) @ ( sigma_measurable_a_b @ M @ N3 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_741_measurable__mono,axiom,
    ! [N3: sigma_measure_a,N: sigma_measure_a,M2: sigma_measure_b,M: sigma_measure_b] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ N3 ) @ ( sigma_sets_a @ N ) )
     => ( ( ( sigma_space_a @ N )
          = ( sigma_space_a @ N3 ) )
       => ( ( ord_le3795704787696855135_set_b @ ( sigma_sets_b @ M2 ) @ ( sigma_sets_b @ M ) )
         => ( ( ( sigma_space_b @ M2 )
              = ( sigma_space_b @ M ) )
           => ( ord_less_eq_set_b_a @ ( sigma_measurable_b_a @ M2 @ N ) @ ( sigma_measurable_b_a @ M @ N3 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_742_measurable__mono,axiom,
    ! [N3: sigma_measure_a,N: sigma_measure_a,M2: sigma_measure_a,M: sigma_measure_a] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ N3 ) @ ( sigma_sets_a @ N ) )
     => ( ( ( sigma_space_a @ N )
          = ( sigma_space_a @ N3 ) )
       => ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ M2 ) @ ( sigma_sets_a @ M ) )
         => ( ( ( sigma_space_a @ M2 )
              = ( sigma_space_a @ M ) )
           => ( ord_less_eq_set_a_a @ ( sigma_measurable_a_a @ M2 @ N ) @ ( sigma_measurable_a_a @ M @ N3 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_743_measure__Un__null__set,axiom,
    ! [A2: set_b,M2: sigma_measure_b,B: set_b] :
      ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
     => ( ( member_set_b @ B @ ( measure_null_sets_b @ M2 ) )
       => ( ( sigma_measure_b2 @ M2 @ ( sup_sup_set_b @ A2 @ B ) )
          = ( sigma_measure_b2 @ M2 @ A2 ) ) ) ) ).

% measure_Un_null_set
thf(fact_744_measure__Un__null__set,axiom,
    ! [A2: set_a,M2: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
     => ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
       => ( ( sigma_measure_a2 @ M2 @ ( sup_sup_set_a @ A2 @ B ) )
          = ( sigma_measure_a2 @ M2 @ A2 ) ) ) ) ).

% measure_Un_null_set
thf(fact_745_complete__measure_Ocomplete__sets__sandwich__fmeasurable,axiom,
    ! [M2: sigma_measure_set_b,A2: set_set_b,C: set_set_b,B: set_set_b] :
      ( ( comple6693822267556782962_set_b @ M2 )
     => ( ( member_set_set_b @ A2 @ ( measur7460903249514972363_set_b @ M2 ) )
       => ( ( member_set_set_b @ C @ ( measur7460903249514972363_set_b @ M2 ) )
         => ( ( ord_le3795704787696855135_set_b @ A2 @ B )
           => ( ( ord_le3795704787696855135_set_b @ B @ C )
             => ( ( ( sigma_measure_set_b2 @ M2 @ A2 )
                  = ( sigma_measure_set_b2 @ M2 @ C ) )
               => ( member_set_set_b @ B @ ( measur7460903249514972363_set_b @ M2 ) ) ) ) ) ) ) ) ).

% complete_measure.complete_sets_sandwich_fmeasurable
thf(fact_746_complete__measure_Ocomplete__sets__sandwich__fmeasurable,axiom,
    ! [M2: sigma_measure_set_a,A2: set_set_a,C: set_set_a,B: set_set_a] :
      ( ( comple6693822263253554161_set_a @ M2 )
     => ( ( member_set_set_a @ A2 @ ( measur7460903245211743562_set_a @ M2 ) )
       => ( ( member_set_set_a @ C @ ( measur7460903245211743562_set_a @ M2 ) )
         => ( ( ord_le3724670747650509150_set_a @ A2 @ B )
           => ( ( ord_le3724670747650509150_set_a @ B @ C )
             => ( ( ( sigma_measure_set_a2 @ M2 @ A2 )
                  = ( sigma_measure_set_a2 @ M2 @ C ) )
               => ( member_set_set_a @ B @ ( measur7460903245211743562_set_a @ M2 ) ) ) ) ) ) ) ) ).

% complete_measure.complete_sets_sandwich_fmeasurable
thf(fact_747_complete__measure_Ocomplete__sets__sandwich__fmeasurable,axiom,
    ! [M2: sigma_measure_a,A2: set_a,C: set_a,B: set_a] :
      ( ( comple8155536527497655953sure_a @ M2 )
     => ( ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ M2 ) )
       => ( ( member_set_a @ C @ ( measur3645360004775918570able_a @ M2 ) )
         => ( ( ord_less_eq_set_a @ A2 @ B )
           => ( ( ord_less_eq_set_a @ B @ C )
             => ( ( ( sigma_measure_a2 @ M2 @ A2 )
                  = ( sigma_measure_a2 @ M2 @ C ) )
               => ( member_set_a @ B @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ) ) ) ) ).

% complete_measure.complete_sets_sandwich_fmeasurable
thf(fact_748_finite__measure_Obounded__measure,axiom,
    ! [M2: sigma_measure_a,A2: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ord_less_eq_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ ( sigma_measure_a2 @ M2 @ ( sigma_space_a @ M2 ) ) ) ) ).

% finite_measure.bounded_measure
thf(fact_749_finite__measure_Obounded__measure,axiom,
    ! [M2: sigma_measure_b,A2: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ord_less_eq_real @ ( sigma_measure_b2 @ M2 @ A2 ) @ ( sigma_measure_b2 @ M2 @ ( sigma_space_b @ M2 ) ) ) ) ).

% finite_measure.bounded_measure
thf(fact_750_le__measureD2,axiom,
    ! [A2: sigma_measure_b,B: sigma_measure_b] :
      ( ( ord_le254669799889008988sure_b @ A2 @ B )
     => ( ( ( sigma_space_b @ A2 )
          = ( sigma_space_b @ B ) )
       => ( ord_le3795704787696855135_set_b @ ( sigma_sets_b @ A2 ) @ ( sigma_sets_b @ B ) ) ) ) ).

% le_measureD2
thf(fact_751_le__measureD2,axiom,
    ! [A2: sigma_measure_a,B: sigma_measure_a] :
      ( ( ord_le254669795585780187sure_a @ A2 @ B )
     => ( ( ( sigma_space_a @ A2 )
          = ( sigma_space_a @ B ) )
       => ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ A2 ) @ ( sigma_sets_a @ B ) ) ) ) ).

% le_measureD2
thf(fact_752_prob__space_Oprob__le__1,axiom,
    ! [M2: sigma_measure_b,A2: set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ord_less_eq_real @ ( sigma_measure_b2 @ M2 @ A2 ) @ one_one_real ) ) ).

% prob_space.prob_le_1
thf(fact_753_prob__space_Oprob__le__1,axiom,
    ! [M2: sigma_measure_a,A2: set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ord_less_eq_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ one_one_real ) ) ).

% prob_space.prob_le_1
thf(fact_754_prob__space_Omeasure__ge__1__iff,axiom,
    ! [M2: sigma_measure_b,A2: set_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( ord_less_eq_real @ one_one_real @ ( sigma_measure_b2 @ M2 @ A2 ) )
        = ( ( sigma_measure_b2 @ M2 @ A2 )
          = one_one_real ) ) ) ).

% prob_space.measure_ge_1_iff
thf(fact_755_prob__space_Omeasure__ge__1__iff,axiom,
    ! [M2: sigma_measure_a,A2: set_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( ord_less_eq_real @ one_one_real @ ( sigma_measure_a2 @ M2 @ A2 ) )
        = ( ( sigma_measure_a2 @ M2 @ A2 )
          = one_one_real ) ) ) ).

% prob_space.measure_ge_1_iff
thf(fact_756_subprob__space_Osubprob__measure__le__1,axiom,
    ! [M2: sigma_measure_a,X: set_a] :
      ( ( giry_subprob_space_a @ M2 )
     => ( ord_less_eq_real @ ( sigma_measure_a2 @ M2 @ X ) @ one_one_real ) ) ).

% subprob_space.subprob_measure_le_1
thf(fact_757_measure__mono__fmeasurable,axiom,
    ! [A2: set_b,B: set_b,M2: sigma_measure_b] :
      ( ( ord_less_eq_set_b @ A2 @ B )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( ( member_set_b @ B @ ( measur3645360004775918571able_b @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_b2 @ M2 @ A2 ) @ ( sigma_measure_b2 @ M2 @ B ) ) ) ) ) ).

% measure_mono_fmeasurable
thf(fact_758_measure__mono__fmeasurable,axiom,
    ! [A2: set_set_b,B: set_set_b,M2: sigma_measure_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( member_set_set_b @ A2 @ ( sigma_sets_set_b @ M2 ) )
       => ( ( member_set_set_b @ B @ ( measur7460903249514972363_set_b @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_set_b2 @ M2 @ A2 ) @ ( sigma_measure_set_b2 @ M2 @ B ) ) ) ) ) ).

% measure_mono_fmeasurable
thf(fact_759_measure__mono__fmeasurable,axiom,
    ! [A2: set_set_a,B: set_set_a,M2: sigma_measure_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( member_set_set_a @ A2 @ ( sigma_sets_set_a @ M2 ) )
       => ( ( member_set_set_a @ B @ ( measur7460903245211743562_set_a @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_set_a2 @ M2 @ A2 ) @ ( sigma_measure_set_a2 @ M2 @ B ) ) ) ) ) ).

% measure_mono_fmeasurable
thf(fact_760_measure__mono__fmeasurable,axiom,
    ! [A2: set_a,B: set_a,M2: sigma_measure_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( ( member_set_a @ B @ ( measur3645360004775918570able_a @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ ( sigma_measure_a2 @ M2 @ B ) ) ) ) ) ).

% measure_mono_fmeasurable
thf(fact_761_sets__completionE,axiom,
    ! [A2: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ A2 @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) )
     => ~ ! [S3: set_b,N4: set_b] :
            ( ( A2
              = ( sup_sup_set_b @ S3 @ N4 ) )
           => ! [N5: set_b] :
                ( ( ord_less_eq_set_b @ N4 @ N5 )
               => ( ( member_set_b @ N5 @ ( measure_null_sets_b @ M2 ) )
                 => ~ ( member_set_b @ S3 @ ( sigma_sets_b @ M2 ) ) ) ) ) ) ).

% sets_completionE
thf(fact_762_sets__completionE,axiom,
    ! [A2: set_set_b,M2: sigma_measure_set_b] :
      ( ( member_set_set_b @ A2 @ ( sigma_sets_set_b @ ( comple8942076150311361001_set_b @ M2 ) ) )
     => ~ ! [S3: set_set_b,N4: set_set_b] :
            ( ( A2
              = ( sup_sup_set_set_b @ S3 @ N4 ) )
           => ! [N5: set_set_b] :
                ( ( ord_le3795704787696855135_set_b @ N4 @ N5 )
               => ( ( member_set_set_b @ N5 @ ( measur1516554132335629586_set_b @ M2 ) )
                 => ~ ( member_set_set_b @ S3 @ ( sigma_sets_set_b @ M2 ) ) ) ) ) ) ).

% sets_completionE
thf(fact_763_sets__completionE,axiom,
    ! [A2: set_set_a,M2: sigma_measure_set_a] :
      ( ( member_set_set_a @ A2 @ ( sigma_sets_set_a @ ( comple8942076146008132200_set_a @ M2 ) ) )
     => ~ ! [S3: set_set_a,N4: set_set_a] :
            ( ( A2
              = ( sup_sup_set_set_a @ S3 @ N4 ) )
           => ! [N5: set_set_a] :
                ( ( ord_le3724670747650509150_set_a @ N4 @ N5 )
               => ( ( member_set_set_a @ N5 @ ( measur1516554128032400785_set_a @ M2 ) )
                 => ~ ( member_set_set_a @ S3 @ ( sigma_sets_set_a @ M2 ) ) ) ) ) ) ).

% sets_completionE
thf(fact_764_sets__completionE,axiom,
    ! [A2: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
     => ~ ! [S3: set_a,N4: set_a] :
            ( ( A2
              = ( sup_sup_set_a @ S3 @ N4 ) )
           => ! [N5: set_a] :
                ( ( ord_less_eq_set_a @ N4 @ N5 )
               => ( ( member_set_a @ N5 @ ( measure_null_sets_a @ M2 ) )
                 => ~ ( member_set_a @ S3 @ ( sigma_sets_a @ M2 ) ) ) ) ) ) ).

% sets_completionE
thf(fact_765_subprob__space__distr,axiom,
    ! [F: a > b,M: sigma_measure_b] :
      ( ( member_a_b @ F @ ( sigma_measurable_a_b @ m @ M ) )
     => ( ( ( sigma_space_b @ M )
         != bot_bot_set_b )
       => ( giry_subprob_space_b @ ( measure_distr_a_b @ m @ M @ F ) ) ) ) ).

% subprob_space_distr
thf(fact_766_subprob__space__distr,axiom,
    ! [F: a > a,M: sigma_measure_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ m @ M ) )
     => ( ( ( sigma_space_a @ M )
         != bot_bot_set_a )
       => ( giry_subprob_space_a @ ( measure_distr_a_a @ m @ M @ F ) ) ) ) ).

% subprob_space_distr
thf(fact_767_le__sup__iff,axiom,
    ! [X5: set_set_b,Y4: set_set_b,Z: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ ( sup_sup_set_set_b @ X5 @ Y4 ) @ Z )
      = ( ( ord_le3795704787696855135_set_b @ X5 @ Z )
        & ( ord_le3795704787696855135_set_b @ Y4 @ Z ) ) ) ).

% le_sup_iff
thf(fact_768_le__sup__iff,axiom,
    ! [X5: set_set_a,Y4: set_set_a,Z: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( sup_sup_set_set_a @ X5 @ Y4 ) @ Z )
      = ( ( ord_le3724670747650509150_set_a @ X5 @ Z )
        & ( ord_le3724670747650509150_set_a @ Y4 @ Z ) ) ) ).

% le_sup_iff
thf(fact_769_le__sup__iff,axiom,
    ! [X5: set_a,Y4: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X5 @ Y4 ) @ Z )
      = ( ( ord_less_eq_set_a @ X5 @ Z )
        & ( ord_less_eq_set_a @ Y4 @ Z ) ) ) ).

% le_sup_iff
thf(fact_770_le__sup__iff,axiom,
    ! [X5: nat,Y4: nat,Z: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X5 @ Y4 ) @ Z )
      = ( ( ord_less_eq_nat @ X5 @ Z )
        & ( ord_less_eq_nat @ Y4 @ Z ) ) ) ).

% le_sup_iff
thf(fact_771_le__sup__iff,axiom,
    ! [X5: int,Y4: int,Z: int] :
      ( ( ord_less_eq_int @ ( sup_sup_int @ X5 @ Y4 ) @ Z )
      = ( ( ord_less_eq_int @ X5 @ Z )
        & ( ord_less_eq_int @ Y4 @ Z ) ) ) ).

% le_sup_iff
thf(fact_772_sup_Obounded__iff,axiom,
    ! [B2: set_set_b,C2: set_set_b,A: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ ( sup_sup_set_set_b @ B2 @ C2 ) @ A )
      = ( ( ord_le3795704787696855135_set_b @ B2 @ A )
        & ( ord_le3795704787696855135_set_b @ C2 @ A ) ) ) ).

% sup.bounded_iff
thf(fact_773_sup_Obounded__iff,axiom,
    ! [B2: set_set_a,C2: set_set_a,A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( sup_sup_set_set_a @ B2 @ C2 ) @ A )
      = ( ( ord_le3724670747650509150_set_a @ B2 @ A )
        & ( ord_le3724670747650509150_set_a @ C2 @ A ) ) ) ).

% sup.bounded_iff
thf(fact_774_sup_Obounded__iff,axiom,
    ! [B2: set_a,C2: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C2 ) @ A )
      = ( ( ord_less_eq_set_a @ B2 @ A )
        & ( ord_less_eq_set_a @ C2 @ A ) ) ) ).

% sup.bounded_iff
thf(fact_775_sup_Obounded__iff,axiom,
    ! [B2: nat,C2: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C2 ) @ A )
      = ( ( ord_less_eq_nat @ B2 @ A )
        & ( ord_less_eq_nat @ C2 @ A ) ) ) ).

% sup.bounded_iff
thf(fact_776_sup_Obounded__iff,axiom,
    ! [B2: int,C2: int,A: int] :
      ( ( ord_less_eq_int @ ( sup_sup_int @ B2 @ C2 ) @ A )
      = ( ( ord_less_eq_int @ B2 @ A )
        & ( ord_less_eq_int @ C2 @ A ) ) ) ).

% sup.bounded_iff
thf(fact_777_le__inf__iff,axiom,
    ! [X5: set_set_b,Y4: set_set_b,Z: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ X5 @ ( inf_inf_set_set_b @ Y4 @ Z ) )
      = ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
        & ( ord_le3795704787696855135_set_b @ X5 @ Z ) ) ) ).

% le_inf_iff
thf(fact_778_le__inf__iff,axiom,
    ! [X5: set_set_a,Y4: set_set_a,Z: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X5 @ ( inf_inf_set_set_a @ Y4 @ Z ) )
      = ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
        & ( ord_le3724670747650509150_set_a @ X5 @ Z ) ) ) ).

% le_inf_iff
thf(fact_779_le__inf__iff,axiom,
    ! [X5: set_a,Y4: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X5 @ ( inf_inf_set_a @ Y4 @ Z ) )
      = ( ( ord_less_eq_set_a @ X5 @ Y4 )
        & ( ord_less_eq_set_a @ X5 @ Z ) ) ) ).

% le_inf_iff
thf(fact_780_le__inf__iff,axiom,
    ! [X5: nat,Y4: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X5 @ ( inf_inf_nat @ Y4 @ Z ) )
      = ( ( ord_less_eq_nat @ X5 @ Y4 )
        & ( ord_less_eq_nat @ X5 @ Z ) ) ) ).

% le_inf_iff
thf(fact_781_le__inf__iff,axiom,
    ! [X5: int,Y4: int,Z: int] :
      ( ( ord_less_eq_int @ X5 @ ( inf_inf_int @ Y4 @ Z ) )
      = ( ( ord_less_eq_int @ X5 @ Y4 )
        & ( ord_less_eq_int @ X5 @ Z ) ) ) ).

% le_inf_iff
thf(fact_782_inf_Obounded__iff,axiom,
    ! [A: set_set_b,B2: set_set_b,C2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ ( inf_inf_set_set_b @ B2 @ C2 ) )
      = ( ( ord_le3795704787696855135_set_b @ A @ B2 )
        & ( ord_le3795704787696855135_set_b @ A @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_783_inf_Obounded__iff,axiom,
    ! [A: set_set_a,B2: set_set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B2 @ C2 ) )
      = ( ( ord_le3724670747650509150_set_a @ A @ B2 )
        & ( ord_le3724670747650509150_set_a @ A @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_784_inf_Obounded__iff,axiom,
    ! [A: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( ( ord_less_eq_set_a @ A @ B2 )
        & ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_785_inf_Obounded__iff,axiom,
    ! [A: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B2 @ C2 ) )
      = ( ( ord_less_eq_nat @ A @ B2 )
        & ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_786_inf_Obounded__iff,axiom,
    ! [A: int,B2: int,C2: int] :
      ( ( ord_less_eq_int @ A @ ( inf_inf_int @ B2 @ C2 ) )
      = ( ( ord_less_eq_int @ A @ B2 )
        & ( ord_less_eq_int @ A @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_787_measure__eq__compl,axiom,
    ! [S2: set_a,T3: set_a] :
      ( ( member_set_a @ S2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ T3 @ ( sigma_sets_a @ m ) )
       => ( ( ( sigma_measure_a2 @ m @ ( minus_minus_set_a @ ( sigma_space_a @ m ) @ S2 ) )
            = ( sigma_measure_a2 @ m @ ( minus_minus_set_a @ ( sigma_space_a @ m ) @ T3 ) ) )
         => ( ( sigma_measure_a2 @ m @ S2 )
            = ( sigma_measure_a2 @ m @ T3 ) ) ) ) ) ).

% measure_eq_compl
thf(fact_788_finite__measure__subadditive,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ m ) )
       => ( ord_less_eq_real @ ( sigma_measure_a2 @ m @ ( sup_sup_set_a @ A2 @ B ) ) @ ( plus_plus_real @ ( sigma_measure_a2 @ m @ A2 ) @ ( sigma_measure_a2 @ m @ B ) ) ) ) ) ).

% finite_measure_subadditive
thf(fact_789_measure__zero__union,axiom,
    ! [S2: set_a,T3: set_a] :
      ( ( member_set_a @ S2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ T3 @ ( sigma_sets_a @ m ) )
       => ( ( ( sigma_measure_a2 @ m @ T3 )
            = zero_zero_real )
         => ( ( sigma_measure_a2 @ m @ ( sup_sup_set_a @ S2 @ T3 ) )
            = ( sigma_measure_a2 @ m @ S2 ) ) ) ) ) ).

% measure_zero_union
thf(fact_790_subprob__not__empty,axiom,
    ( ( sigma_space_a @ m )
   != bot_bot_set_a ) ).

% subprob_not_empty
thf(fact_791_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X3: a] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_792_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_793_all__not__in__conv,axiom,
    ! [A2: set_a_b] :
      ( ( ! [X3: a > b] :
            ~ ( member_a_b @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_a_b ) ) ).

% all_not_in_conv
thf(fact_794_all__not__in__conv,axiom,
    ! [A2: set_c] :
      ( ( ! [X3: c] :
            ~ ( member_c @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_c ) ) ).

% all_not_in_conv
thf(fact_795_all__not__in__conv,axiom,
    ! [A2: set_set_a] :
      ( ( ! [X3: set_a] :
            ~ ( member_set_a @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_set_a ) ) ).

% all_not_in_conv
thf(fact_796_all__not__in__conv,axiom,
    ! [A2: set_a_a] :
      ( ( ! [X3: a > a] :
            ~ ( member_a_a @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_a_a ) ) ).

% all_not_in_conv
thf(fact_797_all__not__in__conv,axiom,
    ! [A2: set_o] :
      ( ( ! [X3: $o] :
            ~ ( member_o @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_o ) ) ).

% all_not_in_conv
thf(fact_798_all__not__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ! [X3: nat] :
            ~ ( member_nat @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_799_all__not__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ! [X3: a] :
            ~ ( member_a @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_800_empty__iff,axiom,
    ! [C2: a > b] :
      ~ ( member_a_b @ C2 @ bot_bot_set_a_b ) ).

% empty_iff
thf(fact_801_empty__iff,axiom,
    ! [C2: c] :
      ~ ( member_c @ C2 @ bot_bot_set_c ) ).

% empty_iff
thf(fact_802_empty__iff,axiom,
    ! [C2: set_a] :
      ~ ( member_set_a @ C2 @ bot_bot_set_set_a ) ).

% empty_iff
thf(fact_803_empty__iff,axiom,
    ! [C2: a > a] :
      ~ ( member_a_a @ C2 @ bot_bot_set_a_a ) ).

% empty_iff
thf(fact_804_empty__iff,axiom,
    ! [C2: $o] :
      ~ ( member_o @ C2 @ bot_bot_set_o ) ).

% empty_iff
thf(fact_805_empty__iff,axiom,
    ! [C2: nat] :
      ~ ( member_nat @ C2 @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_806_empty__iff,axiom,
    ! [C2: a] :
      ~ ( member_a @ C2 @ bot_bot_set_a ) ).

% empty_iff
thf(fact_807_Diff__idemp,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B ) @ B )
      = ( minus_minus_set_a @ A2 @ B ) ) ).

% Diff_idemp
thf(fact_808_Diff__iff,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( minus_minus_set_a_b @ A2 @ B ) )
      = ( ( member_a_b @ C2 @ A2 )
        & ~ ( member_a_b @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_809_Diff__iff,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( minus_minus_set_c @ A2 @ B ) )
      = ( ( member_c @ C2 @ A2 )
        & ~ ( member_c @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_810_Diff__iff,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( minus_5736297505244876581_set_a @ A2 @ B ) )
      = ( ( member_set_a @ C2 @ A2 )
        & ~ ( member_set_a @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_811_Diff__iff,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( minus_minus_set_a_a @ A2 @ B ) )
      = ( ( member_a_a @ C2 @ A2 )
        & ~ ( member_a_a @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_812_Diff__iff,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( minus_minus_set_o @ A2 @ B ) )
      = ( ( member_o @ C2 @ A2 )
        & ~ ( member_o @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_813_Diff__iff,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) )
      = ( ( member_nat @ C2 @ A2 )
        & ~ ( member_nat @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_814_Diff__iff,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
      = ( ( member_a @ C2 @ A2 )
        & ~ ( member_a @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_815_DiffI,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ A2 )
     => ( ~ ( member_a_b @ C2 @ B )
       => ( member_a_b @ C2 @ ( minus_minus_set_a_b @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_816_DiffI,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ A2 )
     => ( ~ ( member_c @ C2 @ B )
       => ( member_c @ C2 @ ( minus_minus_set_c @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_817_DiffI,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ A2 )
     => ( ~ ( member_set_a @ C2 @ B )
       => ( member_set_a @ C2 @ ( minus_5736297505244876581_set_a @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_818_DiffI,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ A2 )
     => ( ~ ( member_a_a @ C2 @ B )
       => ( member_a_a @ C2 @ ( minus_minus_set_a_a @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_819_DiffI,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ A2 )
     => ( ~ ( member_o @ C2 @ B )
       => ( member_o @ C2 @ ( minus_minus_set_o @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_820_DiffI,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ A2 )
     => ( ~ ( member_nat @ C2 @ B )
       => ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_821_DiffI,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ A2 )
     => ( ~ ( member_a @ C2 @ B )
       => ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_822_measure__exclude,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ m ) )
       => ( ( ( sigma_measure_a2 @ m @ A2 )
            = ( sigma_measure_a2 @ m @ ( sigma_space_a @ m ) ) )
         => ( ( ( inf_inf_set_a @ A2 @ B )
              = bot_bot_set_a )
           => ( ( sigma_measure_a2 @ m @ B )
              = zero_zero_real ) ) ) ) ) ).

% measure_exclude
thf(fact_823_finite__measure__Union,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ m ) )
       => ( ( ( inf_inf_set_a @ A2 @ B )
            = bot_bot_set_a )
         => ( ( sigma_measure_a2 @ m @ ( sup_sup_set_a @ A2 @ B ) )
            = ( plus_plus_real @ ( sigma_measure_a2 @ m @ A2 ) @ ( sigma_measure_a2 @ m @ B ) ) ) ) ) ) ).

% finite_measure_Union
thf(fact_824_finite__measure__Union_H,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ m ) )
       => ( ( sigma_measure_a2 @ m @ ( sup_sup_set_a @ A2 @ B ) )
          = ( plus_plus_real @ ( sigma_measure_a2 @ m @ A2 ) @ ( sigma_measure_a2 @ m @ ( minus_minus_set_a @ B @ A2 ) ) ) ) ) ) ).

% finite_measure_Union'
thf(fact_825_subset__empty,axiom,
    ! [A2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ bot_bot_set_set_b )
      = ( A2 = bot_bot_set_set_b ) ) ).

% subset_empty
thf(fact_826_subset__empty,axiom,
    ! [A2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ bot_bot_set_set_a )
      = ( A2 = bot_bot_set_set_a ) ) ).

% subset_empty
thf(fact_827_subset__empty,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_828_empty__subsetI,axiom,
    ! [A2: set_set_b] : ( ord_le3795704787696855135_set_b @ bot_bot_set_set_b @ A2 ) ).

% empty_subsetI
thf(fact_829_empty__subsetI,axiom,
    ! [A2: set_set_a] : ( ord_le3724670747650509150_set_a @ bot_bot_set_set_a @ A2 ) ).

% empty_subsetI
thf(fact_830_empty__subsetI,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).

% empty_subsetI
thf(fact_831_sets_Oempty__sets,axiom,
    ! [M2: sigma_measure_b] : ( member_set_b @ bot_bot_set_b @ ( sigma_sets_b @ M2 ) ) ).

% sets.empty_sets
thf(fact_832_sets_Oempty__sets,axiom,
    ! [M2: sigma_measure_a] : ( member_set_a @ bot_bot_set_a @ ( sigma_sets_a @ M2 ) ) ).

% sets.empty_sets
thf(fact_833_Diff__cancel,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ A2 )
      = bot_bot_set_a ) ).

% Diff_cancel
thf(fact_834_empty__Diff,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% empty_Diff
thf(fact_835_Diff__empty,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Diff_empty
thf(fact_836_Un__empty,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( sup_sup_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ( A2 = bot_bot_set_a )
        & ( B = bot_bot_set_a ) ) ) ).

% Un_empty
thf(fact_837_sets_ODiff,axiom,
    ! [A: set_b,M2: sigma_measure_b,B2: set_b] :
      ( ( member_set_b @ A @ ( sigma_sets_b @ M2 ) )
     => ( ( member_set_b @ B2 @ ( sigma_sets_b @ M2 ) )
       => ( member_set_b @ ( minus_minus_set_b @ A @ B2 ) @ ( sigma_sets_b @ M2 ) ) ) ) ).

% sets.Diff
thf(fact_838_sets_ODiff,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( sigma_sets_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( sigma_sets_a @ M2 ) )
       => ( member_set_a @ ( minus_minus_set_a @ A @ B2 ) @ ( sigma_sets_a @ M2 ) ) ) ) ).

% sets.Diff
thf(fact_839_fmeasurable_Oempty__sets,axiom,
    ! [M2: sigma_measure_a] : ( member_set_a @ bot_bot_set_a @ ( measur3645360004775918570able_a @ M2 ) ) ).

% fmeasurable.empty_sets
thf(fact_840_Un__Diff__cancel2,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( sup_sup_set_a @ ( minus_minus_set_a @ B @ A2 ) @ A2 )
      = ( sup_sup_set_a @ B @ A2 ) ) ).

% Un_Diff_cancel2
thf(fact_841_Un__Diff__cancel,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
      = ( sup_sup_set_a @ A2 @ B ) ) ).

% Un_Diff_cancel
thf(fact_842_null__sets_Oempty__sets,axiom,
    ! [M2: sigma_measure_a] : ( member_set_a @ bot_bot_set_a @ ( measure_null_sets_a @ M2 ) ) ).

% null_sets.empty_sets
thf(fact_843_fmeasurable_ODiff,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( measur3645360004775918570able_a @ M2 ) )
       => ( member_set_a @ ( minus_minus_set_a @ A @ B2 ) @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ).

% fmeasurable.Diff
thf(fact_844_null__sets_ODiff,axiom,
    ! [A: set_a,M2: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( measure_null_sets_a @ M2 ) )
     => ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M2 ) )
       => ( member_set_a @ ( minus_minus_set_a @ A @ B2 ) @ ( measure_null_sets_a @ M2 ) ) ) ) ).

% null_sets.Diff
thf(fact_845_Diff__eq__empty__iff,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ( ( minus_5807331545291222566_set_b @ A2 @ B )
        = bot_bot_set_set_b )
      = ( ord_le3795704787696855135_set_b @ A2 @ B ) ) ).

% Diff_eq_empty_iff
thf(fact_846_Diff__eq__empty__iff,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( ( minus_5736297505244876581_set_a @ A2 @ B )
        = bot_bot_set_set_a )
      = ( ord_le3724670747650509150_set_a @ A2 @ B ) ) ).

% Diff_eq_empty_iff
thf(fact_847_Diff__eq__empty__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( minus_minus_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A2 @ B ) ) ).

% Diff_eq_empty_iff
thf(fact_848_measure__empty,axiom,
    ! [M2: sigma_measure_a] :
      ( ( sigma_measure_a2 @ M2 @ bot_bot_set_a )
      = zero_zero_real ) ).

% measure_empty
thf(fact_849_Diff__disjoint,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
      = bot_bot_set_a ) ).

% Diff_disjoint
thf(fact_850_sets_Ocompl__sets,axiom,
    ! [A: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ A @ ( sigma_sets_b @ M2 ) )
     => ( member_set_b @ ( minus_minus_set_b @ ( sigma_space_b @ M2 ) @ A ) @ ( sigma_sets_b @ M2 ) ) ) ).

% sets.compl_sets
thf(fact_851_sets_Ocompl__sets,axiom,
    ! [A: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ A @ ( sigma_sets_a @ M2 ) )
     => ( member_set_a @ ( minus_minus_set_a @ ( sigma_space_a @ M2 ) @ A ) @ ( sigma_sets_a @ M2 ) ) ) ).

% sets.compl_sets
thf(fact_852_main__part__null__part__Int,axiom,
    ! [S: set_b,M2: sigma_measure_b] :
      ( ( member_set_b @ S @ ( sigma_sets_b @ ( comple3428971583294703881tion_b @ M2 ) ) )
     => ( ( inf_inf_set_b @ ( complete_main_part_b @ M2 @ S ) @ ( complete_null_part_b @ M2 @ S ) )
        = bot_bot_set_b ) ) ).

% main_part_null_part_Int
thf(fact_853_main__part__null__part__Int,axiom,
    ! [S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M2 ) ) )
     => ( ( inf_inf_set_a @ ( complete_main_part_a @ M2 @ S ) @ ( complete_null_part_a @ M2 @ S ) )
        = bot_bot_set_a ) ) ).

% main_part_null_part_Int
thf(fact_854_Diff__triv,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B )
        = bot_bot_set_a )
     => ( ( minus_minus_set_a @ A2 @ B )
        = A2 ) ) ).

% Diff_triv
thf(fact_855_Int__Diff__disjoint,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ B ) )
      = bot_bot_set_a ) ).

% Int_Diff_disjoint
thf(fact_856_ex__in__conv,axiom,
    ! [A2: set_a_b] :
      ( ( ? [X3: a > b] : ( member_a_b @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_a_b ) ) ).

% ex_in_conv
thf(fact_857_ex__in__conv,axiom,
    ! [A2: set_c] :
      ( ( ? [X3: c] : ( member_c @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_c ) ) ).

% ex_in_conv
thf(fact_858_ex__in__conv,axiom,
    ! [A2: set_set_a] :
      ( ( ? [X3: set_a] : ( member_set_a @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_set_a ) ) ).

% ex_in_conv
thf(fact_859_ex__in__conv,axiom,
    ! [A2: set_a_a] :
      ( ( ? [X3: a > a] : ( member_a_a @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_a_a ) ) ).

% ex_in_conv
thf(fact_860_ex__in__conv,axiom,
    ! [A2: set_o] :
      ( ( ? [X3: $o] : ( member_o @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_o ) ) ).

% ex_in_conv
thf(fact_861_ex__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ? [X3: nat] : ( member_nat @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_862_ex__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ? [X3: a] : ( member_a @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_863_equals0I,axiom,
    ! [A2: set_a_b] :
      ( ! [Y6: a > b] :
          ~ ( member_a_b @ Y6 @ A2 )
     => ( A2 = bot_bot_set_a_b ) ) ).

% equals0I
thf(fact_864_equals0I,axiom,
    ! [A2: set_c] :
      ( ! [Y6: c] :
          ~ ( member_c @ Y6 @ A2 )
     => ( A2 = bot_bot_set_c ) ) ).

% equals0I
thf(fact_865_equals0I,axiom,
    ! [A2: set_set_a] :
      ( ! [Y6: set_a] :
          ~ ( member_set_a @ Y6 @ A2 )
     => ( A2 = bot_bot_set_set_a ) ) ).

% equals0I
thf(fact_866_equals0I,axiom,
    ! [A2: set_a_a] :
      ( ! [Y6: a > a] :
          ~ ( member_a_a @ Y6 @ A2 )
     => ( A2 = bot_bot_set_a_a ) ) ).

% equals0I
thf(fact_867_equals0I,axiom,
    ! [A2: set_o] :
      ( ! [Y6: $o] :
          ~ ( member_o @ Y6 @ A2 )
     => ( A2 = bot_bot_set_o ) ) ).

% equals0I
thf(fact_868_equals0I,axiom,
    ! [A2: set_nat] :
      ( ! [Y6: nat] :
          ~ ( member_nat @ Y6 @ A2 )
     => ( A2 = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_869_equals0I,axiom,
    ! [A2: set_a] :
      ( ! [Y6: a] :
          ~ ( member_a @ Y6 @ A2 )
     => ( A2 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_870_equals0D,axiom,
    ! [A2: set_a_b,A: a > b] :
      ( ( A2 = bot_bot_set_a_b )
     => ~ ( member_a_b @ A @ A2 ) ) ).

% equals0D
thf(fact_871_equals0D,axiom,
    ! [A2: set_c,A: c] :
      ( ( A2 = bot_bot_set_c )
     => ~ ( member_c @ A @ A2 ) ) ).

% equals0D
thf(fact_872_equals0D,axiom,
    ! [A2: set_set_a,A: set_a] :
      ( ( A2 = bot_bot_set_set_a )
     => ~ ( member_set_a @ A @ A2 ) ) ).

% equals0D
thf(fact_873_equals0D,axiom,
    ! [A2: set_a_a,A: a > a] :
      ( ( A2 = bot_bot_set_a_a )
     => ~ ( member_a_a @ A @ A2 ) ) ).

% equals0D
thf(fact_874_equals0D,axiom,
    ! [A2: set_o,A: $o] :
      ( ( A2 = bot_bot_set_o )
     => ~ ( member_o @ A @ A2 ) ) ).

% equals0D
thf(fact_875_equals0D,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( A2 = bot_bot_set_nat )
     => ~ ( member_nat @ A @ A2 ) ) ).

% equals0D
thf(fact_876_equals0D,axiom,
    ! [A2: set_a,A: a] :
      ( ( A2 = bot_bot_set_a )
     => ~ ( member_a @ A @ A2 ) ) ).

% equals0D
thf(fact_877_emptyE,axiom,
    ! [A: a > b] :
      ~ ( member_a_b @ A @ bot_bot_set_a_b ) ).

% emptyE
thf(fact_878_emptyE,axiom,
    ! [A: c] :
      ~ ( member_c @ A @ bot_bot_set_c ) ).

% emptyE
thf(fact_879_emptyE,axiom,
    ! [A: set_a] :
      ~ ( member_set_a @ A @ bot_bot_set_set_a ) ).

% emptyE
thf(fact_880_emptyE,axiom,
    ! [A: a > a] :
      ~ ( member_a_a @ A @ bot_bot_set_a_a ) ).

% emptyE
thf(fact_881_emptyE,axiom,
    ! [A: $o] :
      ~ ( member_o @ A @ bot_bot_set_o ) ).

% emptyE
thf(fact_882_emptyE,axiom,
    ! [A: nat] :
      ~ ( member_nat @ A @ bot_bot_set_nat ) ).

% emptyE
thf(fact_883_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_884_DiffD2,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( minus_minus_set_a_b @ A2 @ B ) )
     => ~ ( member_a_b @ C2 @ B ) ) ).

% DiffD2
thf(fact_885_DiffD2,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( minus_minus_set_c @ A2 @ B ) )
     => ~ ( member_c @ C2 @ B ) ) ).

% DiffD2
thf(fact_886_DiffD2,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( minus_5736297505244876581_set_a @ A2 @ B ) )
     => ~ ( member_set_a @ C2 @ B ) ) ).

% DiffD2
thf(fact_887_DiffD2,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( minus_minus_set_a_a @ A2 @ B ) )
     => ~ ( member_a_a @ C2 @ B ) ) ).

% DiffD2
thf(fact_888_DiffD2,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( minus_minus_set_o @ A2 @ B ) )
     => ~ ( member_o @ C2 @ B ) ) ).

% DiffD2
thf(fact_889_DiffD2,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) )
     => ~ ( member_nat @ C2 @ B ) ) ).

% DiffD2
thf(fact_890_DiffD2,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
     => ~ ( member_a @ C2 @ B ) ) ).

% DiffD2
thf(fact_891_DiffD1,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( minus_minus_set_a_b @ A2 @ B ) )
     => ( member_a_b @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_892_DiffD1,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( minus_minus_set_c @ A2 @ B ) )
     => ( member_c @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_893_DiffD1,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( minus_5736297505244876581_set_a @ A2 @ B ) )
     => ( member_set_a @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_894_DiffD1,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( minus_minus_set_a_a @ A2 @ B ) )
     => ( member_a_a @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_895_DiffD1,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( minus_minus_set_o @ A2 @ B ) )
     => ( member_o @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_896_DiffD1,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) )
     => ( member_nat @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_897_DiffD1,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
     => ( member_a @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_898_DiffE,axiom,
    ! [C2: a > b,A2: set_a_b,B: set_a_b] :
      ( ( member_a_b @ C2 @ ( minus_minus_set_a_b @ A2 @ B ) )
     => ~ ( ( member_a_b @ C2 @ A2 )
         => ( member_a_b @ C2 @ B ) ) ) ).

% DiffE
thf(fact_899_DiffE,axiom,
    ! [C2: c,A2: set_c,B: set_c] :
      ( ( member_c @ C2 @ ( minus_minus_set_c @ A2 @ B ) )
     => ~ ( ( member_c @ C2 @ A2 )
         => ( member_c @ C2 @ B ) ) ) ).

% DiffE
thf(fact_900_DiffE,axiom,
    ! [C2: set_a,A2: set_set_a,B: set_set_a] :
      ( ( member_set_a @ C2 @ ( minus_5736297505244876581_set_a @ A2 @ B ) )
     => ~ ( ( member_set_a @ C2 @ A2 )
         => ( member_set_a @ C2 @ B ) ) ) ).

% DiffE
thf(fact_901_DiffE,axiom,
    ! [C2: a > a,A2: set_a_a,B: set_a_a] :
      ( ( member_a_a @ C2 @ ( minus_minus_set_a_a @ A2 @ B ) )
     => ~ ( ( member_a_a @ C2 @ A2 )
         => ( member_a_a @ C2 @ B ) ) ) ).

% DiffE
thf(fact_902_DiffE,axiom,
    ! [C2: $o,A2: set_o,B: set_o] :
      ( ( member_o @ C2 @ ( minus_minus_set_o @ A2 @ B ) )
     => ~ ( ( member_o @ C2 @ A2 )
         => ( member_o @ C2 @ B ) ) ) ).

% DiffE
thf(fact_903_DiffE,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) )
     => ~ ( ( member_nat @ C2 @ A2 )
         => ( member_nat @ C2 @ B ) ) ) ).

% DiffE
thf(fact_904_DiffE,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
     => ~ ( ( member_a @ C2 @ A2 )
         => ( member_a @ C2 @ B ) ) ) ).

% DiffE
thf(fact_905_diff__left__imp__eq,axiom,
    ! [A: real,B2: real,C2: real] :
      ( ( ( minus_minus_real @ A @ B2 )
        = ( minus_minus_real @ A @ C2 ) )
     => ( B2 = C2 ) ) ).

% diff_left_imp_eq
thf(fact_906_diff__left__imp__eq,axiom,
    ! [A: int,B2: int,C2: int] :
      ( ( ( minus_minus_int @ A @ B2 )
        = ( minus_minus_int @ A @ C2 ) )
     => ( B2 = C2 ) ) ).

% diff_left_imp_eq
thf(fact_907_bot_Oextremum,axiom,
    ! [A: set_set_b] : ( ord_le3795704787696855135_set_b @ bot_bot_set_set_b @ A ) ).

% bot.extremum
thf(fact_908_bot_Oextremum,axiom,
    ! [A: set_set_a] : ( ord_le3724670747650509150_set_a @ bot_bot_set_set_a @ A ) ).

% bot.extremum
thf(fact_909_bot_Oextremum,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A ) ).

% bot.extremum
thf(fact_910_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_911_bot_Oextremum__unique,axiom,
    ! [A: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ bot_bot_set_set_b )
      = ( A = bot_bot_set_set_b ) ) ).

% bot.extremum_unique
thf(fact_912_bot_Oextremum__unique,axiom,
    ! [A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ bot_bot_set_set_a )
      = ( A = bot_bot_set_set_a ) ) ).

% bot.extremum_unique
thf(fact_913_bot_Oextremum__unique,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
      = ( A = bot_bot_set_a ) ) ).

% bot.extremum_unique
thf(fact_914_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_915_bot_Oextremum__uniqueI,axiom,
    ! [A: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ bot_bot_set_set_b )
     => ( A = bot_bot_set_set_b ) ) ).

% bot.extremum_uniqueI
thf(fact_916_bot_Oextremum__uniqueI,axiom,
    ! [A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ bot_bot_set_set_a )
     => ( A = bot_bot_set_set_a ) ) ).

% bot.extremum_uniqueI
thf(fact_917_bot_Oextremum__uniqueI,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
     => ( A = bot_bot_set_a ) ) ).

% bot.extremum_uniqueI
thf(fact_918_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_919_sets__sup,axiom,
    ! [A2: sigma_measure_b,M2: sigma_measure_b,B: sigma_measure_b] :
      ( ( ( sigma_sets_b @ A2 )
        = ( sigma_sets_b @ M2 ) )
     => ( ( ( sigma_sets_b @ B )
          = ( sigma_sets_b @ M2 ) )
       => ( ( sigma_sets_b @ ( sup_su27664956689621032sure_b @ A2 @ B ) )
          = ( sigma_sets_b @ M2 ) ) ) ) ).

% sets_sup
thf(fact_920_sets__sup,axiom,
    ! [A2: sigma_measure_a,M2: sigma_measure_a,B: sigma_measure_a] :
      ( ( ( sigma_sets_a @ A2 )
        = ( sigma_sets_a @ M2 ) )
     => ( ( ( sigma_sets_a @ B )
          = ( sigma_sets_a @ M2 ) )
       => ( ( sigma_sets_a @ ( sup_su27664952386392231sure_a @ A2 @ B ) )
          = ( sigma_sets_a @ M2 ) ) ) ) ).

% sets_sup
thf(fact_921_Diff__mono,axiom,
    ! [A2: set_set_b,C: set_set_b,D: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ C )
     => ( ( ord_le3795704787696855135_set_b @ D @ B )
       => ( ord_le3795704787696855135_set_b @ ( minus_5807331545291222566_set_b @ A2 @ B ) @ ( minus_5807331545291222566_set_b @ C @ D ) ) ) ) ).

% Diff_mono
thf(fact_922_Diff__mono,axiom,
    ! [A2: set_set_a,C: set_set_a,D: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ C )
     => ( ( ord_le3724670747650509150_set_a @ D @ B )
       => ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ B ) @ ( minus_5736297505244876581_set_a @ C @ D ) ) ) ) ).

% Diff_mono
thf(fact_923_Diff__mono,axiom,
    ! [A2: set_a,C: set_a,D: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ D @ B )
       => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ C @ D ) ) ) ) ).

% Diff_mono
thf(fact_924_Diff__subset,axiom,
    ! [A2: set_set_b,B: set_set_b] : ( ord_le3795704787696855135_set_b @ ( minus_5807331545291222566_set_b @ A2 @ B ) @ A2 ) ).

% Diff_subset
thf(fact_925_Diff__subset,axiom,
    ! [A2: set_set_a,B: set_set_a] : ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ B ) @ A2 ) ).

% Diff_subset
thf(fact_926_Diff__subset,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ A2 ) ).

% Diff_subset
thf(fact_927_double__diff,axiom,
    ! [A2: set_set_b,B: set_set_b,C: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( ord_le3795704787696855135_set_b @ B @ C )
       => ( ( minus_5807331545291222566_set_b @ B @ ( minus_5807331545291222566_set_b @ C @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_928_double__diff,axiom,
    ! [A2: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( ord_le3724670747650509150_set_a @ B @ C )
       => ( ( minus_5736297505244876581_set_a @ B @ ( minus_5736297505244876581_set_a @ C @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_929_double__diff,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ( minus_minus_set_a @ B @ ( minus_minus_set_a @ C @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_930_Diff__Int__distrib2,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B ) @ C )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ ( inf_inf_set_a @ B @ C ) ) ) ).

% Diff_Int_distrib2
thf(fact_931_Diff__Int__distrib,axiom,
    ! [C: set_a,A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ C @ ( minus_minus_set_a @ A2 @ B ) )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ C @ A2 ) @ ( inf_inf_set_a @ C @ B ) ) ) ).

% Diff_Int_distrib
thf(fact_932_Diff__Diff__Int,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( minus_minus_set_a @ A2 @ B ) )
      = ( inf_inf_set_a @ A2 @ B ) ) ).

% Diff_Diff_Int
thf(fact_933_Diff__Int2,axiom,
    ! [A2: set_a,C: set_a,B: set_a] :
      ( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ ( inf_inf_set_a @ B @ C ) )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ B ) ) ).

% Diff_Int2
thf(fact_934_Int__Diff,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
      = ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B @ C ) ) ) ).

% Int_Diff
thf(fact_935_Un__Diff,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( minus_minus_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
      = ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ C ) @ ( minus_minus_set_a @ B @ C ) ) ) ).

% Un_Diff
thf(fact_936_disjoint__iff__not__equal,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ! [Y3: a] :
                ( ( member_a @ Y3 @ B )
               => ( X3 != Y3 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_937_Int__empty__right,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% Int_empty_right
thf(fact_938_Int__empty__left,axiom,
    ! [B: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ B )
      = bot_bot_set_a ) ).

% Int_empty_left
thf(fact_939_disjoint__iff,axiom,
    ! [A2: set_a_b,B: set_a_b] :
      ( ( ( inf_inf_set_a_b @ A2 @ B )
        = bot_bot_set_a_b )
      = ( ! [X3: a > b] :
            ( ( member_a_b @ X3 @ A2 )
           => ~ ( member_a_b @ X3 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_940_disjoint__iff,axiom,
    ! [A2: set_c,B: set_c] :
      ( ( ( inf_inf_set_c @ A2 @ B )
        = bot_bot_set_c )
      = ( ! [X3: c] :
            ( ( member_c @ X3 @ A2 )
           => ~ ( member_c @ X3 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_941_disjoint__iff,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( ( inf_inf_set_set_a @ A2 @ B )
        = bot_bot_set_set_a )
      = ( ! [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
           => ~ ( member_set_a @ X3 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_942_disjoint__iff,axiom,
    ! [A2: set_a_a,B: set_a_a] :
      ( ( ( inf_inf_set_a_a @ A2 @ B )
        = bot_bot_set_a_a )
      = ( ! [X3: a > a] :
            ( ( member_a_a @ X3 @ A2 )
           => ~ ( member_a_a @ X3 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_943_disjoint__iff,axiom,
    ! [A2: set_o,B: set_o] :
      ( ( ( inf_inf_set_o @ A2 @ B )
        = bot_bot_set_o )
      = ( ! [X3: $o] :
            ( ( member_o @ X3 @ A2 )
           => ~ ( member_o @ X3 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_944_disjoint__iff,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( ( inf_inf_set_nat @ A2 @ B )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ~ ( member_nat @ X3 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_945_disjoint__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ~ ( member_a @ X3 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_946_Int__emptyI,axiom,
    ! [A2: set_a_b,B: set_a_b] :
      ( ! [X4: a > b] :
          ( ( member_a_b @ X4 @ A2 )
         => ~ ( member_a_b @ X4 @ B ) )
     => ( ( inf_inf_set_a_b @ A2 @ B )
        = bot_bot_set_a_b ) ) ).

% Int_emptyI
thf(fact_947_Int__emptyI,axiom,
    ! [A2: set_c,B: set_c] :
      ( ! [X4: c] :
          ( ( member_c @ X4 @ A2 )
         => ~ ( member_c @ X4 @ B ) )
     => ( ( inf_inf_set_c @ A2 @ B )
        = bot_bot_set_c ) ) ).

% Int_emptyI
thf(fact_948_Int__emptyI,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ! [X4: set_a] :
          ( ( member_set_a @ X4 @ A2 )
         => ~ ( member_set_a @ X4 @ B ) )
     => ( ( inf_inf_set_set_a @ A2 @ B )
        = bot_bot_set_set_a ) ) ).

% Int_emptyI
thf(fact_949_Int__emptyI,axiom,
    ! [A2: set_a_a,B: set_a_a] :
      ( ! [X4: a > a] :
          ( ( member_a_a @ X4 @ A2 )
         => ~ ( member_a_a @ X4 @ B ) )
     => ( ( inf_inf_set_a_a @ A2 @ B )
        = bot_bot_set_a_a ) ) ).

% Int_emptyI
thf(fact_950_Int__emptyI,axiom,
    ! [A2: set_o,B: set_o] :
      ( ! [X4: $o] :
          ( ( member_o @ X4 @ A2 )
         => ~ ( member_o @ X4 @ B ) )
     => ( ( inf_inf_set_o @ A2 @ B )
        = bot_bot_set_o ) ) ).

% Int_emptyI
thf(fact_951_Int__emptyI,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ~ ( member_nat @ X4 @ B ) )
     => ( ( inf_inf_set_nat @ A2 @ B )
        = bot_bot_set_nat ) ) ).

% Int_emptyI
thf(fact_952_Int__emptyI,axiom,
    ! [A2: set_a,B: set_a] :
      ( ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ~ ( member_a @ X4 @ B ) )
     => ( ( inf_inf_set_a @ A2 @ B )
        = bot_bot_set_a ) ) ).

% Int_emptyI
thf(fact_953_Un__empty__right,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Un_empty_right
thf(fact_954_Un__empty__left,axiom,
    ! [B: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ B )
      = B ) ).

% Un_empty_left
thf(fact_955_measure__Un2,axiom,
    ! [A2: set_a,M2: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( member_set_a @ B @ ( measur3645360004775918570able_a @ M2 ) )
       => ( ( sigma_measure_a2 @ M2 @ ( sup_sup_set_a @ A2 @ B ) )
          = ( plus_plus_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ ( sigma_measure_a2 @ M2 @ ( minus_minus_set_a @ B @ A2 ) ) ) ) ) ) ).

% measure_Un2
thf(fact_956_finite__measure_Ofinite__measure__Union_H,axiom,
    ! [M2: sigma_measure_a,A2: set_a,B: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( ( member_set_a @ B @ ( sigma_sets_a @ M2 ) )
         => ( ( sigma_measure_a2 @ M2 @ ( sup_sup_set_a @ A2 @ B ) )
            = ( plus_plus_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ ( sigma_measure_a2 @ M2 @ ( minus_minus_set_a @ B @ A2 ) ) ) ) ) ) ) ).

% finite_measure.finite_measure_Union'
thf(fact_957_finite__measure_Ofinite__measure__Union_H,axiom,
    ! [M2: sigma_measure_b,A2: set_b,B: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( ( member_set_b @ B @ ( sigma_sets_b @ M2 ) )
         => ( ( sigma_measure_b2 @ M2 @ ( sup_sup_set_b @ A2 @ B ) )
            = ( plus_plus_real @ ( sigma_measure_b2 @ M2 @ A2 ) @ ( sigma_measure_b2 @ M2 @ ( minus_minus_set_b @ B @ A2 ) ) ) ) ) ) ) ).

% finite_measure.finite_measure_Union'
thf(fact_958_Diff__subset__conv,axiom,
    ! [A2: set_set_b,B: set_set_b,C: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ ( minus_5807331545291222566_set_b @ A2 @ B ) @ C )
      = ( ord_le3795704787696855135_set_b @ A2 @ ( sup_sup_set_set_b @ B @ C ) ) ) ).

% Diff_subset_conv
thf(fact_959_Diff__subset__conv,axiom,
    ! [A2: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ B ) @ C )
      = ( ord_le3724670747650509150_set_a @ A2 @ ( sup_sup_set_set_a @ B @ C ) ) ) ).

% Diff_subset_conv
thf(fact_960_Diff__subset__conv,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ C )
      = ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).

% Diff_subset_conv
thf(fact_961_Diff__partition,axiom,
    ! [A2: set_set_b,B: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A2 @ B )
     => ( ( sup_sup_set_set_b @ A2 @ ( minus_5807331545291222566_set_b @ B @ A2 ) )
        = B ) ) ).

% Diff_partition
thf(fact_962_Diff__partition,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B )
     => ( ( sup_sup_set_set_a @ A2 @ ( minus_5736297505244876581_set_a @ B @ A2 ) )
        = B ) ) ).

% Diff_partition
thf(fact_963_Diff__partition,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
        = B ) ) ).

% Diff_partition
thf(fact_964_Un__Diff__Int,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( inf_inf_set_a @ A2 @ B ) )
      = A2 ) ).

% Un_Diff_Int
thf(fact_965_Int__Diff__Un,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ B ) )
      = A2 ) ).

% Int_Diff_Un
thf(fact_966_Diff__Int,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
      = ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ C ) ) ) ).

% Diff_Int
thf(fact_967_Diff__Un,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
      = ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ C ) ) ) ).

% Diff_Un
thf(fact_968_fmeasurable__Diff__D,axiom,
    ! [T: set_set_b,S: set_set_b,M2: sigma_measure_set_b] :
      ( ( member_set_set_b @ ( minus_5807331545291222566_set_b @ T @ S ) @ ( measur7460903249514972363_set_b @ M2 ) )
     => ( ( member_set_set_b @ S @ ( measur7460903249514972363_set_b @ M2 ) )
       => ( ( ord_le3795704787696855135_set_b @ S @ T )
         => ( member_set_set_b @ T @ ( measur7460903249514972363_set_b @ M2 ) ) ) ) ) ).

% fmeasurable_Diff_D
thf(fact_969_fmeasurable__Diff__D,axiom,
    ! [T: set_set_a,S: set_set_a,M2: sigma_measure_set_a] :
      ( ( member_set_set_a @ ( minus_5736297505244876581_set_a @ T @ S ) @ ( measur7460903245211743562_set_a @ M2 ) )
     => ( ( member_set_set_a @ S @ ( measur7460903245211743562_set_a @ M2 ) )
       => ( ( ord_le3724670747650509150_set_a @ S @ T )
         => ( member_set_set_a @ T @ ( measur7460903245211743562_set_a @ M2 ) ) ) ) ) ).

% fmeasurable_Diff_D
thf(fact_970_fmeasurable__Diff__D,axiom,
    ! [T: set_a,S: set_a,M2: sigma_measure_a] :
      ( ( member_set_a @ ( minus_minus_set_a @ T @ S ) @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( member_set_a @ S @ ( measur3645360004775918570able_a @ M2 ) )
       => ( ( ord_less_eq_set_a @ S @ T )
         => ( member_set_a @ T @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ) ).

% fmeasurable_Diff_D
thf(fact_971_fmeasurable__Diff,axiom,
    ! [A2: set_b,M2: sigma_measure_b,B: set_b] :
      ( ( member_set_b @ A2 @ ( measur3645360004775918571able_b @ M2 ) )
     => ( ( member_set_b @ B @ ( sigma_sets_b @ M2 ) )
       => ( member_set_b @ ( minus_minus_set_b @ A2 @ B ) @ ( measur3645360004775918571able_b @ M2 ) ) ) ) ).

% fmeasurable_Diff
thf(fact_972_fmeasurable__Diff,axiom,
    ! [A2: set_a,M2: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ M2 ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ M2 ) )
       => ( member_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ).

% fmeasurable_Diff
thf(fact_973_null__set__Diff,axiom,
    ! [B: set_b,M2: sigma_measure_b,A2: set_b] :
      ( ( member_set_b @ B @ ( measure_null_sets_b @ M2 ) )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( member_set_b @ ( minus_minus_set_b @ B @ A2 ) @ ( measure_null_sets_b @ M2 ) ) ) ) ).

% null_set_Diff
thf(fact_974_null__set__Diff,axiom,
    ! [B: set_a,M2: sigma_measure_a,A2: set_a] :
      ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( member_set_a @ ( minus_minus_set_a @ B @ A2 ) @ ( measure_null_sets_a @ M2 ) ) ) ) ).

% null_set_Diff
thf(fact_975_measurable__empty__iff,axiom,
    ! [N: sigma_measure_b,F: a > b,M2: sigma_measure_a] :
      ( ( ( sigma_space_b @ N )
        = bot_bot_set_b )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ N ) )
        = ( ( sigma_space_a @ M2 )
          = bot_bot_set_a ) ) ) ).

% measurable_empty_iff
thf(fact_976_measurable__empty__iff,axiom,
    ! [N: sigma_measure_a,F: a > a,M2: sigma_measure_a] :
      ( ( ( sigma_space_a @ N )
        = bot_bot_set_a )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ N ) )
        = ( ( sigma_space_a @ M2 )
          = bot_bot_set_a ) ) ) ).

% measurable_empty_iff
thf(fact_977_measure__le__0__iff,axiom,
    ! [M2: sigma_measure_a,X: set_a] :
      ( ( ord_less_eq_real @ ( sigma_measure_a2 @ M2 @ X ) @ zero_zero_real )
      = ( ( sigma_measure_a2 @ M2 @ X )
        = zero_zero_real ) ) ).

% measure_le_0_iff
thf(fact_978_measure__nonneg,axiom,
    ! [M2: sigma_measure_a,A2: set_a] : ( ord_less_eq_real @ zero_zero_real @ ( sigma_measure_a2 @ M2 @ A2 ) ) ).

% measure_nonneg
thf(fact_979_measure__notin__sets,axiom,
    ! [A2: set_b,M2: sigma_measure_b] :
      ( ~ ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
     => ( ( sigma_measure_b2 @ M2 @ A2 )
        = zero_zero_real ) ) ).

% measure_notin_sets
thf(fact_980_measure__notin__sets,axiom,
    ! [A2: set_a,M2: sigma_measure_a] :
      ( ~ ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
     => ( ( sigma_measure_a2 @ M2 @ A2 )
        = zero_zero_real ) ) ).

% measure_notin_sets
thf(fact_981_prob__space_Onot__empty,axiom,
    ! [M2: sigma_measure_b] :
      ( ( probab7247484486040049090pace_b @ M2 )
     => ( ( sigma_space_b @ M2 )
       != bot_bot_set_b ) ) ).

% prob_space.not_empty
thf(fact_982_prob__space_Onot__empty,axiom,
    ! [M2: sigma_measure_a] :
      ( ( probab7247484486040049089pace_a @ M2 )
     => ( ( sigma_space_a @ M2 )
       != bot_bot_set_a ) ) ).

% prob_space.not_empty
thf(fact_983_subprob__space_Osubprob__not__empty,axiom,
    ! [M2: sigma_measure_a] :
      ( ( giry_subprob_space_a @ M2 )
     => ( ( sigma_space_a @ M2 )
       != bot_bot_set_a ) ) ).

% subprob_space.subprob_not_empty
thf(fact_984_finite__measure_Ofinite__measure__Union,axiom,
    ! [M2: sigma_measure_a,A2: set_a,B: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( ( member_set_a @ B @ ( sigma_sets_a @ M2 ) )
         => ( ( ( inf_inf_set_a @ A2 @ B )
              = bot_bot_set_a )
           => ( ( sigma_measure_a2 @ M2 @ ( sup_sup_set_a @ A2 @ B ) )
              = ( plus_plus_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ ( sigma_measure_a2 @ M2 @ B ) ) ) ) ) ) ) ).

% finite_measure.finite_measure_Union
thf(fact_985_finite__measure_Ofinite__measure__Union,axiom,
    ! [M2: sigma_measure_b,A2: set_b,B: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( ( member_set_b @ B @ ( sigma_sets_b @ M2 ) )
         => ( ( ( inf_inf_set_b @ A2 @ B )
              = bot_bot_set_b )
           => ( ( sigma_measure_b2 @ M2 @ ( sup_sup_set_b @ A2 @ B ) )
              = ( plus_plus_real @ ( sigma_measure_b2 @ M2 @ A2 ) @ ( sigma_measure_b2 @ M2 @ B ) ) ) ) ) ) ) ).

% finite_measure.finite_measure_Union
thf(fact_986_finite__measure_Omeasure__exclude,axiom,
    ! [M2: sigma_measure_a,A2: set_a,B: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( ( member_set_a @ B @ ( sigma_sets_a @ M2 ) )
         => ( ( ( sigma_measure_a2 @ M2 @ A2 )
              = ( sigma_measure_a2 @ M2 @ ( sigma_space_a @ M2 ) ) )
           => ( ( ( inf_inf_set_a @ A2 @ B )
                = bot_bot_set_a )
             => ( ( sigma_measure_a2 @ M2 @ B )
                = zero_zero_real ) ) ) ) ) ) ).

% finite_measure.measure_exclude
thf(fact_987_finite__measure_Omeasure__exclude,axiom,
    ! [M2: sigma_measure_b,A2: set_b,B: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( ( member_set_b @ B @ ( sigma_sets_b @ M2 ) )
         => ( ( ( sigma_measure_b2 @ M2 @ A2 )
              = ( sigma_measure_b2 @ M2 @ ( sigma_space_b @ M2 ) ) )
           => ( ( ( inf_inf_set_b @ A2 @ B )
                = bot_bot_set_b )
             => ( ( sigma_measure_b2 @ M2 @ B )
                = zero_zero_real ) ) ) ) ) ) ).

% finite_measure.measure_exclude
thf(fact_988_measure__Diff__null__set,axiom,
    ! [A2: set_b,M2: sigma_measure_b,B: set_b] :
      ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
     => ( ( member_set_b @ B @ ( measure_null_sets_b @ M2 ) )
       => ( ( sigma_measure_b2 @ M2 @ ( minus_minus_set_b @ A2 @ B ) )
          = ( sigma_measure_b2 @ M2 @ A2 ) ) ) ) ).

% measure_Diff_null_set
thf(fact_989_measure__Diff__null__set,axiom,
    ! [A2: set_a,M2: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
     => ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
       => ( ( sigma_measure_a2 @ M2 @ ( minus_minus_set_a @ A2 @ B ) )
          = ( sigma_measure_a2 @ M2 @ A2 ) ) ) ) ).

% measure_Diff_null_set
thf(fact_990_measurable__Diff__null__set,axiom,
    ! [B: set_b,M2: sigma_measure_b,A2: set_b] :
      ( ( member_set_b @ B @ ( measure_null_sets_b @ M2 ) )
     => ( ( ( member_set_b @ ( minus_minus_set_b @ A2 @ B ) @ ( measur3645360004775918571able_b @ M2 ) )
          & ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) ) )
        = ( member_set_b @ A2 @ ( measur3645360004775918571able_b @ M2 ) ) ) ) ).

% measurable_Diff_null_set
thf(fact_991_measurable__Diff__null__set,axiom,
    ! [B: set_a,M2: sigma_measure_a,A2: set_a] :
      ( ( member_set_a @ B @ ( measure_null_sets_a @ M2 ) )
     => ( ( ( member_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( measur3645360004775918570able_a @ M2 ) )
          & ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) ) )
        = ( member_set_a @ A2 @ ( measur3645360004775918570able_a @ M2 ) ) ) ) ).

% measurable_Diff_null_set
thf(fact_992_measure__Un__le,axiom,
    ! [A2: set_b,M2: sigma_measure_b,B: set_b] :
      ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
     => ( ( member_set_b @ B @ ( sigma_sets_b @ M2 ) )
       => ( ord_less_eq_real @ ( sigma_measure_b2 @ M2 @ ( sup_sup_set_b @ A2 @ B ) ) @ ( plus_plus_real @ ( sigma_measure_b2 @ M2 @ A2 ) @ ( sigma_measure_b2 @ M2 @ B ) ) ) ) ) ).

% measure_Un_le
thf(fact_993_measure__Un__le,axiom,
    ! [A2: set_a,M2: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ M2 ) )
       => ( ord_less_eq_real @ ( sigma_measure_a2 @ M2 @ ( sup_sup_set_a @ A2 @ B ) ) @ ( plus_plus_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ ( sigma_measure_a2 @ M2 @ B ) ) ) ) ) ).

% measure_Un_le
thf(fact_994_finite__measure_Omeasure__eq__compl,axiom,
    ! [M2: sigma_measure_a,S2: set_a,T3: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_set_a @ S2 @ ( sigma_sets_a @ M2 ) )
       => ( ( member_set_a @ T3 @ ( sigma_sets_a @ M2 ) )
         => ( ( ( sigma_measure_a2 @ M2 @ ( minus_minus_set_a @ ( sigma_space_a @ M2 ) @ S2 ) )
              = ( sigma_measure_a2 @ M2 @ ( minus_minus_set_a @ ( sigma_space_a @ M2 ) @ T3 ) ) )
           => ( ( sigma_measure_a2 @ M2 @ S2 )
              = ( sigma_measure_a2 @ M2 @ T3 ) ) ) ) ) ) ).

% finite_measure.measure_eq_compl
thf(fact_995_finite__measure_Omeasure__eq__compl,axiom,
    ! [M2: sigma_measure_b,S2: set_b,T3: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_set_b @ S2 @ ( sigma_sets_b @ M2 ) )
       => ( ( member_set_b @ T3 @ ( sigma_sets_b @ M2 ) )
         => ( ( ( sigma_measure_b2 @ M2 @ ( minus_minus_set_b @ ( sigma_space_b @ M2 ) @ S2 ) )
              = ( sigma_measure_b2 @ M2 @ ( minus_minus_set_b @ ( sigma_space_b @ M2 ) @ T3 ) ) )
           => ( ( sigma_measure_b2 @ M2 @ S2 )
              = ( sigma_measure_b2 @ M2 @ T3 ) ) ) ) ) ) ).

% finite_measure.measure_eq_compl
thf(fact_996_finite__measure_Omeasure__zero__union,axiom,
    ! [M2: sigma_measure_a,S2: set_a,T3: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_set_a @ S2 @ ( sigma_sets_a @ M2 ) )
       => ( ( member_set_a @ T3 @ ( sigma_sets_a @ M2 ) )
         => ( ( ( sigma_measure_a2 @ M2 @ T3 )
              = zero_zero_real )
           => ( ( sigma_measure_a2 @ M2 @ ( sup_sup_set_a @ S2 @ T3 ) )
              = ( sigma_measure_a2 @ M2 @ S2 ) ) ) ) ) ) ).

% finite_measure.measure_zero_union
thf(fact_997_finite__measure_Omeasure__zero__union,axiom,
    ! [M2: sigma_measure_b,S2: set_b,T3: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_set_b @ S2 @ ( sigma_sets_b @ M2 ) )
       => ( ( member_set_b @ T3 @ ( sigma_sets_b @ M2 ) )
         => ( ( ( sigma_measure_b2 @ M2 @ T3 )
              = zero_zero_real )
           => ( ( sigma_measure_b2 @ M2 @ ( sup_sup_set_b @ S2 @ T3 ) )
              = ( sigma_measure_b2 @ M2 @ S2 ) ) ) ) ) ) ).

% finite_measure.measure_zero_union
thf(fact_998_subprob__space_Osubprob__space__distr,axiom,
    ! [M2: sigma_measure_a,F: a > b,M: sigma_measure_b] :
      ( ( giry_subprob_space_a @ M2 )
     => ( ( member_a_b @ F @ ( sigma_measurable_a_b @ M2 @ M ) )
       => ( ( ( sigma_space_b @ M )
           != bot_bot_set_b )
         => ( giry_subprob_space_b @ ( measure_distr_a_b @ M2 @ M @ F ) ) ) ) ) ).

% subprob_space.subprob_space_distr
thf(fact_999_subprob__space_Osubprob__space__distr,axiom,
    ! [M2: sigma_measure_a,F: a > a,M: sigma_measure_a] :
      ( ( giry_subprob_space_a @ M2 )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M2 @ M ) )
       => ( ( ( sigma_space_a @ M )
           != bot_bot_set_a )
         => ( giry_subprob_space_a @ ( measure_distr_a_a @ M2 @ M @ F ) ) ) ) ) ).

% subprob_space.subprob_space_distr
thf(fact_1000_finite__measure_Ofinite__measure__subadditive,axiom,
    ! [M2: sigma_measure_a,A2: set_a,B: set_a] :
      ( ( measur930452917991658466sure_a @ M2 )
     => ( ( member_set_a @ A2 @ ( sigma_sets_a @ M2 ) )
       => ( ( member_set_a @ B @ ( sigma_sets_a @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_a2 @ M2 @ ( sup_sup_set_a @ A2 @ B ) ) @ ( plus_plus_real @ ( sigma_measure_a2 @ M2 @ A2 ) @ ( sigma_measure_a2 @ M2 @ B ) ) ) ) ) ) ).

% finite_measure.finite_measure_subadditive
thf(fact_1001_finite__measure_Ofinite__measure__subadditive,axiom,
    ! [M2: sigma_measure_b,A2: set_b,B: set_b] :
      ( ( measur930452917991658467sure_b @ M2 )
     => ( ( member_set_b @ A2 @ ( sigma_sets_b @ M2 ) )
       => ( ( member_set_b @ B @ ( sigma_sets_b @ M2 ) )
         => ( ord_less_eq_real @ ( sigma_measure_b2 @ M2 @ ( sup_sup_set_b @ A2 @ B ) ) @ ( plus_plus_real @ ( sigma_measure_b2 @ M2 @ A2 ) @ ( sigma_measure_b2 @ M2 @ B ) ) ) ) ) ) ).

% finite_measure.finite_measure_subadditive
thf(fact_1002_inf__sup__ord_I2_J,axiom,
    ! [X5: set_set_b,Y4: set_set_b] : ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ X5 @ Y4 ) @ Y4 ) ).

% inf_sup_ord(2)
thf(fact_1003_inf__sup__ord_I2_J,axiom,
    ! [X5: set_set_a,Y4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X5 @ Y4 ) @ Y4 ) ).

% inf_sup_ord(2)
thf(fact_1004_inf__sup__ord_I2_J,axiom,
    ! [X5: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X5 @ Y4 ) @ Y4 ) ).

% inf_sup_ord(2)
thf(fact_1005_inf__sup__ord_I2_J,axiom,
    ! [X5: nat,Y4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X5 @ Y4 ) @ Y4 ) ).

% inf_sup_ord(2)
thf(fact_1006_inf__sup__ord_I2_J,axiom,
    ! [X5: int,Y4: int] : ( ord_less_eq_int @ ( inf_inf_int @ X5 @ Y4 ) @ Y4 ) ).

% inf_sup_ord(2)
thf(fact_1007_inf__sup__ord_I1_J,axiom,
    ! [X5: set_set_b,Y4: set_set_b] : ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ X5 @ Y4 ) @ X5 ) ).

% inf_sup_ord(1)
thf(fact_1008_inf__sup__ord_I1_J,axiom,
    ! [X5: set_set_a,Y4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X5 @ Y4 ) @ X5 ) ).

% inf_sup_ord(1)
thf(fact_1009_inf__sup__ord_I1_J,axiom,
    ! [X5: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X5 @ Y4 ) @ X5 ) ).

% inf_sup_ord(1)
thf(fact_1010_inf__sup__ord_I1_J,axiom,
    ! [X5: nat,Y4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X5 @ Y4 ) @ X5 ) ).

% inf_sup_ord(1)
thf(fact_1011_inf__sup__ord_I1_J,axiom,
    ! [X5: int,Y4: int] : ( ord_less_eq_int @ ( inf_inf_int @ X5 @ Y4 ) @ X5 ) ).

% inf_sup_ord(1)
thf(fact_1012_inf__le1,axiom,
    ! [X5: set_set_b,Y4: set_set_b] : ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ X5 @ Y4 ) @ X5 ) ).

% inf_le1
thf(fact_1013_inf__le1,axiom,
    ! [X5: set_set_a,Y4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X5 @ Y4 ) @ X5 ) ).

% inf_le1
thf(fact_1014_inf__le1,axiom,
    ! [X5: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X5 @ Y4 ) @ X5 ) ).

% inf_le1
thf(fact_1015_inf__le1,axiom,
    ! [X5: nat,Y4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X5 @ Y4 ) @ X5 ) ).

% inf_le1
thf(fact_1016_inf__le1,axiom,
    ! [X5: int,Y4: int] : ( ord_less_eq_int @ ( inf_inf_int @ X5 @ Y4 ) @ X5 ) ).

% inf_le1
thf(fact_1017_inf__le2,axiom,
    ! [X5: set_set_b,Y4: set_set_b] : ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ X5 @ Y4 ) @ Y4 ) ).

% inf_le2
thf(fact_1018_inf__le2,axiom,
    ! [X5: set_set_a,Y4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X5 @ Y4 ) @ Y4 ) ).

% inf_le2
thf(fact_1019_inf__le2,axiom,
    ! [X5: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X5 @ Y4 ) @ Y4 ) ).

% inf_le2
thf(fact_1020_inf__le2,axiom,
    ! [X5: nat,Y4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X5 @ Y4 ) @ Y4 ) ).

% inf_le2
thf(fact_1021_inf__le2,axiom,
    ! [X5: int,Y4: int] : ( ord_less_eq_int @ ( inf_inf_int @ X5 @ Y4 ) @ Y4 ) ).

% inf_le2
thf(fact_1022_le__infE,axiom,
    ! [X5: set_set_b,A: set_set_b,B2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ X5 @ ( inf_inf_set_set_b @ A @ B2 ) )
     => ~ ( ( ord_le3795704787696855135_set_b @ X5 @ A )
         => ~ ( ord_le3795704787696855135_set_b @ X5 @ B2 ) ) ) ).

% le_infE
thf(fact_1023_le__infE,axiom,
    ! [X5: set_set_a,A: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X5 @ ( inf_inf_set_set_a @ A @ B2 ) )
     => ~ ( ( ord_le3724670747650509150_set_a @ X5 @ A )
         => ~ ( ord_le3724670747650509150_set_a @ X5 @ B2 ) ) ) ).

% le_infE
thf(fact_1024_le__infE,axiom,
    ! [X5: set_a,A: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ X5 @ ( inf_inf_set_a @ A @ B2 ) )
     => ~ ( ( ord_less_eq_set_a @ X5 @ A )
         => ~ ( ord_less_eq_set_a @ X5 @ B2 ) ) ) ).

% le_infE
thf(fact_1025_le__infE,axiom,
    ! [X5: nat,A: nat,B2: nat] :
      ( ( ord_less_eq_nat @ X5 @ ( inf_inf_nat @ A @ B2 ) )
     => ~ ( ( ord_less_eq_nat @ X5 @ A )
         => ~ ( ord_less_eq_nat @ X5 @ B2 ) ) ) ).

% le_infE
thf(fact_1026_le__infE,axiom,
    ! [X5: int,A: int,B2: int] :
      ( ( ord_less_eq_int @ X5 @ ( inf_inf_int @ A @ B2 ) )
     => ~ ( ( ord_less_eq_int @ X5 @ A )
         => ~ ( ord_less_eq_int @ X5 @ B2 ) ) ) ).

% le_infE
thf(fact_1027_le__infI,axiom,
    ! [X5: set_set_b,A: set_set_b,B2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ X5 @ A )
     => ( ( ord_le3795704787696855135_set_b @ X5 @ B2 )
       => ( ord_le3795704787696855135_set_b @ X5 @ ( inf_inf_set_set_b @ A @ B2 ) ) ) ) ).

% le_infI
thf(fact_1028_le__infI,axiom,
    ! [X5: set_set_a,A: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X5 @ A )
     => ( ( ord_le3724670747650509150_set_a @ X5 @ B2 )
       => ( ord_le3724670747650509150_set_a @ X5 @ ( inf_inf_set_set_a @ A @ B2 ) ) ) ) ).

% le_infI
thf(fact_1029_le__infI,axiom,
    ! [X5: set_a,A: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ X5 @ A )
     => ( ( ord_less_eq_set_a @ X5 @ B2 )
       => ( ord_less_eq_set_a @ X5 @ ( inf_inf_set_a @ A @ B2 ) ) ) ) ).

% le_infI
thf(fact_1030_le__infI,axiom,
    ! [X5: nat,A: nat,B2: nat] :
      ( ( ord_less_eq_nat @ X5 @ A )
     => ( ( ord_less_eq_nat @ X5 @ B2 )
       => ( ord_less_eq_nat @ X5 @ ( inf_inf_nat @ A @ B2 ) ) ) ) ).

% le_infI
thf(fact_1031_le__infI,axiom,
    ! [X5: int,A: int,B2: int] :
      ( ( ord_less_eq_int @ X5 @ A )
     => ( ( ord_less_eq_int @ X5 @ B2 )
       => ( ord_less_eq_int @ X5 @ ( inf_inf_int @ A @ B2 ) ) ) ) ).

% le_infI
thf(fact_1032_inf__mono,axiom,
    ! [A: set_set_b,C2: set_set_b,B2: set_set_b,D2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ C2 )
     => ( ( ord_le3795704787696855135_set_b @ B2 @ D2 )
       => ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ A @ B2 ) @ ( inf_inf_set_set_b @ C2 @ D2 ) ) ) ) ).

% inf_mono
thf(fact_1033_inf__mono,axiom,
    ! [A: set_set_a,C2: set_set_a,B2: set_set_a,D2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ C2 )
     => ( ( ord_le3724670747650509150_set_a @ B2 @ D2 )
       => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B2 ) @ ( inf_inf_set_set_a @ C2 @ D2 ) ) ) ) ).

% inf_mono
thf(fact_1034_inf__mono,axiom,
    ! [A: set_a,C2: set_a,B2: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A @ C2 )
     => ( ( ord_less_eq_set_a @ B2 @ D2 )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B2 ) @ ( inf_inf_set_a @ C2 @ D2 ) ) ) ) ).

% inf_mono
thf(fact_1035_inf__mono,axiom,
    ! [A: nat,C2: nat,B2: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ( ord_less_eq_nat @ B2 @ D2 )
       => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B2 ) @ ( inf_inf_nat @ C2 @ D2 ) ) ) ) ).

% inf_mono
thf(fact_1036_inf__mono,axiom,
    ! [A: int,C2: int,B2: int,D2: int] :
      ( ( ord_less_eq_int @ A @ C2 )
     => ( ( ord_less_eq_int @ B2 @ D2 )
       => ( ord_less_eq_int @ ( inf_inf_int @ A @ B2 ) @ ( inf_inf_int @ C2 @ D2 ) ) ) ) ).

% inf_mono
thf(fact_1037_le__infI1,axiom,
    ! [A: set_set_b,X5: set_set_b,B2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ X5 )
     => ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ A @ B2 ) @ X5 ) ) ).

% le_infI1
thf(fact_1038_le__infI1,axiom,
    ! [A: set_set_a,X5: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ X5 )
     => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B2 ) @ X5 ) ) ).

% le_infI1
thf(fact_1039_le__infI1,axiom,
    ! [A: set_a,X5: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A @ X5 )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B2 ) @ X5 ) ) ).

% le_infI1
thf(fact_1040_le__infI1,axiom,
    ! [A: nat,X5: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A @ X5 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B2 ) @ X5 ) ) ).

% le_infI1
thf(fact_1041_le__infI1,axiom,
    ! [A: int,X5: int,B2: int] :
      ( ( ord_less_eq_int @ A @ X5 )
     => ( ord_less_eq_int @ ( inf_inf_int @ A @ B2 ) @ X5 ) ) ).

% le_infI1
thf(fact_1042_le__infI2,axiom,
    ! [B2: set_set_b,X5: set_set_b,A: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ B2 @ X5 )
     => ( ord_le3795704787696855135_set_b @ ( inf_inf_set_set_b @ A @ B2 ) @ X5 ) ) ).

% le_infI2
thf(fact_1043_le__infI2,axiom,
    ! [B2: set_set_a,X5: set_set_a,A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B2 @ X5 )
     => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B2 ) @ X5 ) ) ).

% le_infI2
thf(fact_1044_le__infI2,axiom,
    ! [B2: set_a,X5: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ X5 )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B2 ) @ X5 ) ) ).

% le_infI2
thf(fact_1045_le__infI2,axiom,
    ! [B2: nat,X5: nat,A: nat] :
      ( ( ord_less_eq_nat @ B2 @ X5 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B2 ) @ X5 ) ) ).

% le_infI2
thf(fact_1046_le__infI2,axiom,
    ! [B2: int,X5: int,A: int] :
      ( ( ord_less_eq_int @ B2 @ X5 )
     => ( ord_less_eq_int @ ( inf_inf_int @ A @ B2 ) @ X5 ) ) ).

% le_infI2
thf(fact_1047_inf_OorderE,axiom,
    ! [A: set_set_b,B2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( A
        = ( inf_inf_set_set_b @ A @ B2 ) ) ) ).

% inf.orderE
thf(fact_1048_inf_OorderE,axiom,
    ! [A: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( A
        = ( inf_inf_set_set_a @ A @ B2 ) ) ) ).

% inf.orderE
thf(fact_1049_inf_OorderE,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( A
        = ( inf_inf_set_a @ A @ B2 ) ) ) ).

% inf.orderE
thf(fact_1050_inf_OorderE,axiom,
    ! [A: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( A
        = ( inf_inf_nat @ A @ B2 ) ) ) ).

% inf.orderE
thf(fact_1051_inf_OorderE,axiom,
    ! [A: int,B2: int] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( A
        = ( inf_inf_int @ A @ B2 ) ) ) ).

% inf.orderE
thf(fact_1052_inf_OorderI,axiom,
    ! [A: set_set_b,B2: set_set_b] :
      ( ( A
        = ( inf_inf_set_set_b @ A @ B2 ) )
     => ( ord_le3795704787696855135_set_b @ A @ B2 ) ) ).

% inf.orderI
thf(fact_1053_inf_OorderI,axiom,
    ! [A: set_set_a,B2: set_set_a] :
      ( ( A
        = ( inf_inf_set_set_a @ A @ B2 ) )
     => ( ord_le3724670747650509150_set_a @ A @ B2 ) ) ).

% inf.orderI
thf(fact_1054_inf_OorderI,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( A
        = ( inf_inf_set_a @ A @ B2 ) )
     => ( ord_less_eq_set_a @ A @ B2 ) ) ).

% inf.orderI
thf(fact_1055_inf_OorderI,axiom,
    ! [A: nat,B2: nat] :
      ( ( A
        = ( inf_inf_nat @ A @ B2 ) )
     => ( ord_less_eq_nat @ A @ B2 ) ) ).

% inf.orderI
thf(fact_1056_inf_OorderI,axiom,
    ! [A: int,B2: int] :
      ( ( A
        = ( inf_inf_int @ A @ B2 ) )
     => ( ord_less_eq_int @ A @ B2 ) ) ).

% inf.orderI
thf(fact_1057_inf__unique,axiom,
    ! [F: set_set_b > set_set_b > set_set_b,X5: set_set_b,Y4: set_set_b] :
      ( ! [X4: set_set_b,Y6: set_set_b] : ( ord_le3795704787696855135_set_b @ ( F @ X4 @ Y6 ) @ X4 )
     => ( ! [X4: set_set_b,Y6: set_set_b] : ( ord_le3795704787696855135_set_b @ ( F @ X4 @ Y6 ) @ Y6 )
       => ( ! [X4: set_set_b,Y6: set_set_b,Z3: set_set_b] :
              ( ( ord_le3795704787696855135_set_b @ X4 @ Y6 )
             => ( ( ord_le3795704787696855135_set_b @ X4 @ Z3 )
               => ( ord_le3795704787696855135_set_b @ X4 @ ( F @ Y6 @ Z3 ) ) ) )
         => ( ( inf_inf_set_set_b @ X5 @ Y4 )
            = ( F @ X5 @ Y4 ) ) ) ) ) ).

% inf_unique
thf(fact_1058_inf__unique,axiom,
    ! [F: set_set_a > set_set_a > set_set_a,X5: set_set_a,Y4: set_set_a] :
      ( ! [X4: set_set_a,Y6: set_set_a] : ( ord_le3724670747650509150_set_a @ ( F @ X4 @ Y6 ) @ X4 )
     => ( ! [X4: set_set_a,Y6: set_set_a] : ( ord_le3724670747650509150_set_a @ ( F @ X4 @ Y6 ) @ Y6 )
       => ( ! [X4: set_set_a,Y6: set_set_a,Z3: set_set_a] :
              ( ( ord_le3724670747650509150_set_a @ X4 @ Y6 )
             => ( ( ord_le3724670747650509150_set_a @ X4 @ Z3 )
               => ( ord_le3724670747650509150_set_a @ X4 @ ( F @ Y6 @ Z3 ) ) ) )
         => ( ( inf_inf_set_set_a @ X5 @ Y4 )
            = ( F @ X5 @ Y4 ) ) ) ) ) ).

% inf_unique
thf(fact_1059_inf__unique,axiom,
    ! [F: set_a > set_a > set_a,X5: set_a,Y4: set_a] :
      ( ! [X4: set_a,Y6: set_a] : ( ord_less_eq_set_a @ ( F @ X4 @ Y6 ) @ X4 )
     => ( ! [X4: set_a,Y6: set_a] : ( ord_less_eq_set_a @ ( F @ X4 @ Y6 ) @ Y6 )
       => ( ! [X4: set_a,Y6: set_a,Z3: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y6 )
             => ( ( ord_less_eq_set_a @ X4 @ Z3 )
               => ( ord_less_eq_set_a @ X4 @ ( F @ Y6 @ Z3 ) ) ) )
         => ( ( inf_inf_set_a @ X5 @ Y4 )
            = ( F @ X5 @ Y4 ) ) ) ) ) ).

% inf_unique
thf(fact_1060_inf__unique,axiom,
    ! [F: nat > nat > nat,X5: nat,Y4: nat] :
      ( ! [X4: nat,Y6: nat] : ( ord_less_eq_nat @ ( F @ X4 @ Y6 ) @ X4 )
     => ( ! [X4: nat,Y6: nat] : ( ord_less_eq_nat @ ( F @ X4 @ Y6 ) @ Y6 )
       => ( ! [X4: nat,Y6: nat,Z3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y6 )
             => ( ( ord_less_eq_nat @ X4 @ Z3 )
               => ( ord_less_eq_nat @ X4 @ ( F @ Y6 @ Z3 ) ) ) )
         => ( ( inf_inf_nat @ X5 @ Y4 )
            = ( F @ X5 @ Y4 ) ) ) ) ) ).

% inf_unique
thf(fact_1061_inf__unique,axiom,
    ! [F: int > int > int,X5: int,Y4: int] :
      ( ! [X4: int,Y6: int] : ( ord_less_eq_int @ ( F @ X4 @ Y6 ) @ X4 )
     => ( ! [X4: int,Y6: int] : ( ord_less_eq_int @ ( F @ X4 @ Y6 ) @ Y6 )
       => ( ! [X4: int,Y6: int,Z3: int] :
              ( ( ord_less_eq_int @ X4 @ Y6 )
             => ( ( ord_less_eq_int @ X4 @ Z3 )
               => ( ord_less_eq_int @ X4 @ ( F @ Y6 @ Z3 ) ) ) )
         => ( ( inf_inf_int @ X5 @ Y4 )
            = ( F @ X5 @ Y4 ) ) ) ) ) ).

% inf_unique
thf(fact_1062_le__iff__inf,axiom,
    ( ord_le3795704787696855135_set_b
    = ( ^ [X3: set_set_b,Y3: set_set_b] :
          ( ( inf_inf_set_set_b @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_1063_le__iff__inf,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [X3: set_set_a,Y3: set_set_a] :
          ( ( inf_inf_set_set_a @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_1064_le__iff__inf,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( inf_inf_set_a @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_1065_le__iff__inf,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( inf_inf_nat @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_1066_le__iff__inf,axiom,
    ( ord_less_eq_int
    = ( ^ [X3: int,Y3: int] :
          ( ( inf_inf_int @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_1067_inf_Oabsorb1,axiom,
    ! [A: set_set_b,B2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( inf_inf_set_set_b @ A @ B2 )
        = A ) ) ).

% inf.absorb1
thf(fact_1068_inf_Oabsorb1,axiom,
    ! [A: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( ( inf_inf_set_set_a @ A @ B2 )
        = A ) ) ).

% inf.absorb1
thf(fact_1069_inf_Oabsorb1,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( inf_inf_set_a @ A @ B2 )
        = A ) ) ).

% inf.absorb1
thf(fact_1070_inf_Oabsorb1,axiom,
    ! [A: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( inf_inf_nat @ A @ B2 )
        = A ) ) ).

% inf.absorb1
thf(fact_1071_inf_Oabsorb1,axiom,
    ! [A: int,B2: int] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( inf_inf_int @ A @ B2 )
        = A ) ) ).

% inf.absorb1
thf(fact_1072_inf_Oabsorb2,axiom,
    ! [B2: set_set_b,A: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ B2 @ A )
     => ( ( inf_inf_set_set_b @ A @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_1073_inf_Oabsorb2,axiom,
    ! [B2: set_set_a,A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B2 @ A )
     => ( ( inf_inf_set_set_a @ A @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_1074_inf_Oabsorb2,axiom,
    ! [B2: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A )
     => ( ( inf_inf_set_a @ A @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_1075_inf_Oabsorb2,axiom,
    ! [B2: nat,A: nat] :
      ( ( ord_less_eq_nat @ B2 @ A )
     => ( ( inf_inf_nat @ A @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_1076_inf_Oabsorb2,axiom,
    ! [B2: int,A: int] :
      ( ( ord_less_eq_int @ B2 @ A )
     => ( ( inf_inf_int @ A @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_1077_inf__absorb1,axiom,
    ! [X5: set_set_b,Y4: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
     => ( ( inf_inf_set_set_b @ X5 @ Y4 )
        = X5 ) ) ).

% inf_absorb1
thf(fact_1078_inf__absorb1,axiom,
    ! [X5: set_set_a,Y4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
     => ( ( inf_inf_set_set_a @ X5 @ Y4 )
        = X5 ) ) ).

% inf_absorb1
thf(fact_1079_inf__absorb1,axiom,
    ! [X5: set_a,Y4: set_a] :
      ( ( ord_less_eq_set_a @ X5 @ Y4 )
     => ( ( inf_inf_set_a @ X5 @ Y4 )
        = X5 ) ) ).

% inf_absorb1
thf(fact_1080_inf__absorb1,axiom,
    ! [X5: nat,Y4: nat] :
      ( ( ord_less_eq_nat @ X5 @ Y4 )
     => ( ( inf_inf_nat @ X5 @ Y4 )
        = X5 ) ) ).

% inf_absorb1
thf(fact_1081_inf__absorb1,axiom,
    ! [X5: int,Y4: int] :
      ( ( ord_less_eq_int @ X5 @ Y4 )
     => ( ( inf_inf_int @ X5 @ Y4 )
        = X5 ) ) ).

% inf_absorb1
thf(fact_1082_inf__absorb2,axiom,
    ! [Y4: set_set_b,X5: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ Y4 @ X5 )
     => ( ( inf_inf_set_set_b @ X5 @ Y4 )
        = Y4 ) ) ).

% inf_absorb2
thf(fact_1083_inf__absorb2,axiom,
    ! [Y4: set_set_a,X5: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ Y4 @ X5 )
     => ( ( inf_inf_set_set_a @ X5 @ Y4 )
        = Y4 ) ) ).

% inf_absorb2
thf(fact_1084_inf__absorb2,axiom,
    ! [Y4: set_a,X5: set_a] :
      ( ( ord_less_eq_set_a @ Y4 @ X5 )
     => ( ( inf_inf_set_a @ X5 @ Y4 )
        = Y4 ) ) ).

% inf_absorb2
thf(fact_1085_inf__absorb2,axiom,
    ! [Y4: nat,X5: nat] :
      ( ( ord_less_eq_nat @ Y4 @ X5 )
     => ( ( inf_inf_nat @ X5 @ Y4 )
        = Y4 ) ) ).

% inf_absorb2
thf(fact_1086_inf__absorb2,axiom,
    ! [Y4: int,X5: int] :
      ( ( ord_less_eq_int @ Y4 @ X5 )
     => ( ( inf_inf_int @ X5 @ Y4 )
        = Y4 ) ) ).

% inf_absorb2
thf(fact_1087_inf_OboundedE,axiom,
    ! [A: set_set_b,B2: set_set_b,C2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ ( inf_inf_set_set_b @ B2 @ C2 ) )
     => ~ ( ( ord_le3795704787696855135_set_b @ A @ B2 )
         => ~ ( ord_le3795704787696855135_set_b @ A @ C2 ) ) ) ).

% inf.boundedE
thf(fact_1088_inf_OboundedE,axiom,
    ! [A: set_set_a,B2: set_set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B2 @ C2 ) )
     => ~ ( ( ord_le3724670747650509150_set_a @ A @ B2 )
         => ~ ( ord_le3724670747650509150_set_a @ A @ C2 ) ) ) ).

% inf.boundedE
thf(fact_1089_inf_OboundedE,axiom,
    ! [A: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B2 @ C2 ) )
     => ~ ( ( ord_less_eq_set_a @ A @ B2 )
         => ~ ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% inf.boundedE
thf(fact_1090_inf_OboundedE,axiom,
    ! [A: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B2 @ C2 ) )
     => ~ ( ( ord_less_eq_nat @ A @ B2 )
         => ~ ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% inf.boundedE
thf(fact_1091_inf_OboundedE,axiom,
    ! [A: int,B2: int,C2: int] :
      ( ( ord_less_eq_int @ A @ ( inf_inf_int @ B2 @ C2 ) )
     => ~ ( ( ord_less_eq_int @ A @ B2 )
         => ~ ( ord_less_eq_int @ A @ C2 ) ) ) ).

% inf.boundedE
thf(fact_1092_inf_OboundedI,axiom,
    ! [A: set_set_b,B2: set_set_b,C2: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ A @ B2 )
     => ( ( ord_le3795704787696855135_set_b @ A @ C2 )
       => ( ord_le3795704787696855135_set_b @ A @ ( inf_inf_set_set_b @ B2 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_1093_inf_OboundedI,axiom,
    ! [A: set_set_a,B2: set_set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( ( ord_le3724670747650509150_set_a @ A @ C2 )
       => ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B2 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_1094_inf_OboundedI,axiom,
    ! [A: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( ord_less_eq_set_a @ A @ C2 )
       => ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B2 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_1095_inf_OboundedI,axiom,
    ! [A: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B2 )
     => ( ( ord_less_eq_nat @ A @ C2 )
       => ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B2 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_1096_inf_OboundedI,axiom,
    ! [A: int,B2: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B2 )
     => ( ( ord_less_eq_int @ A @ C2 )
       => ( ord_less_eq_int @ A @ ( inf_inf_int @ B2 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_1097_inf__greatest,axiom,
    ! [X5: set_set_b,Y4: set_set_b,Z: set_set_b] :
      ( ( ord_le3795704787696855135_set_b @ X5 @ Y4 )
     => ( ( ord_le3795704787696855135_set_b @ X5 @ Z )
       => ( ord_le3795704787696855135_set_b @ X5 @ ( inf_inf_set_set_b @ Y4 @ Z ) ) ) ) ).

% inf_greatest
thf(fact_1098_inf__greatest,axiom,
    ! [X5: set_set_a,Y4: set_set_a,Z: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X5 @ Y4 )
     => ( ( ord_le3724670747650509150_set_a @ X5 @ Z )
       => ( ord_le3724670747650509150_set_a @ X5 @ ( inf_inf_set_set_a @ Y4 @ Z ) ) ) ) ).

% inf_greatest
thf(fact_1099_inf__greatest,axiom,
    ! [X5: set_a,Y4: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X5 @ Y4 )
     => ( ( ord_less_eq_set_a @ X5 @ Z )
       => ( ord_less_eq_set_a @ X5 @ ( inf_inf_set_a @ Y4 @ Z ) ) ) ) ).

% inf_greatest
thf(fact_1100_inf__greatest,axiom,
    ! [X5: nat,Y4: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X5 @ Y4 )
     => ( ( ord_less_eq_nat @ X5 @ Z )
       => ( ord_less_eq_nat @ X5 @ ( inf_inf_nat @ Y4 @ Z ) ) ) ) ).

% inf_greatest
thf(fact_1101_inf__greatest,axiom,
    ! [X5: int,Y4: int,Z: int] :
      ( ( ord_less_eq_int @ X5 @ Y4 )
     => ( ( ord_less_eq_int @ X5 @ Z )
       => ( ord_less_eq_int @ X5 @ ( inf_inf_int @ Y4 @ Z ) ) ) ) ).

% inf_greatest
thf(fact_1102_inf_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( A4
          = ( inf_inf_nat @ A4 @ B4 ) ) ) ) ).

% inf.order_iff
thf(fact_1103_inf_Oorder__iff,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B4: int] :
          ( A4
          = ( inf_inf_int @ A4 @ B4 ) ) ) ) ).

% inf.order_iff
thf(fact_1104_finite__measure__compl,axiom,
    ! [S: set_a] :
      ( ( member_set_a @ S @ ( sigma_sets_a @ m ) )
     => ( ( sigma_measure_a2 @ m @ ( minus_minus_set_a @ ( sigma_space_a @ m ) @ S ) )
        = ( minus_minus_real @ ( sigma_measure_a2 @ m @ ( sigma_space_a @ m ) ) @ ( sigma_measure_a2 @ m @ S ) ) ) ) ).

% finite_measure_compl
thf(fact_1105_finite__measure__Diff_H,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ m ) )
       => ( ( sigma_measure_a2 @ m @ ( minus_minus_set_a @ A2 @ B ) )
          = ( minus_minus_real @ ( sigma_measure_a2 @ m @ A2 ) @ ( sigma_measure_a2 @ m @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ) ) ).

% finite_measure_Diff'
thf(fact_1106_finite__measure__Diff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ m ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ m ) )
       => ( ( ord_less_eq_set_a @ B @ A2 )
         => ( ( sigma_measure_a2 @ m @ ( minus_minus_set_a @ A2 @ B ) )
            = ( minus_minus_real @ ( sigma_measure_a2 @ m @ A2 ) @ ( sigma_measure_a2 @ m @ B ) ) ) ) ) ) ).

% finite_measure_Diff
thf(fact_1107_prob__compl,axiom,
    ! [A2: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ m ) )
     => ( ( sigma_measure_a2 @ m @ ( minus_minus_set_a @ ( sigma_space_a @ m ) @ A2 ) )
        = ( minus_minus_real @ one_one_real @ ( sigma_measure_a2 @ m @ A2 ) ) ) ) ).

% prob_compl
thf(fact_1108_segment__bound__lemma,axiom,
    ! [B: real,X5: real,Y4: real,U: real] :
      ( ( ord_less_eq_real @ B @ X5 )
     => ( ( ord_less_eq_real @ B @ Y4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ U @ one_one_real )
           => ( ord_less_eq_real @ B @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ one_one_real @ U ) @ X5 ) @ ( times_times_real @ U @ Y4 ) ) ) ) ) ) ) ).

% segment_bound_lemma
thf(fact_1109_sum__le__prod1,axiom,
    ! [A: real,B2: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ B2 @ one_one_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B2 ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ A @ B2 ) ) ) ) ) ).

% sum_le_prod1
thf(fact_1110_sigma__algebra__tail__events,axiom,
    ! [A2: nat > set_set_a] :
      ( ! [I2: nat] : ( sigma_4968961713055010667ebra_a @ ( sigma_space_a @ m ) @ ( A2 @ I2 ) )
     => ( sigma_4968961713055010667ebra_a @ ( sigma_space_a @ m ) @ ( indepe7538416700049374166_a_nat @ m @ A2 ) ) ) ).

% sigma_algebra_tail_events
thf(fact_1111_kolmogorov__0__1__law,axiom,
    ! [A2: nat > set_set_a,X: set_a] :
      ( ! [I2: nat] : ( sigma_4968961713055010667ebra_a @ ( sigma_space_a @ m ) @ ( A2 @ I2 ) )
     => ( ( indepe6267730027088848354_a_nat @ m @ A2 @ top_top_set_nat )
       => ( ( member_set_a @ X @ ( indepe7538416700049374166_a_nat @ m @ A2 ) )
         => ( ( ( sigma_measure_a2 @ m @ X )
              = zero_zero_real )
            | ( ( sigma_measure_a2 @ m @ X )
              = one_one_real ) ) ) ) ) ).

% kolmogorov_0_1_law
thf(fact_1112_kuhn__labelling__lemma_H,axiom,
    ! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q: nat > $o] :
      ( ! [X4: nat > real] :
          ( ( P @ X4 )
         => ( P @ ( F @ X4 ) ) )
     => ( ! [X4: nat > real] :
            ( ( P @ X4 )
           => ! [I2: nat] :
                ( ( Q @ I2 )
               => ( ( ord_less_eq_real @ zero_zero_real @ ( X4 @ I2 ) )
                  & ( ord_less_eq_real @ ( X4 @ I2 ) @ one_one_real ) ) ) )
       => ? [L2: ( nat > real ) > nat > nat] :
            ( ! [X6: nat > real,I4: nat] : ( ord_less_eq_nat @ ( L2 @ X6 @ I4 ) @ one_one_nat )
            & ! [X6: nat > real,I4: nat] :
                ( ( ( P @ X6 )
                  & ( Q @ I4 )
                  & ( ( X6 @ I4 )
                    = zero_zero_real ) )
               => ( ( L2 @ X6 @ I4 )
                  = zero_zero_nat ) )
            & ! [X6: nat > real,I4: nat] :
                ( ( ( P @ X6 )
                  & ( Q @ I4 )
                  & ( ( X6 @ I4 )
                    = one_one_real ) )
               => ( ( L2 @ X6 @ I4 )
                  = one_one_nat ) )
            & ! [X6: nat > real,I4: nat] :
                ( ( ( P @ X6 )
                  & ( Q @ I4 )
                  & ( ( L2 @ X6 @ I4 )
                    = zero_zero_nat ) )
               => ( ord_less_eq_real @ ( X6 @ I4 ) @ ( F @ X6 @ I4 ) ) )
            & ! [X6: nat > real,I4: nat] :
                ( ( ( P @ X6 )
                  & ( Q @ I4 )
                  & ( ( L2 @ X6 @ I4 )
                    = one_one_nat ) )
               => ( ord_less_eq_real @ ( F @ X6 @ I4 ) @ ( X6 @ I4 ) ) ) ) ) ) ).

% kuhn_labelling_lemma'
thf(fact_1113_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1114_le0,axiom,
    ! [N6: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N6 ) ).

% le0
thf(fact_1115_diff__is__0__eq_H,axiom,
    ! [M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ M4 @ N6 )
     => ( ( minus_minus_nat @ M4 @ N6 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1116_diff__is__0__eq,axiom,
    ! [M4: nat,N6: nat] :
      ( ( ( minus_minus_nat @ M4 @ N6 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M4 @ N6 ) ) ).

% diff_is_0_eq
thf(fact_1117_nat__add__left__cancel__le,axiom,
    ! [K2: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K2 @ M4 ) @ ( plus_plus_nat @ K2 @ N6 ) )
      = ( ord_less_eq_nat @ M4 @ N6 ) ) ).

% nat_add_left_cancel_le
thf(fact_1118_Nat_Oadd__diff__assoc,axiom,
    ! [K2: nat,J2: nat,I3: nat] :
      ( ( ord_less_eq_nat @ K2 @ J2 )
     => ( ( plus_plus_nat @ I3 @ ( minus_minus_nat @ J2 @ K2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I3 @ J2 ) @ K2 ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1119_Nat_Oadd__diff__assoc2,axiom,
    ! [K2: nat,J2: nat,I3: nat] :
      ( ( ord_less_eq_nat @ K2 @ J2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K2 ) @ I3 )
        = ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I3 ) @ K2 ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1120_Nat_Odiff__diff__right,axiom,
    ! [K2: nat,J2: nat,I3: nat] :
      ( ( ord_less_eq_nat @ K2 @ J2 )
     => ( ( minus_minus_nat @ I3 @ ( minus_minus_nat @ J2 @ K2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I3 @ K2 ) @ J2 ) ) ) ).

% Nat.diff_diff_right
thf(fact_1121_diff__diff__cancel,axiom,
    ! [I3: nat,N6: nat] :
      ( ( ord_less_eq_nat @ I3 @ N6 )
     => ( ( minus_minus_nat @ N6 @ ( minus_minus_nat @ N6 @ I3 ) )
        = I3 ) ) ).

% diff_diff_cancel
thf(fact_1122_indep__set__def,axiom,
    ! [A2: set_set_a,B: set_set_a] :
      ( ( indepe2041756565122539606_set_a @ m @ A2 @ B )
      = ( indepe7780107833195774214ts_a_o @ m @ ( produc6113963288868236716_set_a @ A2 @ B ) @ top_top_set_o ) ) ).

% indep_set_def
thf(fact_1123_eq__diff__iff,axiom,
    ! [K2: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ K2 @ M4 )
     => ( ( ord_less_eq_nat @ K2 @ N6 )
       => ( ( ( minus_minus_nat @ M4 @ K2 )
            = ( minus_minus_nat @ N6 @ K2 ) )
          = ( M4 = N6 ) ) ) ) ).

% eq_diff_iff
thf(fact_1124_le__diff__iff,axiom,
    ! [K2: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ K2 @ M4 )
     => ( ( ord_less_eq_nat @ K2 @ N6 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M4 @ K2 ) @ ( minus_minus_nat @ N6 @ K2 ) )
          = ( ord_less_eq_nat @ M4 @ N6 ) ) ) ) ).

% le_diff_iff
thf(fact_1125_Nat_Odiff__diff__eq,axiom,
    ! [K2: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ K2 @ M4 )
     => ( ( ord_less_eq_nat @ K2 @ N6 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M4 @ K2 ) @ ( minus_minus_nat @ N6 @ K2 ) )
          = ( minus_minus_nat @ M4 @ N6 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1126_diff__le__mono,axiom,
    ! [M4: nat,N6: nat,L3: nat] :
      ( ( ord_less_eq_nat @ M4 @ N6 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M4 @ L3 ) @ ( minus_minus_nat @ N6 @ L3 ) ) ) ).

% diff_le_mono
thf(fact_1127_diff__le__self,axiom,
    ! [M4: nat,N6: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M4 @ N6 ) @ M4 ) ).

% diff_le_self
thf(fact_1128_le__diff__conv,axiom,
    ! [J2: nat,K2: nat,I3: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J2 @ K2 ) @ I3 )
      = ( ord_less_eq_nat @ J2 @ ( plus_plus_nat @ I3 @ K2 ) ) ) ).

% le_diff_conv
thf(fact_1129_le__diff__iff_H,axiom,
    ! [A: nat,C2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A ) @ ( minus_minus_nat @ C2 @ B2 ) )
          = ( ord_less_eq_nat @ B2 @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_1130_diff__le__mono2,axiom,
    ! [M4: nat,N6: nat,L3: nat] :
      ( ( ord_less_eq_nat @ M4 @ N6 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L3 @ N6 ) @ ( minus_minus_nat @ L3 @ M4 ) ) ) ).

% diff_le_mono2
thf(fact_1131_Nat_Ole__diff__conv2,axiom,
    ! [K2: nat,J2: nat,I3: nat] :
      ( ( ord_less_eq_nat @ K2 @ J2 )
     => ( ( ord_less_eq_nat @ I3 @ ( minus_minus_nat @ J2 @ K2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K2 ) @ J2 ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1132_Nat_Odiff__add__assoc,axiom,
    ! [K2: nat,J2: nat,I3: nat] :
      ( ( ord_less_eq_nat @ K2 @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I3 @ J2 ) @ K2 )
        = ( plus_plus_nat @ I3 @ ( minus_minus_nat @ J2 @ K2 ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1133_Nat_Odiff__add__assoc2,axiom,
    ! [K2: nat,J2: nat,I3: nat] :
      ( ( ord_less_eq_nat @ K2 @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I3 ) @ K2 )
        = ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K2 ) @ I3 ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1134_Nat_Ole__imp__diff__is__add,axiom,
    ! [I3: nat,J2: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( ( minus_minus_nat @ J2 @ I3 )
          = K2 )
        = ( J2
          = ( plus_plus_nat @ K2 @ I3 ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1135_le__cube,axiom,
    ! [M4: nat] : ( ord_less_eq_nat @ M4 @ ( times_times_nat @ M4 @ ( times_times_nat @ M4 @ M4 ) ) ) ).

% le_cube
thf(fact_1136_le__square,axiom,
    ! [M4: nat] : ( ord_less_eq_nat @ M4 @ ( times_times_nat @ M4 @ M4 ) ) ).

% le_square
thf(fact_1137_mult__le__mono,axiom,
    ! [I3: nat,J2: nat,K2: nat,L3: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( ord_less_eq_nat @ K2 @ L3 )
       => ( ord_less_eq_nat @ ( times_times_nat @ I3 @ K2 ) @ ( times_times_nat @ J2 @ L3 ) ) ) ) ).

% mult_le_mono
thf(fact_1138_mult__le__mono1,axiom,
    ! [I3: nat,J2: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ord_less_eq_nat @ ( times_times_nat @ I3 @ K2 ) @ ( times_times_nat @ J2 @ K2 ) ) ) ).

% mult_le_mono1
thf(fact_1139_mult__le__mono2,axiom,
    ! [I3: nat,J2: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ord_less_eq_nat @ ( times_times_nat @ K2 @ I3 ) @ ( times_times_nat @ K2 @ J2 ) ) ) ).

% mult_le_mono2
thf(fact_1140_le__refl,axiom,
    ! [N6: nat] : ( ord_less_eq_nat @ N6 @ N6 ) ).

% le_refl
thf(fact_1141_le__trans,axiom,
    ! [I3: nat,J2: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( ord_less_eq_nat @ J2 @ K2 )
       => ( ord_less_eq_nat @ I3 @ K2 ) ) ) ).

% le_trans
thf(fact_1142_eq__imp__le,axiom,
    ! [M4: nat,N6: nat] :
      ( ( M4 = N6 )
     => ( ord_less_eq_nat @ M4 @ N6 ) ) ).

% eq_imp_le
thf(fact_1143_le__antisym,axiom,
    ! [M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ M4 @ N6 )
     => ( ( ord_less_eq_nat @ N6 @ M4 )
       => ( M4 = N6 ) ) ) ).

% le_antisym
thf(fact_1144_nat__le__linear,axiom,
    ! [M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ M4 @ N6 )
      | ( ord_less_eq_nat @ N6 @ M4 ) ) ).

% nat_le_linear
thf(fact_1145_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K2: nat,B2: nat] :
      ( ( P @ K2 )
     => ( ! [Y6: nat] :
            ( ( P @ Y6 )
           => ( ord_less_eq_nat @ Y6 @ B2 ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y7: nat] :
                ( ( P @ Y7 )
               => ( ord_less_eq_nat @ Y7 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_1146_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N7: nat] :
        ? [K3: nat] :
          ( N7
          = ( plus_plus_nat @ M5 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1147_trans__le__add2,axiom,
    ! [I3: nat,J2: nat,M4: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ord_less_eq_nat @ I3 @ ( plus_plus_nat @ M4 @ J2 ) ) ) ).

% trans_le_add2
thf(fact_1148_trans__le__add1,axiom,
    ! [I3: nat,J2: nat,M4: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ord_less_eq_nat @ I3 @ ( plus_plus_nat @ J2 @ M4 ) ) ) ).

% trans_le_add1
thf(fact_1149_add__le__mono1,axiom,
    ! [I3: nat,J2: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K2 ) @ ( plus_plus_nat @ J2 @ K2 ) ) ) ).

% add_le_mono1
thf(fact_1150_add__le__mono,axiom,
    ! [I3: nat,J2: nat,K2: nat,L3: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( ord_less_eq_nat @ K2 @ L3 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K2 ) @ ( plus_plus_nat @ J2 @ L3 ) ) ) ) ).

% add_le_mono
thf(fact_1151_le__Suc__ex,axiom,
    ! [K2: nat,L3: nat] :
      ( ( ord_less_eq_nat @ K2 @ L3 )
     => ? [N8: nat] :
          ( L3
          = ( plus_plus_nat @ K2 @ N8 ) ) ) ).

% le_Suc_ex
thf(fact_1152_add__leD2,axiom,
    ! [M4: nat,K2: nat,N6: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M4 @ K2 ) @ N6 )
     => ( ord_less_eq_nat @ K2 @ N6 ) ) ).

% add_leD2
thf(fact_1153_add__leD1,axiom,
    ! [M4: nat,K2: nat,N6: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M4 @ K2 ) @ N6 )
     => ( ord_less_eq_nat @ M4 @ N6 ) ) ).

% add_leD1
thf(fact_1154_le__add2,axiom,
    ! [N6: nat,M4: nat] : ( ord_less_eq_nat @ N6 @ ( plus_plus_nat @ M4 @ N6 ) ) ).

% le_add2
thf(fact_1155_le__add1,axiom,
    ! [N6: nat,M4: nat] : ( ord_less_eq_nat @ N6 @ ( plus_plus_nat @ N6 @ M4 ) ) ).

% le_add1
thf(fact_1156_add__leE,axiom,
    ! [M4: nat,K2: nat,N6: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M4 @ K2 ) @ N6 )
     => ~ ( ( ord_less_eq_nat @ M4 @ N6 )
         => ~ ( ord_less_eq_nat @ K2 @ N6 ) ) ) ).

% add_leE
thf(fact_1157_le__0__eq,axiom,
    ! [N6: nat] :
      ( ( ord_less_eq_nat @ N6 @ zero_zero_nat )
      = ( N6 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1158_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1159_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1160_less__eq__nat_Osimps_I1_J,axiom,
    ! [N6: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N6 ) ).

% less_eq_nat.simps(1)
thf(fact_1161_nat__eq__add__iff1,axiom,
    ! [J2: nat,I3: nat,U: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ J2 @ I3 )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M4 )
          = ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N6 ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J2 ) @ U ) @ M4 )
          = N6 ) ) ) ).

% nat_eq_add_iff1
thf(fact_1162_nat__eq__add__iff2,axiom,
    ! [I3: nat,J2: nat,U: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M4 )
          = ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N6 ) )
        = ( M4
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I3 ) @ U ) @ N6 ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_1163_nat__le__add__iff1,axiom,
    ! [J2: nat,I3: nat,U: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ J2 @ I3 )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M4 ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N6 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J2 ) @ U ) @ M4 ) @ N6 ) ) ) ).

% nat_le_add_iff1
thf(fact_1164_nat__diff__add__eq2,axiom,
    ! [I3: nat,J2: nat,U: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M4 ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N6 ) )
        = ( minus_minus_nat @ M4 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I3 ) @ U ) @ N6 ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_1165_nat__diff__add__eq1,axiom,
    ! [J2: nat,I3: nat,U: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ J2 @ I3 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M4 ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N6 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J2 ) @ U ) @ M4 ) @ N6 ) ) ) ).

% nat_diff_add_eq1
thf(fact_1166_nat__le__add__iff2,axiom,
    ! [I3: nat,J2: nat,U: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M4 ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N6 ) )
        = ( ord_less_eq_nat @ M4 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I3 ) @ U ) @ N6 ) ) ) ) ).

% nat_le_add_iff2
thf(fact_1167_indep__event__def,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( indepe3567167809233210430vent_a @ m @ A2 @ B )
      = ( indepe3695496658712714478ts_a_o @ m @ ( produc2496386666562076748_set_a @ A2 @ B ) @ top_top_set_o ) ) ).

% indep_event_def
thf(fact_1168_Bolzano,axiom,
    ! [A: real,B2: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B2 )
     => ( ! [A3: real,B3: real,C3: real] :
            ( ( P @ A3 @ B3 )
           => ( ( P @ B3 @ C3 )
             => ( ( ord_less_eq_real @ A3 @ B3 )
               => ( ( ord_less_eq_real @ B3 @ C3 )
                 => ( P @ A3 @ C3 ) ) ) ) )
       => ( ! [X4: real] :
              ( ( ord_less_eq_real @ A @ X4 )
             => ( ( ord_less_eq_real @ X4 @ B2 )
               => ? [D3: real] :
                    ( ( ord_less_real @ zero_zero_real @ D3 )
                    & ! [A3: real,B3: real] :
                        ( ( ( ord_less_eq_real @ A3 @ X4 )
                          & ( ord_less_eq_real @ X4 @ B3 )
                          & ( ord_less_real @ ( minus_minus_real @ B3 @ A3 ) @ D3 ) )
                       => ( P @ A3 @ B3 ) ) ) ) )
         => ( P @ A @ B2 ) ) ) ) ).

% Bolzano
thf(fact_1169_mult__le__cancel2,axiom,
    ! [M4: nat,K2: nat,N6: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M4 @ K2 ) @ ( times_times_nat @ N6 @ K2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_eq_nat @ M4 @ N6 ) ) ) ).

% mult_le_cancel2
thf(fact_1170_nat__mult__le__cancel__disj,axiom,
    ! [K2: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K2 @ M4 ) @ ( times_times_nat @ K2 @ N6 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_eq_nat @ M4 @ N6 ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1171_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N7: nat] :
          ( ( ord_less_eq_nat @ M5 @ N7 )
          & ( M5 != N7 ) ) ) ) ).

% nat_less_le
thf(fact_1172_less__imp__le__nat,axiom,
    ! [M4: nat,N6: nat] :
      ( ( ord_less_nat @ M4 @ N6 )
     => ( ord_less_eq_nat @ M4 @ N6 ) ) ).

% less_imp_le_nat
thf(fact_1173_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N7: nat] :
          ( ( ord_less_nat @ M5 @ N7 )
          | ( M5 = N7 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1174_less__or__eq__imp__le,axiom,
    ! [M4: nat,N6: nat] :
      ( ( ( ord_less_nat @ M4 @ N6 )
        | ( M4 = N6 ) )
     => ( ord_less_eq_nat @ M4 @ N6 ) ) ).

% less_or_eq_imp_le
thf(fact_1175_le__neq__implies__less,axiom,
    ! [M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ M4 @ N6 )
     => ( ( M4 != N6 )
       => ( ord_less_nat @ M4 @ N6 ) ) ) ).

% le_neq_implies_less
thf(fact_1176_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I3: nat,J2: nat] :
      ( ! [I2: nat,J3: nat] :
          ( ( ord_less_nat @ I2 @ J3 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J3 ) ) )
     => ( ( ord_less_eq_nat @ I3 @ J2 )
       => ( ord_less_eq_nat @ ( F @ I3 ) @ ( F @ J2 ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1177_ex__least__nat__le,axiom,
    ! [P: nat > $o,N6: nat] :
      ( ( P @ N6 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K4: nat] :
            ( ( ord_less_eq_nat @ K4 @ N6 )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K4 )
               => ~ ( P @ I4 ) )
            & ( P @ K4 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1178_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M4: nat,K2: nat] :
      ( ! [M6: nat,N8: nat] :
          ( ( ord_less_nat @ M6 @ N8 )
         => ( ord_less_nat @ ( F @ M6 ) @ ( F @ N8 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M4 ) @ K2 ) @ ( F @ ( plus_plus_nat @ M4 @ K2 ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1179_less__diff__iff,axiom,
    ! [K2: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ K2 @ M4 )
     => ( ( ord_less_eq_nat @ K2 @ N6 )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M4 @ K2 ) @ ( minus_minus_nat @ N6 @ K2 ) )
          = ( ord_less_nat @ M4 @ N6 ) ) ) ) ).

% less_diff_iff
thf(fact_1180_diff__less__mono,axiom,
    ! [A: nat,B2: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B2 )
     => ( ( ord_less_eq_nat @ C2 @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C2 ) @ ( minus_minus_nat @ B2 @ C2 ) ) ) ) ).

% diff_less_mono
thf(fact_1181_nat__mult__le__cancel1,axiom,
    ! [K2: nat,M4: nat,N6: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K2 @ M4 ) @ ( times_times_nat @ K2 @ N6 ) )
        = ( ord_less_eq_nat @ M4 @ N6 ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1182_less__diff__conv2,axiom,
    ! [K2: nat,J2: nat,I3: nat] :
      ( ( ord_less_eq_nat @ K2 @ J2 )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J2 @ K2 ) @ I3 )
        = ( ord_less_nat @ J2 @ ( plus_plus_nat @ I3 @ K2 ) ) ) ) ).

% less_diff_conv2
thf(fact_1183_kuhn__lemma,axiom,
    ! [P2: nat,N6: nat,Label: ( nat > nat ) > nat > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ P2 )
     => ( ! [X4: nat > nat] :
            ( ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ N6 )
               => ( ord_less_eq_nat @ ( X4 @ I4 ) @ P2 ) )
           => ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ N6 )
               => ( ( ( Label @ X4 @ I2 )
                    = zero_zero_nat )
                  | ( ( Label @ X4 @ I2 )
                    = one_one_nat ) ) ) )
       => ( ! [X4: nat > nat] :
              ( ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ N6 )
                 => ( ord_less_eq_nat @ ( X4 @ I4 ) @ P2 ) )
             => ! [I2: nat] :
                  ( ( ord_less_nat @ I2 @ N6 )
                 => ( ( ( X4 @ I2 )
                      = zero_zero_nat )
                   => ( ( Label @ X4 @ I2 )
                      = zero_zero_nat ) ) ) )
         => ( ! [X4: nat > nat] :
                ( ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ N6 )
                   => ( ord_less_eq_nat @ ( X4 @ I4 ) @ P2 ) )
               => ! [I2: nat] :
                    ( ( ord_less_nat @ I2 @ N6 )
                   => ( ( ( X4 @ I2 )
                        = P2 )
                     => ( ( Label @ X4 @ I2 )
                        = one_one_nat ) ) ) )
           => ~ ! [Q2: nat > nat] :
                  ( ! [I4: nat] :
                      ( ( ord_less_nat @ I4 @ N6 )
                     => ( ord_less_nat @ ( Q2 @ I4 ) @ P2 ) )
                 => ~ ! [I4: nat] :
                        ( ( ord_less_nat @ I4 @ N6 )
                       => ? [R: nat > nat] :
                            ( ! [J4: nat] :
                                ( ( ord_less_nat @ J4 @ N6 )
                               => ( ( ord_less_eq_nat @ ( Q2 @ J4 ) @ ( R @ J4 ) )
                                  & ( ord_less_eq_nat @ ( R @ J4 ) @ ( plus_plus_nat @ ( Q2 @ J4 ) @ one_one_nat ) ) ) )
                            & ? [S4: nat > nat] :
                                ( ! [J4: nat] :
                                    ( ( ord_less_nat @ J4 @ N6 )
                                   => ( ( ord_less_eq_nat @ ( Q2 @ J4 ) @ ( S4 @ J4 ) )
                                      & ( ord_less_eq_nat @ ( S4 @ J4 ) @ ( plus_plus_nat @ ( Q2 @ J4 ) @ one_one_nat ) ) ) )
                                & ( ( Label @ R @ I4 )
                                 != ( Label @ S4 @ I4 ) ) ) ) ) ) ) ) ) ) ).

% kuhn_lemma
thf(fact_1184_nat__less__add__iff1,axiom,
    ! [J2: nat,I3: nat,U: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ J2 @ I3 )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M4 ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N6 ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J2 ) @ U ) @ M4 ) @ N6 ) ) ) ).

% nat_less_add_iff1
thf(fact_1185_nat__less__add__iff2,axiom,
    ! [I3: nat,J2: nat,U: nat,M4: nat,N6: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M4 ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N6 ) )
        = ( ord_less_nat @ M4 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I3 ) @ U ) @ N6 ) ) ) ) ).

% nat_less_add_iff2
thf(fact_1186_seq__mono__lemma,axiom,
    ! [M4: nat,D2: nat > real,E: nat > real] :
      ( ! [N8: nat] :
          ( ( ord_less_eq_nat @ M4 @ N8 )
         => ( ord_less_real @ ( D2 @ N8 ) @ ( E @ N8 ) ) )
     => ( ! [N8: nat] :
            ( ( ord_less_eq_nat @ M4 @ N8 )
           => ( ord_less_eq_real @ ( E @ N8 ) @ ( E @ M4 ) ) )
       => ! [N9: nat] :
            ( ( ord_less_eq_nat @ M4 @ N9 )
           => ( ord_less_real @ ( D2 @ N9 ) @ ( E @ M4 ) ) ) ) ) ).

% seq_mono_lemma
thf(fact_1187_lemma__interval,axiom,
    ! [A: real,X5: real,B2: real] :
      ( ( ord_less_real @ A @ X5 )
     => ( ( ord_less_real @ X5 @ B2 )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [Y7: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X5 @ Y7 ) ) @ D4 )
               => ( ( ord_less_eq_real @ A @ Y7 )
                  & ( ord_less_eq_real @ Y7 @ B2 ) ) ) ) ) ) ).

% lemma_interval
thf(fact_1188_sin__bound__lemma,axiom,
    ! [X5: real,Y4: real,U: real,V: real] :
      ( ( X5 = Y4 )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X5 @ U ) @ Y4 ) ) @ V ) ) ) ).

% sin_bound_lemma
thf(fact_1189_nat0__intermed__int__val,axiom,
    ! [N6: nat,F: nat > int,K2: int] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ I2 @ N6 )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I2 @ one_one_nat ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K2 )
       => ( ( ord_less_eq_int @ K2 @ ( F @ N6 ) )
         => ? [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N6 )
              & ( ( F @ I2 )
                = K2 ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_1190_emeasure__space__1,axiom,
    ( ( sigma_emeasure_a @ m @ ( sigma_space_a @ m ) )
    = one_on2969667320475766781nnreal ) ).

% emeasure_space_1
thf(fact_1191_finite__emeasure__space,axiom,
    ( ( sigma_emeasure_a @ m @ ( sigma_space_a @ m ) )
   != top_to1496364449551166952nnreal ) ).

% finite_emeasure_space
thf(fact_1192_subprob__emeasure__le__1,axiom,
    ! [X: set_a] : ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_a @ m @ X ) @ one_on2969667320475766781nnreal ) ).

% subprob_emeasure_le_1
thf(fact_1193_emeasure__le__1,axiom,
    ! [S: set_a] : ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_a @ m @ S ) @ one_on2969667320475766781nnreal ) ).

% emeasure_le_1
thf(fact_1194_emeasure__ge__1__iff,axiom,
    ! [A2: set_a] :
      ( ( ord_le3935885782089961368nnreal @ one_on2969667320475766781nnreal @ ( sigma_emeasure_a @ m @ A2 ) )
      = ( ( sigma_emeasure_a @ m @ A2 )
        = one_on2969667320475766781nnreal ) ) ).

% emeasure_ge_1_iff
thf(fact_1195_emeasure__space__le__1,axiom,
    ord_le3935885782089961368nnreal @ ( sigma_emeasure_a @ m @ ( sigma_space_a @ m ) ) @ one_on2969667320475766781nnreal ).

% emeasure_space_le_1
thf(fact_1196_zle__add1__eq__le,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W2 @ Z ) ) ).

% zle_add1_eq_le
thf(fact_1197_emeasure__subprob__space__less__top,axiom,
    ! [A2: set_a] :
      ( ( sigma_emeasure_a @ m @ A2 )
     != top_to1496364449551166952nnreal ) ).

% emeasure_subprob_space_less_top
thf(fact_1198_zle__diff1__eq,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z @ one_one_int ) )
      = ( ord_less_int @ W2 @ Z ) ) ).

% zle_diff1_eq
thf(fact_1199_int__ge__induct,axiom,
    ! [K2: int,I3: int,P: int > $o] :
      ( ( ord_less_eq_int @ K2 @ I3 )
     => ( ( P @ K2 )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ K2 @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I3 ) ) ) ) ).

% int_ge_induct
thf(fact_1200_int__induct,axiom,
    ! [P: int > $o,K2: int,I3: int] :
      ( ( P @ K2 )
     => ( ! [I2: int] :
            ( ( ord_less_eq_int @ K2 @ I2 )
           => ( ( P @ I2 )
             => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ I2 @ K2 )
             => ( ( P @ I2 )
               => ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I3 ) ) ) ) ).

% int_induct
thf(fact_1201_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_1202_int__le__induct,axiom,
    ! [I3: int,K2: int,P: int > $o] :
      ( ( ord_less_eq_int @ I3 @ K2 )
     => ( ( P @ K2 )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ I2 @ K2 )
             => ( ( P @ I2 )
               => ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I3 ) ) ) ) ).

% int_le_induct
thf(fact_1203_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_1204_ennreal__approx__unit,axiom,
    ! [Z: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal] :
      ( ! [A3: extend8495563244428889912nnreal] :
          ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ A3 )
         => ( ( ord_le7381754540660121996nnreal @ A3 @ one_on2969667320475766781nnreal )
           => ( ord_le3935885782089961368nnreal @ ( times_1893300245718287421nnreal @ A3 @ Z ) @ Y4 ) ) )
     => ( ord_le3935885782089961368nnreal @ Z @ Y4 ) ) ).

% ennreal_approx_unit
thf(fact_1205_add1__zle__eq,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z )
      = ( ord_less_int @ W2 @ Z ) ) ).

% add1_zle_eq
thf(fact_1206_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_1207_zless__imp__add1__zle,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_int @ W2 @ Z )
     => ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z ) ) ).

% zless_imp_add1_zle
thf(fact_1208_emeasure__real,axiom,
    ! [A2: set_a] :
    ? [R: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R )
      & ( ( sigma_emeasure_a @ m @ A2 )
        = ( extend7643940197134561352nnreal @ R ) ) ) ).

% emeasure_real
thf(fact_1209_emeasure__eq__measure,axiom,
    ! [A2: set_a] :
      ( ( sigma_emeasure_a @ m @ A2 )
      = ( extend7643940197134561352nnreal @ ( sigma_measure_a2 @ m @ A2 ) ) ) ).

% emeasure_eq_measure
thf(fact_1210_add__diff__eq__iff__ennreal,axiom,
    ! [X5: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal] :
      ( ( ( plus_p1859984266308609217nnreal @ X5 @ ( minus_8429688780609304081nnreal @ Y4 @ X5 ) )
        = Y4 )
      = ( ord_le3935885782089961368nnreal @ X5 @ Y4 ) ) ).

% add_diff_eq_iff_ennreal
thf(fact_1211_ennreal__inj,axiom,
    ! [A: real,B2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B2 )
       => ( ( ( extend7643940197134561352nnreal @ A )
            = ( extend7643940197134561352nnreal @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% ennreal_inj
thf(fact_1212_ennreal__eq__zero__iff,axiom,
    ! [X5: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X5 )
     => ( ( ( extend7643940197134561352nnreal @ X5 )
          = zero_z7100319975126383169nnreal )
        = ( X5 = zero_zero_real ) ) ) ).

% ennreal_eq_zero_iff
thf(fact_1213_ennreal__le__iff,axiom,
    ! [Y4: real,X5: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
     => ( ( ord_le3935885782089961368nnreal @ ( extend7643940197134561352nnreal @ X5 ) @ ( extend7643940197134561352nnreal @ Y4 ) )
        = ( ord_less_eq_real @ X5 @ Y4 ) ) ) ).

% ennreal_le_iff
thf(fact_1214_ennreal__plus,axiom,
    ! [A: real,B2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B2 )
       => ( ( extend7643940197134561352nnreal @ ( plus_plus_real @ A @ B2 ) )
          = ( plus_p1859984266308609217nnreal @ ( extend7643940197134561352nnreal @ A ) @ ( extend7643940197134561352nnreal @ B2 ) ) ) ) ) ).

% ennreal_plus
thf(fact_1215_ennreal__ge__1,axiom,
    ! [X5: real] :
      ( ( ord_le3935885782089961368nnreal @ one_on2969667320475766781nnreal @ ( extend7643940197134561352nnreal @ X5 ) )
      = ( ord_less_eq_real @ one_one_real @ X5 ) ) ).

% ennreal_ge_1
thf(fact_1216_ennreal__le__1,axiom,
    ! [X5: real] :
      ( ( ord_le3935885782089961368nnreal @ ( extend7643940197134561352nnreal @ X5 ) @ one_on2969667320475766781nnreal )
      = ( ord_less_eq_real @ X5 @ one_one_real ) ) ).

% ennreal_le_1
thf(fact_1217_add__diff__inverse__ennreal,axiom,
    ! [X5: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ X5 @ Y4 )
     => ( ( plus_p1859984266308609217nnreal @ X5 @ ( minus_8429688780609304081nnreal @ Y4 @ X5 ) )
        = Y4 ) ) ).

% add_diff_inverse_ennreal
thf(fact_1218_diff__add__cancel__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B2 )
     => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B2 @ A ) @ A )
        = B2 ) ) ).

% diff_add_cancel_ennreal
thf(fact_1219_diff__add__assoc2__ennreal,axiom,
    ! [B2: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ B2 @ A )
     => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ A @ B2 ) @ C2 )
        = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ A @ C2 ) @ B2 ) ) ) ).

% diff_add_assoc2_ennreal
thf(fact_1220_ennreal__diff__add__assoc,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B2 )
     => ( ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ C2 @ B2 ) @ A )
        = ( plus_p1859984266308609217nnreal @ C2 @ ( minus_8429688780609304081nnreal @ B2 @ A ) ) ) ) ).

% ennreal_diff_add_assoc
thf(fact_1221_ennreal__ineq__diff__add,axiom,
    ! [B2: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ B2 @ A )
     => ( A
        = ( plus_p1859984266308609217nnreal @ B2 @ ( minus_8429688780609304081nnreal @ A @ B2 ) ) ) ) ).

% ennreal_ineq_diff_add
thf(fact_1222_diff__add__self__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ( ord_le3935885782089961368nnreal @ A @ B2 )
       => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B2 @ A ) @ A )
          = B2 ) )
      & ( ~ ( ord_le3935885782089961368nnreal @ A @ B2 )
       => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B2 @ A ) @ A )
          = A ) ) ) ).

% diff_add_self_ennreal
thf(fact_1223_add__diff__self__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ( ord_le3935885782089961368nnreal @ A @ B2 )
       => ( ( plus_p1859984266308609217nnreal @ A @ ( minus_8429688780609304081nnreal @ B2 @ A ) )
          = B2 ) )
      & ( ~ ( ord_le3935885782089961368nnreal @ A @ B2 )
       => ( ( plus_p1859984266308609217nnreal @ A @ ( minus_8429688780609304081nnreal @ B2 @ A ) )
          = A ) ) ) ).

% add_diff_self_ennreal
thf(fact_1224_ennreal__minus__le__iff,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ B2 ) @ C2 )
      = ( ( ord_le3935885782089961368nnreal @ A @ ( plus_p1859984266308609217nnreal @ B2 @ C2 ) )
        & ( ( ( A = top_to1496364449551166952nnreal )
            & ( B2 = top_to1496364449551166952nnreal ) )
         => ( C2 = top_to1496364449551166952nnreal ) ) ) ) ).

% ennreal_minus_le_iff
thf(fact_1225_ennreal__le__minus__iff,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ ( minus_8429688780609304081nnreal @ B2 @ C2 ) )
      = ( ( ord_le3935885782089961368nnreal @ ( plus_p1859984266308609217nnreal @ A @ C2 ) @ B2 )
        | ( ( A = zero_z7100319975126383169nnreal )
          & ( ord_le3935885782089961368nnreal @ B2 @ C2 ) ) ) ) ).

% ennreal_le_minus_iff
thf(fact_1226_diff__diff__ennreal_H_H,axiom,
    ! [Z: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal,X5: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y4 )
     => ( ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) @ X5 )
         => ( ( minus_8429688780609304081nnreal @ X5 @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) )
            = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X5 @ Z ) @ Y4 ) ) )
        & ( ~ ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) @ X5 )
         => ( ( minus_8429688780609304081nnreal @ X5 @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) )
            = zero_z7100319975126383169nnreal ) ) ) ) ).

% diff_diff_ennreal''
thf(fact_1227_add__diff__le__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ A @ B2 ) @ C2 ) @ ( plus_p1859984266308609217nnreal @ A @ ( minus_8429688780609304081nnreal @ B2 @ C2 ) ) ) ).

% add_diff_le_ennreal
thf(fact_1228_add__diff__eq__ennreal,axiom,
    ! [Z: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal,X5: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y4 )
     => ( ( plus_p1859984266308609217nnreal @ X5 @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) )
        = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X5 @ Y4 ) @ Z ) ) ) ).

% add_diff_eq_ennreal
thf(fact_1229_diff__diff__ennreal_H,axiom,
    ! [Z: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal,X5: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y4 )
     => ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) @ X5 )
       => ( ( minus_8429688780609304081nnreal @ X5 @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) )
          = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X5 @ Z ) @ Y4 ) ) ) ) ).

% diff_diff_ennreal'
thf(fact_1230_ennreal__neg,axiom,
    ! [X5: real] :
      ( ( ord_less_eq_real @ X5 @ zero_zero_real )
     => ( ( extend7643940197134561352nnreal @ X5 )
        = zero_z7100319975126383169nnreal ) ) ).

% ennreal_neg
thf(fact_1231_ennreal__eq__0__iff,axiom,
    ! [X5: real] :
      ( ( ( extend7643940197134561352nnreal @ X5 )
        = zero_z7100319975126383169nnreal )
      = ( ord_less_eq_real @ X5 @ zero_zero_real ) ) ).

% ennreal_eq_0_iff
thf(fact_1232_ennreal__le__iff2,axiom,
    ! [X5: real,Y4: real] :
      ( ( ord_le3935885782089961368nnreal @ ( extend7643940197134561352nnreal @ X5 ) @ ( extend7643940197134561352nnreal @ Y4 ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
          & ( ord_less_eq_real @ X5 @ Y4 ) )
        | ( ( ord_less_eq_real @ X5 @ zero_zero_real )
          & ( ord_less_eq_real @ Y4 @ zero_zero_real ) ) ) ) ).

% ennreal_le_iff2
thf(fact_1233_le__ennreal__iff,axiom,
    ! [R2: real,X5: extend8495563244428889912nnreal] :
      ( ( ord_less_eq_real @ zero_zero_real @ R2 )
     => ( ( ord_le3935885782089961368nnreal @ X5 @ ( extend7643940197134561352nnreal @ R2 ) )
        = ( ? [Q3: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ Q3 )
              & ( X5
                = ( extend7643940197134561352nnreal @ Q3 ) )
              & ( ord_less_eq_real @ Q3 @ R2 ) ) ) ) ) ).

% le_ennreal_iff
thf(fact_1234_mult__right__ennreal__cancel,axiom,
    ! [A: extend8495563244428889912nnreal,C2: real,B2: extend8495563244428889912nnreal] :
      ( ( ( times_1893300245718287421nnreal @ A @ ( extend7643940197134561352nnreal @ C2 ) )
        = ( times_1893300245718287421nnreal @ B2 @ ( extend7643940197134561352nnreal @ C2 ) ) )
      = ( ( A = B2 )
        | ( ord_less_eq_real @ C2 @ zero_zero_real ) ) ) ).

% mult_right_ennreal_cancel
thf(fact_1235_ennreal__cases,axiom,
    ! [X5: extend8495563244428889912nnreal] :
      ( ! [R: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ R )
         => ( X5
           != ( extend7643940197134561352nnreal @ R ) ) )
     => ( X5 = top_to1496364449551166952nnreal ) ) ).

% ennreal_cases
thf(fact_1236_ennreal2__cases,axiom,
    ! [X5: extend8495563244428889912nnreal,Xa: extend8495563244428889912nnreal] :
      ( ! [R: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ R )
         => ( ( X5
              = ( extend7643940197134561352nnreal @ R ) )
           => ! [Ra: real] :
                ( ( ord_less_eq_real @ zero_zero_real @ Ra )
               => ( Xa
                 != ( extend7643940197134561352nnreal @ Ra ) ) ) ) )
     => ( ! [R: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ R )
           => ( ( X5
                = ( extend7643940197134561352nnreal @ R ) )
             => ( Xa != top_to1496364449551166952nnreal ) ) )
       => ( ( ( X5 = top_to1496364449551166952nnreal )
           => ! [R: real] :
                ( ( ord_less_eq_real @ zero_zero_real @ R )
               => ( Xa
                 != ( extend7643940197134561352nnreal @ R ) ) ) )
         => ~ ( ( X5 = top_to1496364449551166952nnreal )
             => ( Xa != top_to1496364449551166952nnreal ) ) ) ) ) ).

% ennreal2_cases
thf(fact_1237_ennreal3__cases,axiom,
    ! [X5: extend8495563244428889912nnreal,Xa: extend8495563244428889912nnreal,Xaa: extend8495563244428889912nnreal] :
      ( ! [R: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ R )
         => ( ( X5
              = ( extend7643940197134561352nnreal @ R ) )
           => ! [Ra: real] :
                ( ( ord_less_eq_real @ zero_zero_real @ Ra )
               => ( ( Xa
                    = ( extend7643940197134561352nnreal @ Ra ) )
                 => ! [Raa: real] :
                      ( ( ord_less_eq_real @ zero_zero_real @ Raa )
                     => ( Xaa
                       != ( extend7643940197134561352nnreal @ Raa ) ) ) ) ) ) )
     => ( ! [R: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ R )
           => ( ( X5
                = ( extend7643940197134561352nnreal @ R ) )
             => ! [Ra: real] :
                  ( ( ord_less_eq_real @ zero_zero_real @ Ra )
                 => ( ( Xa
                      = ( extend7643940197134561352nnreal @ Ra ) )
                   => ( Xaa != top_to1496364449551166952nnreal ) ) ) ) )
       => ( ! [R: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ R )
             => ( ( X5
                  = ( extend7643940197134561352nnreal @ R ) )
               => ( ( Xa = top_to1496364449551166952nnreal )
                 => ! [Ra: real] :
                      ( ( ord_less_eq_real @ zero_zero_real @ Ra )
                     => ( Xaa
                       != ( extend7643940197134561352nnreal @ Ra ) ) ) ) ) )
         => ( ! [R: real] :
                ( ( ord_less_eq_real @ zero_zero_real @ R )
               => ( ( X5
                    = ( extend7643940197134561352nnreal @ R ) )
                 => ( ( Xa = top_to1496364449551166952nnreal )
                   => ( Xaa != top_to1496364449551166952nnreal ) ) ) )
           => ( ( ( X5 = top_to1496364449551166952nnreal )
               => ! [R: real] :
                    ( ( ord_less_eq_real @ zero_zero_real @ R )
                   => ( ( Xa
                        = ( extend7643940197134561352nnreal @ R ) )
                     => ! [Ra: real] :
                          ( ( ord_less_eq_real @ zero_zero_real @ Ra )
                         => ( Xaa
                           != ( extend7643940197134561352nnreal @ Ra ) ) ) ) ) )
             => ( ( ( X5 = top_to1496364449551166952nnreal )
                 => ! [R: real] :
                      ( ( ord_less_eq_real @ zero_zero_real @ R )
                     => ( ( Xa
                          = ( extend7643940197134561352nnreal @ R ) )
                       => ( Xaa != top_to1496364449551166952nnreal ) ) ) )
               => ( ( ( X5 = top_to1496364449551166952nnreal )
                   => ( ( Xa = top_to1496364449551166952nnreal )
                     => ! [R: real] :
                          ( ( ord_less_eq_real @ zero_zero_real @ R )
                         => ( Xaa
                           != ( extend7643940197134561352nnreal @ R ) ) ) ) )
                 => ~ ( ( X5 = top_to1496364449551166952nnreal )
                     => ( ( Xa = top_to1496364449551166952nnreal )
                       => ( Xaa != top_to1496364449551166952nnreal ) ) ) ) ) ) ) ) ) ) ).

% ennreal3_cases
thf(fact_1238_ennreal__minus__cancel,axiom,
    ! [C2: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( C2 != top_to1496364449551166952nnreal )
     => ( ( ord_le3935885782089961368nnreal @ A @ C2 )
       => ( ( ord_le3935885782089961368nnreal @ B2 @ C2 )
         => ( ( ( minus_8429688780609304081nnreal @ C2 @ A )
              = ( minus_8429688780609304081nnreal @ C2 @ B2 ) )
           => ( A = B2 ) ) ) ) ) ).

% ennreal_minus_cancel
thf(fact_1239_ennreal__minus__cancel__iff,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ( minus_8429688780609304081nnreal @ A @ B2 )
        = ( minus_8429688780609304081nnreal @ A @ C2 ) )
      = ( ( B2 = C2 )
        | ( ( ord_le3935885782089961368nnreal @ A @ B2 )
          & ( ord_le3935885782089961368nnreal @ A @ C2 ) )
        | ( A = top_to1496364449551166952nnreal ) ) ) ).

% ennreal_minus_cancel_iff
thf(fact_1240_neq__top__trans,axiom,
    ! [Y4: extend8495563244428889912nnreal,X5: extend8495563244428889912nnreal] :
      ( ( Y4 != top_to1496364449551166952nnreal )
     => ( ( ord_le3935885782089961368nnreal @ X5 @ Y4 )
       => ( X5 != top_to1496364449551166952nnreal ) ) ) ).

% neq_top_trans
thf(fact_1241_ennreal__leI,axiom,
    ! [X5: real,Y4: real] :
      ( ( ord_less_eq_real @ X5 @ Y4 )
     => ( ord_le3935885782089961368nnreal @ ( extend7643940197134561352nnreal @ X5 ) @ ( extend7643940197134561352nnreal @ Y4 ) ) ) ).

% ennreal_leI
thf(fact_1242_ennreal__diff__le__mono__left,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B2 )
     => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ C2 ) @ B2 ) ) ).

% ennreal_diff_le_mono_left
thf(fact_1243_diff__le__self__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ B2 ) @ A ) ).

% diff_le_self_ennreal
thf(fact_1244_ennreal__mono__minus,axiom,
    ! [C2: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ C2 @ B2 )
     => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ B2 ) @ ( minus_8429688780609304081nnreal @ A @ C2 ) ) ) ).

% ennreal_mono_minus
thf(fact_1245_ennreal__minus__mono,axiom,
    ! [A: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal,D2: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ C2 )
     => ( ( ord_le3935885782089961368nnreal @ D2 @ B2 )
       => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ B2 ) @ ( minus_8429688780609304081nnreal @ C2 @ D2 ) ) ) ) ).

% ennreal_minus_mono
thf(fact_1246_ennreal__minus__eq__0,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ( minus_8429688780609304081nnreal @ A @ B2 )
        = zero_z7100319975126383169nnreal )
     => ( ord_le3935885782089961368nnreal @ A @ B2 ) ) ).

% ennreal_minus_eq_0
thf(fact_1247_ennreal__mult__le__mult__iff,axiom,
    ! [C2: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( C2 != zero_z7100319975126383169nnreal )
     => ( ( C2 != top_to1496364449551166952nnreal )
       => ( ( ord_le3935885782089961368nnreal @ ( times_1893300245718287421nnreal @ C2 @ A ) @ ( times_1893300245718287421nnreal @ C2 @ B2 ) )
          = ( ord_le3935885782089961368nnreal @ A @ B2 ) ) ) ) ).

% ennreal_mult_le_mult_iff
thf(fact_1248_less__top__ennreal,axiom,
    ! [X5: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ X5 @ top_to1496364449551166952nnreal )
      = ( ? [R3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ R3 )
            & ( X5
              = ( extend7643940197134561352nnreal @ R3 ) ) ) ) ) ).

% less_top_ennreal
thf(fact_1249_ennreal__le__epsilon,axiom,
    ! [Y4: extend8495563244428889912nnreal,X5: extend8495563244428889912nnreal] :
      ( ! [E2: real] :
          ( ( ord_le7381754540660121996nnreal @ Y4 @ top_to1496364449551166952nnreal )
         => ( ( ord_less_real @ zero_zero_real @ E2 )
           => ( ord_le3935885782089961368nnreal @ X5 @ ( plus_p1859984266308609217nnreal @ Y4 @ ( extend7643940197134561352nnreal @ E2 ) ) ) ) )
     => ( ord_le3935885782089961368nnreal @ X5 @ Y4 ) ) ).

% ennreal_le_epsilon
thf(fact_1250_ennreal__mono__minus__cancel,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ B2 ) @ ( minus_8429688780609304081nnreal @ A @ C2 ) )
     => ( ( ord_le7381754540660121996nnreal @ A @ top_to1496364449551166952nnreal )
       => ( ( ord_le3935885782089961368nnreal @ B2 @ A )
         => ( ( ord_le3935885782089961368nnreal @ C2 @ A )
           => ( ord_le3935885782089961368nnreal @ C2 @ B2 ) ) ) ) ) ).

% ennreal_mono_minus_cancel
thf(fact_1251_minus__less__iff__ennreal,axiom,
    ! [B2: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ B2 @ top_to1496364449551166952nnreal )
     => ( ( ord_le3935885782089961368nnreal @ B2 @ A )
       => ( ( ord_le7381754540660121996nnreal @ ( minus_8429688780609304081nnreal @ A @ B2 ) @ C2 )
          = ( ord_le7381754540660121996nnreal @ A @ ( plus_p1859984266308609217nnreal @ C2 @ B2 ) ) ) ) ) ).

% minus_less_iff_ennreal
thf(fact_1252_diff__eq__0__iff__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ( minus_8429688780609304081nnreal @ A @ B2 )
        = zero_z7100319975126383169nnreal )
      = ( ( ord_le7381754540660121996nnreal @ A @ top_to1496364449551166952nnreal )
        & ( ord_le3935885782089961368nnreal @ A @ B2 ) ) ) ).

% diff_eq_0_iff_ennreal
thf(fact_1253_diff__eq__0__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ A @ top_to1496364449551166952nnreal )
     => ( ( ord_le3935885782089961368nnreal @ A @ B2 )
       => ( ( minus_8429688780609304081nnreal @ A @ B2 )
          = zero_z7100319975126383169nnreal ) ) ) ).

% diff_eq_0_ennreal
thf(fact_1254_ennreal__less__iff,axiom,
    ! [R2: real,Q4: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R2 )
     => ( ( ord_le7381754540660121996nnreal @ ( extend7643940197134561352nnreal @ R2 ) @ ( extend7643940197134561352nnreal @ Q4 ) )
        = ( ord_less_real @ R2 @ Q4 ) ) ) ).

% ennreal_less_iff
thf(fact_1255_ennreal__mult,axiom,
    ! [A: real,B2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B2 )
       => ( ( extend7643940197134561352nnreal @ ( times_times_real @ A @ B2 ) )
          = ( times_1893300245718287421nnreal @ ( extend7643940197134561352nnreal @ A ) @ ( extend7643940197134561352nnreal @ B2 ) ) ) ) ) ).

% ennreal_mult
thf(fact_1256_ennreal__mult_H,axiom,
    ! [A: real,B2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( extend7643940197134561352nnreal @ ( times_times_real @ A @ B2 ) )
        = ( times_1893300245718287421nnreal @ ( extend7643940197134561352nnreal @ A ) @ ( extend7643940197134561352nnreal @ B2 ) ) ) ) ).

% ennreal_mult'
thf(fact_1257_ennreal__mult_H_H,axiom,
    ! [B2: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ B2 )
     => ( ( extend7643940197134561352nnreal @ ( times_times_real @ A @ B2 ) )
        = ( times_1893300245718287421nnreal @ ( extend7643940197134561352nnreal @ A ) @ ( extend7643940197134561352nnreal @ B2 ) ) ) ) ).

% ennreal_mult''
thf(fact_1258_ennreal__plus__if,axiom,
    ! [A: real,B2: real] :
      ( ( plus_p1859984266308609217nnreal @ ( extend7643940197134561352nnreal @ A ) @ ( extend7643940197134561352nnreal @ B2 ) )
      = ( extend7643940197134561352nnreal @ ( if_real @ ( ord_less_eq_real @ zero_zero_real @ A ) @ ( if_real @ ( ord_less_eq_real @ zero_zero_real @ B2 ) @ ( plus_plus_real @ A @ B2 ) @ A ) @ B2 ) ) ) ).

% ennreal_plus_if
thf(fact_1259_ennreal__minus__if,axiom,
    ! [A: real,B2: real] :
      ( ( minus_8429688780609304081nnreal @ ( extend7643940197134561352nnreal @ A ) @ ( extend7643940197134561352nnreal @ B2 ) )
      = ( extend7643940197134561352nnreal @ ( if_real @ ( ord_less_eq_real @ zero_zero_real @ B2 ) @ ( if_real @ ( ord_less_eq_real @ B2 @ A ) @ ( minus_minus_real @ A @ B2 ) @ zero_zero_real ) @ A ) ) ) ).

% ennreal_minus_if
thf(fact_1260_ennreal__minus,axiom,
    ! [Q4: real,R2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Q4 )
     => ( ( minus_8429688780609304081nnreal @ ( extend7643940197134561352nnreal @ R2 ) @ ( extend7643940197134561352nnreal @ Q4 ) )
        = ( extend7643940197134561352nnreal @ ( minus_minus_real @ R2 @ Q4 ) ) ) ) ).

% ennreal_minus
thf(fact_1261_approx__PInf__emeasure__with__finite,axiom,
    ! [W3: set_a,C: real] :
      ( ( member_set_a @ W3 @ ( sigma_sets_a @ m ) )
     => ( ( ( sigma_emeasure_a @ m @ W3 )
          = extend2057119558705770725nnreal )
       => ~ ! [Z4: set_a] :
              ( ( member_set_a @ Z4 @ ( sigma_sets_a @ m ) )
             => ( ( ord_less_eq_set_a @ Z4 @ W3 )
               => ( ( ord_le7381754540660121996nnreal @ ( sigma_emeasure_a @ m @ Z4 ) @ extend2057119558705770725nnreal )
                 => ~ ( ord_le7381754540660121996nnreal @ ( extend7643940197134561352nnreal @ C ) @ ( sigma_emeasure_a @ m @ Z4 ) ) ) ) ) ) ) ).

% approx_PInf_emeasure_with_finite
thf(fact_1262_decr__mult__lemma,axiom,
    ! [D2: int,P: int > $o,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ! [X4: int] :
            ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D2 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K2 )
         => ! [X6: int] :
              ( ( P @ X6 )
             => ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K2 @ D2 ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_1263_ennreal__add__left__cancel__le,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ ( plus_p1859984266308609217nnreal @ A @ B2 ) @ ( plus_p1859984266308609217nnreal @ A @ C2 ) )
      = ( ( A = extend2057119558705770725nnreal )
        | ( ord_le3935885782089961368nnreal @ B2 @ C2 ) ) ) ).

% ennreal_add_left_cancel_le
thf(fact_1264_diff__diff__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B2 )
     => ( ( B2 != extend2057119558705770725nnreal )
       => ( ( minus_8429688780609304081nnreal @ B2 @ ( minus_8429688780609304081nnreal @ B2 @ A ) )
          = A ) ) ) ).

% diff_diff_ennreal
thf(fact_1265_imp__le__cong,axiom,
    ! [X5: int,X7: int,P: $o,P3: $o] :
      ( ( X5 = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P3 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X5 )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
           => P3 ) ) ) ) ).

% imp_le_cong
thf(fact_1266_conj__le__cong,axiom,
    ! [X5: int,X7: int,P: $o,P3: $o] :
      ( ( X5 = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P3 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X5 )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
            & P3 ) ) ) ) ).

% conj_le_cong
thf(fact_1267_incr__mult__lemma,axiom,
    ! [D2: int,P: int > $o,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ! [X4: int] :
            ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D2 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K2 )
         => ! [X6: int] :
              ( ( P @ X6 )
             => ( P @ ( plus_plus_int @ X6 @ ( times_times_int @ K2 @ D2 ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_1268_enn2real__le__iff,axiom,
    ! [X5: extend8495563244428889912nnreal,C2: real] :
      ( ( ord_le7381754540660121996nnreal @ X5 @ top_to1496364449551166952nnreal )
     => ( ( ord_less_real @ zero_zero_real @ C2 )
       => ( ( ord_less_eq_real @ ( extend1669699412028896998n2real @ X5 ) @ C2 )
          = ( ord_le3935885782089961368nnreal @ X5 @ ( extend7643940197134561352nnreal @ C2 ) ) ) ) ) ).

% enn2real_le_iff
thf(fact_1269_enn2real__ennreal,axiom,
    ! [R2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R2 )
     => ( ( extend1669699412028896998n2real @ ( extend7643940197134561352nnreal @ R2 ) )
        = R2 ) ) ).

% enn2real_ennreal
thf(fact_1270_enn2real__nonneg,axiom,
    ! [X5: extend8495563244428889912nnreal] : ( ord_less_eq_real @ zero_zero_real @ ( extend1669699412028896998n2real @ X5 ) ) ).

% enn2real_nonneg
thf(fact_1271_enn2real__leI,axiom,
    ! [B: real,X5: extend8495563244428889912nnreal] :
      ( ( ord_less_eq_real @ zero_zero_real @ B )
     => ( ( ord_le3935885782089961368nnreal @ X5 @ ( extend7643940197134561352nnreal @ B ) )
       => ( ord_less_eq_real @ ( extend1669699412028896998n2real @ X5 ) @ B ) ) ) ).

% enn2real_leI
thf(fact_1272_enn2real__le,axiom,
    ! [E: extend8495563244428889912nnreal,R2: real] :
      ( ( ord_less_eq_real @ ( extend1669699412028896998n2real @ E ) @ R2 )
     => ( ( E != top_to1496364449551166952nnreal )
       => ( ord_le3935885782089961368nnreal @ E @ ( extend7643940197134561352nnreal @ R2 ) ) ) ) ).

% enn2real_le
thf(fact_1273_enn2real__mono,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B2 )
     => ( ( ord_le7381754540660121996nnreal @ B2 @ top_to1496364449551166952nnreal )
       => ( ord_less_eq_real @ ( extend1669699412028896998n2real @ A ) @ ( extend1669699412028896998n2real @ B2 ) ) ) ) ).

% enn2real_mono
thf(fact_1274_enn2real__plus,axiom,
    ! [A: extend8495563244428889912nnreal,B2: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ A @ top_to1496364449551166952nnreal )
     => ( ( ord_le7381754540660121996nnreal @ B2 @ top_to1496364449551166952nnreal )
       => ( ( extend1669699412028896998n2real @ ( plus_p1859984266308609217nnreal @ A @ B2 ) )
          = ( plus_plus_real @ ( extend1669699412028896998n2real @ A ) @ ( extend1669699412028896998n2real @ B2 ) ) ) ) ) ).

% enn2real_plus

% Helper facts (3)
thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X5: real,Y4: real] :
      ( ( if_real @ $false @ X5 @ Y4 )
      = Y4 ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X5: real,Y4: real] :
      ( ( if_real @ $true @ X5 @ Y4 )
      = X5 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    probab7247484486040049090pace_b @ ( measure_distr_a_b @ m @ n @ f2 ) ).

%------------------------------------------------------------------------------