TPTP Problem File: SLH0075^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Universal_Hash_Families/0028_Field/prob_00190_006776__18319712_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1333 ( 677 unt;  60 typ;   0 def)
%            Number of atoms       : 3273 (1147 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 9087 ( 259   ~;  50   |; 117   &;7384   @)
%                                         (   0 <=>;1277  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   21 (   6 avg)
%            Number of types       :    8 (   7 usr)
%            Number of type conns  :  236 ( 236   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   56 (  53 usr;   9 con; 0-3 aty)
%            Number of variables   : 2884 (  99   ^;2725   !;  60   ?;2884   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 14:42:03.221
%------------------------------------------------------------------------------
% Could-be-implicit typings (7)
thf(ty_n_t__Congruence__Opartial____object__Opartial____object____ext_It__Set__Oset_It__Set__Oset_It__Int__Oint_J_J_Mt__Group__Omonoid__Omonoid____ext_It__Set__Oset_It__Set__Oset_It__Int__Oint_J_J_Mt__Ring__Oring__Oring____ext_It__Set__Oset_It__Set__Oset_It__Int__Oint_J_J_Mt__Product____Type__Ounit_J_J_J,type,
    partia3601206958761670294t_unit: $tType ).

thf(ty_n_t__Congruence__Opartial____object__Opartial____object____ext_It__Set__Oset_It__Int__Oint_J_Mt__Group__Omonoid__Omonoid____ext_It__Set__Oset_It__Int__Oint_J_Mt__Ring__Oring__Oring____ext_It__Set__Oset_It__Int__Oint_J_Mt__Product____Type__Ounit_J_J_J,type,
    partia4934656038542163276t_unit: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    set_set_int: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (53)
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
    archim7802044766580827645g_real: real > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
    archim6058952711729229775r_real: real > int ).

thf(sy_c_Archimedean__Field_Ofrac_001t__Real__Oreal,type,
    archim2898591450579166408c_real: real > real ).

thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
    archim8280529875227126926d_real: real > int ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Ideal_Oideal_001t__Set__Oset_It__Int__Oint_J_001t__Product____Type__Ounit,type,
    ideal_7262958097527394045t_unit: set_set_int > partia4934656038542163276t_unit > $o ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_IntRing_OZFact,type,
    zFact: int > partia4934656038542163276t_unit ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
    ring_1_of_int_int: int > int ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
    ring_1_of_int_real: int > real ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_QuotRing_OFactRing_001t__Set__Oset_It__Int__Oint_J_001t__Product____Type__Ounit,type,
    factRi3149420076008518152t_unit: partia4934656038542163276t_unit > set_set_int > partia3601206958761670294t_unit ).

thf(sy_c_Ring_Ocring_001t__Set__Oset_It__Int__Oint_J_001t__Product____Type__Ounit,type,
    cring_3079150759069666002t_unit: partia4934656038542163276t_unit > $o ).

thf(sy_c_Ring_Ocring_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J_001t__Product____Type__Ounit,type,
    cring_4824509871863036828t_unit: partia3601206958761670294t_unit > $o ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v_n,type,
    n: nat ).

% Relevant facts (1265)
thf(fact_0_ZFact__is__cring,axiom,
    ! [K: int] : ( cring_3079150759069666002t_unit @ ( zFact @ K ) ) ).

% ZFact_is_cring
thf(fact_1_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_2_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_3_n__ge__1,axiom,
    ord_less_nat @ one_one_nat @ n ).

% n_ge_1
thf(fact_4_cring_Ois__cring,axiom,
    ! [R: partia4934656038542163276t_unit] :
      ( ( cring_3079150759069666002t_unit @ R )
     => ( cring_3079150759069666002t_unit @ R ) ) ).

% cring.is_cring
thf(fact_5_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
    = ( ^ [A: nat,B: nat] :
          ( ( semiri1314217659103216013at_int @ A )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_6_int__if,axiom,
    ! [P: $o,A2: nat,B2: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A2 @ B2 ) )
          = ( semiri1314217659103216013at_int @ A2 ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A2 @ B2 ) )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% int_if
thf(fact_7_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_8_n__ge__0,axiom,
    ord_less_nat @ zero_zero_nat @ n ).

% n_ge_0
thf(fact_9_round__of__nat,axiom,
    ! [N: nat] :
      ( ( archim8280529875227126926d_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% round_of_nat
thf(fact_10_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% of_int_of_nat_eq
thf(fact_11_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_real @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% of_int_of_nat_eq
thf(fact_12_ceiling__of__nat,axiom,
    ! [N: nat] :
      ( ( archim7802044766580827645g_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% ceiling_of_nat
thf(fact_13_floor__of__nat,axiom,
    ! [N: nat] :
      ( ( archim6058952711729229775r_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% floor_of_nat
thf(fact_14_ideal_Oquotient__is__cring,axiom,
    ! [I: set_set_int,R: partia4934656038542163276t_unit] :
      ( ( ideal_7262958097527394045t_unit @ I @ R )
     => ( ( cring_3079150759069666002t_unit @ R )
       => ( cring_4824509871863036828t_unit @ ( factRi3149420076008518152t_unit @ R @ I ) ) ) ) ).

% ideal.quotient_is_cring
thf(fact_15_of__int__eq__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ( ring_1_of_int_real @ W )
        = ( ring_1_of_int_real @ Z2 ) )
      = ( W = Z2 ) ) ).

% of_int_eq_iff
thf(fact_16_of__int__eq__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ( ring_1_of_int_int @ W )
        = ( ring_1_of_int_int @ Z2 ) )
      = ( W = Z2 ) ) ).

% of_int_eq_iff
thf(fact_17_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_18_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_19_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_20_of__int__0,axiom,
    ( ( ring_1_of_int_real @ zero_zero_int )
    = zero_zero_real ) ).

% of_int_0
thf(fact_21_of__int__0,axiom,
    ( ( ring_1_of_int_int @ zero_zero_int )
    = zero_zero_int ) ).

% of_int_0
thf(fact_22_of__int__0__eq__iff,axiom,
    ! [Z2: int] :
      ( ( zero_zero_real
        = ( ring_1_of_int_real @ Z2 ) )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_23_of__int__0__eq__iff,axiom,
    ! [Z2: int] :
      ( ( zero_zero_int
        = ( ring_1_of_int_int @ Z2 ) )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_24_of__int__eq__0__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_real @ Z2 )
        = zero_zero_real )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_25_of__int__eq__0__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_int @ Z2 )
        = zero_zero_int )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_26_of__int__less__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_int @ W @ Z2 ) ) ).

% of_int_less_iff
thf(fact_27_of__int__less__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_int @ W @ Z2 ) ) ).

% of_int_less_iff
thf(fact_28_of__int__1,axiom,
    ( ( ring_1_of_int_real @ one_one_int )
    = one_one_real ) ).

% of_int_1
thf(fact_29_of__int__1,axiom,
    ( ( ring_1_of_int_int @ one_one_int )
    = one_one_int ) ).

% of_int_1
thf(fact_30_of__int__eq__1__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_real @ Z2 )
        = one_one_real )
      = ( Z2 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_31_of__int__eq__1__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_int @ Z2 )
        = one_one_int )
      = ( Z2 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_32_floor__zero,axiom,
    ( ( archim6058952711729229775r_real @ zero_zero_real )
    = zero_zero_int ) ).

% floor_zero
thf(fact_33_floor__one,axiom,
    ( ( archim6058952711729229775r_real @ one_one_real )
    = one_one_int ) ).

% floor_one
thf(fact_34_ceiling__zero,axiom,
    ( ( archim7802044766580827645g_real @ zero_zero_real )
    = zero_zero_int ) ).

% ceiling_zero
thf(fact_35_ceiling__one,axiom,
    ( ( archim7802044766580827645g_real @ one_one_real )
    = one_one_int ) ).

% ceiling_one
thf(fact_36_floor__of__int,axiom,
    ! [Z2: int] :
      ( ( archim6058952711729229775r_real @ ( ring_1_of_int_real @ Z2 ) )
      = Z2 ) ).

% floor_of_int
thf(fact_37_ceiling__of__int,axiom,
    ! [Z2: int] :
      ( ( archim7802044766580827645g_real @ ( ring_1_of_int_real @ Z2 ) )
      = Z2 ) ).

% ceiling_of_int
thf(fact_38_round__0,axiom,
    ( ( archim8280529875227126926d_real @ zero_zero_real )
    = zero_zero_int ) ).

% round_0
thf(fact_39_round__1,axiom,
    ( ( archim8280529875227126926d_real @ one_one_real )
    = one_one_int ) ).

% round_1
thf(fact_40_round__of__int,axiom,
    ! [N: int] :
      ( ( archim8280529875227126926d_real @ ( ring_1_of_int_real @ N ) )
      = N ) ).

% round_of_int
thf(fact_41_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_42_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_43_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_44_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_45_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_46_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_47_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_48_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_49_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_50_of__int__0__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_less_iff
thf(fact_51_of__int__0__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_less_iff
thf(fact_52_of__int__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_53_of__int__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ zero_zero_real )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_54_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_55_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_56_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_57_of__int__1__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% of_int_1_less_iff
thf(fact_58_of__int__1__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% of_int_1_less_iff
thf(fact_59_of__int__less__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ one_one_int )
      = ( ord_less_int @ Z2 @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_60_of__int__less__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real )
      = ( ord_less_int @ Z2 @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_61_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_62_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_63_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_64_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_65_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_66_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_67_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_68_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_69_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_70_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_71_floor__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
      = ( ord_less_real @ X @ zero_zero_real ) ) ).

% floor_less_zero
thf(fact_72_mem__Collect__eq,axiom,
    ! [A2: real,P: real > $o] :
      ( ( member_real @ A2 @ ( collect_real @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_73_Collect__mem__eq,axiom,
    ! [A3: set_real] :
      ( ( collect_real
        @ ^ [X2: real] : ( member_real @ X2 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_74_floor__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% floor_less_one
thf(fact_75_zero__less__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ zero_zero_real @ X ) ) ).

% zero_less_ceiling
thf(fact_76_one__less__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_int @ one_one_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ one_one_real @ X ) ) ).

% one_less_ceiling
thf(fact_77_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_78_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_79_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_80_verit__comp__simplify1_I1_J,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_81_verit__comp__simplify1_I1_J,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_82_verit__comp__simplify1_I1_J,axiom,
    ! [A2: real] :
      ~ ( ord_less_real @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_83_bot__nat__0_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_84_of__int__pos,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_pos
thf(fact_85_of__int__pos,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_pos
thf(fact_86_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_87_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_88_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_89_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_90_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_91_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_92_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_93_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_94_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_95_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_96_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_97_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_98_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_99_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_100_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_101_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_102_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_103_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_104_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_105_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ( P @ M2 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_106_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P @ N2 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_107_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P @ N2 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N2 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_108_linorder__neqE__nat,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_nat @ X @ Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_109_ex__less__of__int,axiom,
    ! [X: real] :
    ? [Z3: int] : ( ord_less_real @ X @ ( ring_1_of_int_real @ Z3 ) ) ).

% ex_less_of_int
thf(fact_110_ex__of__int__less,axiom,
    ! [X: real] :
    ? [Z3: int] : ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ X ) ).

% ex_of_int_less
thf(fact_111_floor__less__iff,axiom,
    ! [X: real,Z2: int] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ Z2 )
      = ( ord_less_real @ X @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% floor_less_iff
thf(fact_112_less__ceiling__iff,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_int @ Z2 @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ X ) ) ).

% less_ceiling_iff
thf(fact_113_floor__less__cancel,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) )
     => ( ord_less_real @ X @ Y2 ) ) ).

% floor_less_cancel
thf(fact_114_ceiling__less__cancel,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( archim7802044766580827645g_real @ Y2 ) )
     => ( ord_less_real @ X @ Y2 ) ) ).

% ceiling_less_cancel
thf(fact_115_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X: int] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( ring_1_of_int_int @ X ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).

% of_nat_less_of_int_iff
thf(fact_116_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X: int] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( ring_1_of_int_real @ X ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).

% of_nat_less_of_int_iff
thf(fact_117_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N2: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% reals_Archimedean2
thf(fact_118_of__int__ceiling__cancel,axiom,
    ! [X: real] :
      ( ( ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) )
        = X )
      = ( ? [N3: int] :
            ( X
            = ( ring_1_of_int_real @ N3 ) ) ) ) ).

% of_int_ceiling_cancel
thf(fact_119_of__int__floor__cancel,axiom,
    ! [X: real] :
      ( ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) )
        = X )
      = ( ? [N3: int] :
            ( X
            = ( ring_1_of_int_real @ N3 ) ) ) ) ).

% of_int_floor_cancel
thf(fact_120_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_121_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_122_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_123_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_124_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_125_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_126_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_127_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_128_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_129_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_130_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_131_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_132_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_133_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_134_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_135_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_136_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_137_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_138_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_139_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_140_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_141_int_Ozero__not__one,axiom,
    zero_zero_int != one_one_int ).

% int.zero_not_one
thf(fact_142_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( K
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_143_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% pos_int_cases
thf(fact_144_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_145_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_146_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_147_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_148_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_149_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_150_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_int @ X @ Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_151_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_real @ X @ Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_152_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_153_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_154_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_155_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_156_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_157_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_158_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_159_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_160_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_161_ceiling__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% ceiling_less_one
thf(fact_162_zero__less__floor,axiom,
    ! [X: real] :
      ( ( ord_less_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ one_one_real @ X ) ) ).

% zero_less_floor
thf(fact_163_one__le__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ zero_zero_real @ X ) ) ).

% one_le_ceiling
thf(fact_164_floor__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% floor_le_zero
thf(fact_165_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% neg_int_cases
thf(fact_166_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_167_ex__inverse__of__nat__less,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ X ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_168_zero__less__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% zero_less_nat_eq
thf(fact_169_ceiling__altdef,axiom,
    ( archim7802044766580827645g_real
    = ( ^ [X2: real] :
          ( if_int
          @ ( X2
            = ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X2 ) ) )
          @ ( archim6058952711729229775r_real @ X2 )
          @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X2 ) @ one_one_int ) ) ) ) ).

% ceiling_altdef
thf(fact_170_add__right__cancel,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_171_add__right__cancel,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ( plus_plus_real @ B2 @ A2 )
        = ( plus_plus_real @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_172_add__right__cancel,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_173_add__left__cancel,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_174_add__left__cancel,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ( plus_plus_real @ A2 @ B2 )
        = ( plus_plus_real @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_175_add__left__cancel,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_176_neg__equal__iff__equal,axiom,
    ! [A2: int,B2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = ( uminus_uminus_int @ B2 ) )
      = ( A2 = B2 ) ) ).

% neg_equal_iff_equal
thf(fact_177_neg__equal__iff__equal,axiom,
    ! [A2: real,B2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = ( uminus_uminus_real @ B2 ) )
      = ( A2 = B2 ) ) ).

% neg_equal_iff_equal
thf(fact_178_add_Oinverse__inverse,axiom,
    ! [A2: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A2 ) )
      = A2 ) ).

% add.inverse_inverse
thf(fact_179_add_Oinverse__inverse,axiom,
    ! [A2: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A2 ) )
      = A2 ) ).

% add.inverse_inverse
thf(fact_180_verit__minus__simplify_I4_J,axiom,
    ! [B2: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B2 ) )
      = B2 ) ).

% verit_minus_simplify(4)
thf(fact_181_verit__minus__simplify_I4_J,axiom,
    ! [B2: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B2 ) )
      = B2 ) ).

% verit_minus_simplify(4)
thf(fact_182_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_183_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_184_nat__ceiling__le__eq,axiom,
    ! [X: real,A2: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) @ A2 )
      = ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ A2 ) ) ) ).

% nat_ceiling_le_eq
thf(fact_185_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_186_add__le__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_187_add__le__cancel__right,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ C ) )
      = ( ord_less_eq_real @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_188_add__le__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_189_add__le__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_190_add__le__cancel__left,axiom,
    ! [C: real,A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B2 ) )
      = ( ord_less_eq_real @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_191_add__le__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_192_double__eq__0__iff,axiom,
    ! [A2: int] :
      ( ( ( plus_plus_int @ A2 @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_193_double__eq__0__iff,axiom,
    ! [A2: real] :
      ( ( ( plus_plus_real @ A2 @ A2 )
        = zero_zero_real )
      = ( A2 = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_194_add_Oright__neutral,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% add.right_neutral
thf(fact_195_add_Oright__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% add.right_neutral
thf(fact_196_add_Oright__neutral,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ A2 @ zero_zero_real )
      = A2 ) ).

% add.right_neutral
thf(fact_197_double__zero__sym,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A2 @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_198_double__zero__sym,axiom,
    ! [A2: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A2 @ A2 ) )
      = ( A2 = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_199_add__cancel__left__left,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = A2 )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_200_add__cancel__left__left,axiom,
    ! [B2: int,A2: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = A2 )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_201_add__cancel__left__left,axiom,
    ! [B2: real,A2: real] :
      ( ( ( plus_plus_real @ B2 @ A2 )
        = A2 )
      = ( B2 = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_202_add__cancel__left__right,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = A2 )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_203_add__cancel__left__right,axiom,
    ! [A2: int,B2: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = A2 )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_204_add__cancel__left__right,axiom,
    ! [A2: real,B2: real] :
      ( ( ( plus_plus_real @ A2 @ B2 )
        = A2 )
      = ( B2 = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_205_add__cancel__right__left,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( plus_plus_nat @ B2 @ A2 ) )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_206_add__cancel__right__left,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( plus_plus_int @ B2 @ A2 ) )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_207_add__cancel__right__left,axiom,
    ! [A2: real,B2: real] :
      ( ( A2
        = ( plus_plus_real @ B2 @ A2 ) )
      = ( B2 = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_208_add__cancel__right__right,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( plus_plus_nat @ A2 @ B2 ) )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_209_add__cancel__right__right,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( plus_plus_int @ A2 @ B2 ) )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_210_add__cancel__right__right,axiom,
    ! [A2: real,B2: real] :
      ( ( A2
        = ( plus_plus_real @ A2 @ B2 ) )
      = ( B2 = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_211_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ( plus_plus_nat @ X @ Y2 )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_212_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y2: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y2 ) )
      = ( ( X = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_213_add__0,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% add_0
thf(fact_214_add__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add_0
thf(fact_215_add__0,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ zero_zero_real @ A2 )
      = A2 ) ).

% add_0
thf(fact_216_add__less__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_cancel_left
thf(fact_217_add__less__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_cancel_left
thf(fact_218_add__less__cancel__left,axiom,
    ! [C: real,A2: real,B2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B2 ) )
      = ( ord_less_real @ A2 @ B2 ) ) ).

% add_less_cancel_left
thf(fact_219_add__less__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_cancel_right
thf(fact_220_add__less__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_cancel_right
thf(fact_221_add__less__cancel__right,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ C ) )
      = ( ord_less_real @ A2 @ B2 ) ) ).

% add_less_cancel_right
thf(fact_222_neg__le__iff__le,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ B2 ) ) ).

% neg_le_iff_le
thf(fact_223_neg__le__iff__le,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% neg_le_iff_le
thf(fact_224_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_225_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_226_neg__0__equal__iff__equal,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A2 ) )
      = ( zero_zero_int = A2 ) ) ).

% neg_0_equal_iff_equal
thf(fact_227_neg__0__equal__iff__equal,axiom,
    ! [A2: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A2 ) )
      = ( zero_zero_real = A2 ) ) ).

% neg_0_equal_iff_equal
thf(fact_228_neg__equal__0__iff__equal,axiom,
    ! [A2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_229_neg__equal__0__iff__equal,axiom,
    ! [A2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = zero_zero_real )
      = ( A2 = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_230_equal__neg__zero,axiom,
    ! [A2: int] :
      ( ( A2
        = ( uminus_uminus_int @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_231_equal__neg__zero,axiom,
    ! [A2: real] :
      ( ( A2
        = ( uminus_uminus_real @ A2 ) )
      = ( A2 = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_232_neg__equal__zero,axiom,
    ! [A2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = A2 )
      = ( A2 = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_233_neg__equal__zero,axiom,
    ! [A2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = A2 )
      = ( A2 = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_234_neg__less__iff__less,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% neg_less_iff_less
thf(fact_235_neg__less__iff__less,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_real @ A2 @ B2 ) ) ).

% neg_less_iff_less
thf(fact_236_minus__add__distrib,axiom,
    ! [A2: int,B2: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A2 @ B2 ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ ( uminus_uminus_int @ B2 ) ) ) ).

% minus_add_distrib
thf(fact_237_minus__add__distrib,axiom,
    ! [A2: real,B2: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A2 @ B2 ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A2 ) @ ( uminus_uminus_real @ B2 ) ) ) ).

% minus_add_distrib
thf(fact_238_minus__add__cancel,axiom,
    ! [A2: int,B2: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ ( plus_plus_int @ A2 @ B2 ) )
      = B2 ) ).

% minus_add_cancel
thf(fact_239_minus__add__cancel,axiom,
    ! [A2: real,B2: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A2 ) @ ( plus_plus_real @ A2 @ B2 ) )
      = B2 ) ).

% minus_add_cancel
thf(fact_240_add__minus__cancel,axiom,
    ! [A2: int,B2: int] :
      ( ( plus_plus_int @ A2 @ ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ B2 ) )
      = B2 ) ).

% add_minus_cancel
thf(fact_241_add__minus__cancel,axiom,
    ! [A2: real,B2: real] :
      ( ( plus_plus_real @ A2 @ ( plus_plus_real @ ( uminus_uminus_real @ A2 ) @ B2 ) )
      = B2 ) ).

% add_minus_cancel
thf(fact_242_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_243_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_244_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_245_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_246_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_247_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_248_int_Ominus__zero,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% int.minus_zero
thf(fact_249_nat__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( semiri1314217659103216013at_int @ N ) )
      = N ) ).

% nat_int
thf(fact_250_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A2 @ A2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_251_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_252_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A2 @ A2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_253_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_254_le__add__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_255_le__add__same__cancel2,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ ( plus_plus_real @ B2 @ A2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_256_le__add__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( plus_plus_int @ B2 @ A2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_257_le__add__same__cancel1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_258_le__add__same__cancel1,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ ( plus_plus_real @ A2 @ B2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_259_le__add__same__cancel1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( plus_plus_int @ A2 @ B2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_260_add__le__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_261_add__le__same__cancel2,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_262_add__le__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_263_add__le__same__cancel1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_264_add__le__same__cancel1,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_265_add__le__same__cancel1,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_266_add__less__same__cancel1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B2 @ A2 ) @ B2 )
      = ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_267_add__less__same__cancel1,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B2 @ A2 ) @ B2 )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_268_add__less__same__cancel1,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B2 @ A2 ) @ B2 )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_269_add__less__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_270_add__less__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_271_add__less__same__cancel2,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A2 @ B2 ) @ B2 )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_272_less__add__same__cancel1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( ord_less_nat @ zero_zero_nat @ B2 ) ) ).

% less_add_same_cancel1
thf(fact_273_less__add__same__cancel1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ B2 ) )
      = ( ord_less_int @ zero_zero_int @ B2 ) ) ).

% less_add_same_cancel1
thf(fact_274_less__add__same__cancel1,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ ( plus_plus_real @ A2 @ B2 ) )
      = ( ord_less_real @ zero_zero_real @ B2 ) ) ).

% less_add_same_cancel1
thf(fact_275_less__add__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
      = ( ord_less_nat @ zero_zero_nat @ B2 ) ) ).

% less_add_same_cancel2
thf(fact_276_less__add__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( plus_plus_int @ B2 @ A2 ) )
      = ( ord_less_int @ zero_zero_int @ B2 ) ) ).

% less_add_same_cancel2
thf(fact_277_less__add__same__cancel2,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ ( plus_plus_real @ B2 @ A2 ) )
      = ( ord_less_real @ zero_zero_real @ B2 ) ) ).

% less_add_same_cancel2
thf(fact_278_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_279_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A2 @ A2 ) @ zero_zero_real )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_280_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_281_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A2 @ A2 ) )
      = ( ord_less_real @ zero_zero_real @ A2 ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_282_neg__less__eq__nonneg,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ A2 )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% neg_less_eq_nonneg
thf(fact_283_neg__less__eq__nonneg,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% neg_less_eq_nonneg
thf(fact_284_less__eq__neg__nonpos,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ A2 @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_285_less__eq__neg__nonpos,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ A2 @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_286_neg__le__0__iff__le,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% neg_le_0_iff_le
thf(fact_287_neg__le__0__iff__le,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% neg_le_0_iff_le
thf(fact_288_neg__0__le__iff__le,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_289_neg__0__le__iff__le,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_290_less__neg__neg,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ A2 @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_291_less__neg__neg,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ A2 @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_292_neg__less__pos,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% neg_less_pos
thf(fact_293_neg__less__pos,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A2 ) @ A2 )
      = ( ord_less_real @ zero_zero_real @ A2 ) ) ).

% neg_less_pos
thf(fact_294_neg__0__less__iff__less,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_295_neg__0__less__iff__less,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_296_neg__less__0__iff__less,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% neg_less_0_iff_less
thf(fact_297_neg__less__0__iff__less,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A2 ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A2 ) ) ).

% neg_less_0_iff_less
thf(fact_298_ab__left__minus,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_299_ab__left__minus,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A2 ) @ A2 )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_300_add_Oright__inverse,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ ( uminus_uminus_int @ A2 ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_301_add_Oright__inverse,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ A2 @ ( uminus_uminus_real @ A2 ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_302_of__int__le__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% of_int_le_iff
thf(fact_303_of__int__le__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% of_int_le_iff
thf(fact_304_of__int__add,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z2 ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_add
thf(fact_305_of__int__add,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z2 ) )
      = ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_add
thf(fact_306_of__int__minus,axiom,
    ! [Z2: int] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ Z2 ) )
      = ( uminus_uminus_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_minus
thf(fact_307_of__int__minus,axiom,
    ! [Z2: int] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ Z2 ) )
      = ( uminus_uminus_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_minus
thf(fact_308_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_309_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_310_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_311_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_312_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_313_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_314_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_315_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_316_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_317_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_318_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_319_nat__0__iff,axiom,
    ! [I2: int] :
      ( ( ( nat2 @ I2 )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I2 @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_320_nat__le__0,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ Z2 @ zero_zero_int )
     => ( ( nat2 @ Z2 )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_321_zle__add1__eq__le,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% zle_add1_eq_le
thf(fact_322_zless__nat__conj,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
      = ( ( ord_less_int @ zero_zero_int @ Z2 )
        & ( ord_less_int @ W @ Z2 ) ) ) ).

% zless_nat_conj
thf(fact_323_int__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
          = Z2 ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z2 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_324_ceiling__add__of__int,axiom,
    ! [X: real,Z2: int] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ ( ring_1_of_int_real @ Z2 ) ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ Z2 ) ) ).

% ceiling_add_of_int
thf(fact_325_nat__zminus__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
      = zero_zero_nat ) ).

% nat_zminus_int
thf(fact_326_floor__uminus__of__int,axiom,
    ! [Z2: int] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( ring_1_of_int_real @ Z2 ) ) )
      = ( uminus_uminus_int @ Z2 ) ) ).

% floor_uminus_of_int
thf(fact_327_of__int__0__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_le_iff
thf(fact_328_of__int__0__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_le_iff
thf(fact_329_of__int__le__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ zero_zero_real )
      = ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_330_of__int__le__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_331_of__int__1__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).

% of_int_1_le_iff
thf(fact_332_of__int__1__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).

% of_int_1_le_iff
thf(fact_333_of__int__le__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real )
      = ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_334_of__int__le__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ one_one_int )
      = ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_335_zero__le__floor,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% zero_le_floor
thf(fact_336_ceiling__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% ceiling_le_zero
thf(fact_337_one__le__floor,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ one_one_real @ X ) ) ).

% one_le_floor
thf(fact_338_ceiling__le__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
      = ( ord_less_eq_real @ X @ one_one_real ) ) ).

% ceiling_le_one
thf(fact_339_ceiling__add__one,axiom,
    ! [X: real] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ one_one_real ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int ) ) ).

% ceiling_add_one
thf(fact_340_of__nat__nat,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
        = ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_nat_nat
thf(fact_341_of__nat__nat,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri5074537144036343181t_real @ ( nat2 @ Z2 ) )
        = ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_nat_nat
thf(fact_342_zero__le__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X ) ) ).

% zero_le_ceiling
thf(fact_343_ceiling__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
      = ( ord_less_eq_real @ X @ ( uminus_uminus_real @ one_one_real ) ) ) ).

% ceiling_less_zero
thf(fact_344_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_345_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_346_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_347_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_348_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_349_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_350_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_351_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_352_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_353_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_354_add__eq__0__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = zero_zero_int )
      = ( B2
        = ( uminus_uminus_int @ A2 ) ) ) ).

% add_eq_0_iff
thf(fact_355_add__eq__0__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ( plus_plus_real @ A2 @ B2 )
        = zero_zero_real )
      = ( B2
        = ( uminus_uminus_real @ A2 ) ) ) ).

% add_eq_0_iff
thf(fact_356_ab__group__add__class_Oab__left__minus,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_357_ab__group__add__class_Oab__left__minus,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A2 ) @ A2 )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_358_add_Oinverse__unique,axiom,
    ! [A2: int,B2: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A2 )
        = B2 ) ) ).

% add.inverse_unique
thf(fact_359_add_Oinverse__unique,axiom,
    ! [A2: real,B2: real] :
      ( ( ( plus_plus_real @ A2 @ B2 )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A2 )
        = B2 ) ) ).

% add.inverse_unique
thf(fact_360_eq__neg__iff__add__eq__0,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( uminus_uminus_int @ B2 ) )
      = ( ( plus_plus_int @ A2 @ B2 )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_361_eq__neg__iff__add__eq__0,axiom,
    ! [A2: real,B2: real] :
      ( ( A2
        = ( uminus_uminus_real @ B2 ) )
      = ( ( plus_plus_real @ A2 @ B2 )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_362_neg__eq__iff__add__eq__0,axiom,
    ! [A2: int,B2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = B2 )
      = ( ( plus_plus_int @ A2 @ B2 )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_363_neg__eq__iff__add__eq__0,axiom,
    ! [A2: real,B2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = B2 )
      = ( ( plus_plus_real @ A2 @ B2 )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_364_add__decreasing,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_365_add__decreasing,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B2 )
       => ( ord_less_eq_real @ ( plus_plus_real @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_366_add__decreasing,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_367_add__increasing,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_368_add__increasing,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A2 )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ord_less_eq_real @ B2 @ ( plus_plus_real @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_369_add__increasing,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_370_add__decreasing2,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_371_add__decreasing2,axiom,
    ! [C: real,A2: real,B2: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A2 @ B2 )
       => ( ord_less_eq_real @ ( plus_plus_real @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_372_add__decreasing2,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_373_add__increasing2,axiom,
    ! [C: nat,B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_374_add__increasing2,axiom,
    ! [C: real,B2: real,A2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B2 @ A2 )
       => ( ord_less_eq_real @ B2 @ ( plus_plus_real @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_375_add__increasing2,axiom,
    ! [C: int,B2: int,A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B2 @ A2 )
       => ( ord_less_eq_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_376_add__nonneg__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_377_add__nonneg__nonneg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ B2 )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A2 @ B2 ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_378_add__nonneg__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_379_add__nonpos__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_380_add__nonpos__nonpos,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ B2 @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_381_add__nonpos__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_382_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X @ Y2 )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_383_add__nonneg__eq__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( plus_plus_real @ X @ Y2 )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y2 = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_384_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ( plus_plus_int @ X @ Y2 )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y2 = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_385_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y2 )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_386_add__nonpos__eq__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ( ( plus_plus_real @ X @ Y2 )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y2 = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_387_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y2 )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y2 = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_388_add__le__less__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_389_add__le__less__mono,axiom,
    ! [A2: real,B2: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_390_add__le__less__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_391_add__less__le__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_392_add__less__le__mono,axiom,
    ! [A2: real,B2: real,C: real,D: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_393_add__less__le__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_394_ex__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X3: nat] : ( P2 @ X3 ) )
    = ( ^ [P3: nat > $o] :
        ? [X2: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X2 )
          & ( P3 @ ( nat2 @ X2 ) ) ) ) ) ).

% ex_nat
thf(fact_395_all__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ! [X3: nat] : ( P2 @ X3 ) )
    = ( ^ [P3: nat > $o] :
        ! [X2: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X2 )
         => ( P3 @ ( nat2 @ X2 ) ) ) ) ) ).

% all_nat
thf(fact_396_int__ge__induct,axiom,
    ! [K: int,I2: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I2 )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_ge_induct
thf(fact_397_le__nat__floor,axiom,
    ! [X: nat,A2: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ A2 )
     => ( ord_less_eq_nat @ X @ ( nat2 @ ( archim6058952711729229775r_real @ A2 ) ) ) ) ).

% le_nat_floor
thf(fact_398_eq__nat__nat__iff,axiom,
    ! [Z2: int,Z4: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z4 )
       => ( ( ( nat2 @ Z2 )
            = ( nat2 @ Z4 ) )
          = ( Z2 = Z4 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_399_nat__floor__neg,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
        = zero_zero_nat ) ) ).

% nat_floor_neg
thf(fact_400_real__nat__ceiling__ge,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) ) ) ).

% real_nat_ceiling_ge
thf(fact_401_add__le__imp__le__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_402_add__le__imp__le__right,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ C ) )
     => ( ord_less_eq_real @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_403_add__le__imp__le__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_404_add__le__imp__le__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_405_add__le__imp__le__left,axiom,
    ! [C: real,A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B2 ) )
     => ( ord_less_eq_real @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_406_add__le__imp__le__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_407_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] :
        ? [C2: nat] :
          ( B
          = ( plus_plus_nat @ A @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_408_add__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_409_add__right__mono,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_410_add__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_411_less__eqE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ~ ! [C3: nat] :
            ( B2
           != ( plus_plus_nat @ A2 @ C3 ) ) ) ).

% less_eqE
thf(fact_412_add__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_413_add__left__mono,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_414_add__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_415_add__right__imp__eq,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_416_add__right__imp__eq,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ( plus_plus_real @ B2 @ A2 )
        = ( plus_plus_real @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_417_add__right__imp__eq,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_418_add__left__imp__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_419_add__left__imp__eq,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ( plus_plus_real @ A2 @ B2 )
        = ( plus_plus_real @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_420_add__left__imp__eq,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_421_le__imp__neg__le,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) ) ) ).

% le_imp_neg_le
thf(fact_422_le__imp__neg__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% le_imp_neg_le
thf(fact_423_add_Oinverse__distrib__swap,axiom,
    ! [A2: int,B2: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A2 @ B2 ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% add.inverse_distrib_swap
thf(fact_424_add_Oinverse__distrib__swap,axiom,
    ! [A2: real,B2: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A2 @ B2 ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) ) ) ).

% add.inverse_distrib_swap
thf(fact_425_add__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_426_add__mono,axiom,
    ! [A2: real,B2: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_427_add__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_428_minus__le__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ B2 )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B2 ) @ A2 ) ) ).

% minus_le_iff
thf(fact_429_minus__le__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ B2 )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B2 ) @ A2 ) ) ).

% minus_le_iff
thf(fact_430_le__minus__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ ( uminus_uminus_real @ B2 ) )
      = ( ord_less_eq_real @ B2 @ ( uminus_uminus_real @ A2 ) ) ) ).

% le_minus_iff
thf(fact_431_le__minus__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( uminus_uminus_int @ B2 ) )
      = ( ord_less_eq_int @ B2 @ ( uminus_uminus_int @ A2 ) ) ) ).

% le_minus_iff
thf(fact_432_add_Oleft__commute,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( plus_plus_int @ B2 @ ( plus_plus_int @ A2 @ C ) )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_433_add_Oleft__commute,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( plus_plus_real @ B2 @ ( plus_plus_real @ A2 @ C ) )
      = ( plus_plus_real @ A2 @ ( plus_plus_real @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_434_add_Oleft__commute,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( plus_plus_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_435_minus__equation__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = B2 )
      = ( ( uminus_uminus_int @ B2 )
        = A2 ) ) ).

% minus_equation_iff
thf(fact_436_minus__equation__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = B2 )
      = ( ( uminus_uminus_real @ B2 )
        = A2 ) ) ).

% minus_equation_iff
thf(fact_437_equation__minus__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( uminus_uminus_int @ B2 ) )
      = ( B2
        = ( uminus_uminus_int @ A2 ) ) ) ).

% equation_minus_iff
thf(fact_438_equation__minus__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( A2
        = ( uminus_uminus_real @ B2 ) )
      = ( B2
        = ( uminus_uminus_real @ A2 ) ) ) ).

% equation_minus_iff
thf(fact_439_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A: int,B: int] : ( plus_plus_int @ B @ A ) ) ) ).

% add.commute
thf(fact_440_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A: real,B: real] : ( plus_plus_real @ B @ A ) ) ) ).

% add.commute
thf(fact_441_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A: nat,B: nat] : ( plus_plus_nat @ B @ A ) ) ) ).

% add.commute
thf(fact_442_add_Oright__cancel,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add.right_cancel
thf(fact_443_add_Oright__cancel,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ( plus_plus_real @ B2 @ A2 )
        = ( plus_plus_real @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add.right_cancel
thf(fact_444_add_Oleft__cancel,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add.left_cancel
thf(fact_445_add_Oleft__cancel,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ( plus_plus_real @ A2 @ B2 )
        = ( plus_plus_real @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add.left_cancel
thf(fact_446_add_Oassoc,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_447_add_Oassoc,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A2 @ B2 ) @ C )
      = ( plus_plus_real @ A2 @ ( plus_plus_real @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_448_add_Oassoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_449_group__cancel_Oneg1,axiom,
    ! [A3: int,K: int,A2: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A2 ) )
     => ( ( uminus_uminus_int @ A3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A2 ) ) ) ) ).

% group_cancel.neg1
thf(fact_450_group__cancel_Oneg1,axiom,
    ! [A3: real,K: real,A2: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A2 ) )
     => ( ( uminus_uminus_real @ A3 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A2 ) ) ) ) ).

% group_cancel.neg1
thf(fact_451_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B2: int,A2: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B2 ) )
     => ( ( plus_plus_int @ A2 @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% group_cancel.add2
thf(fact_452_group__cancel_Oadd2,axiom,
    ! [B3: real,K: real,B2: real,A2: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B2 ) )
     => ( ( plus_plus_real @ A2 @ B3 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A2 @ B2 ) ) ) ) ).

% group_cancel.add2
thf(fact_453_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B2: nat,A2: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B2 ) )
     => ( ( plus_plus_nat @ A2 @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% group_cancel.add2
thf(fact_454_group__cancel_Oadd1,axiom,
    ! [A3: int,K: int,A2: int,B2: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A2 ) )
     => ( ( plus_plus_int @ A3 @ B2 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% group_cancel.add1
thf(fact_455_group__cancel_Oadd1,axiom,
    ! [A3: real,K: real,A2: real,B2: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A2 ) )
     => ( ( plus_plus_real @ A3 @ B2 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A2 @ B2 ) ) ) ) ).

% group_cancel.add1
thf(fact_456_group__cancel_Oadd1,axiom,
    ! [A3: nat,K: nat,A2: nat,B2: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A2 ) )
     => ( ( plus_plus_nat @ A3 @ B2 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% group_cancel.add1
thf(fact_457_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_458_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_459_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_460_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( I2 = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_461_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( I2 = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_462_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( I2 = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_463_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_464_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_465_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_466_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( I2 = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I2 @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_467_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( I2 = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I2 @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_468_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( I2 = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I2 @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_469_is__num__normalize_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_470_is__num__normalize_I1_J,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A2 @ B2 ) @ C )
      = ( plus_plus_real @ A2 @ ( plus_plus_real @ B2 @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_471_is__num__normalize_I8_J,axiom,
    ! [A2: int,B2: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A2 @ B2 ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% is_num_normalize(8)
thf(fact_472_is__num__normalize_I8_J,axiom,
    ! [A2: real,B2: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A2 @ B2 ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) ) ) ).

% is_num_normalize(8)
thf(fact_473_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_474_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A2 @ B2 ) @ C )
      = ( plus_plus_real @ A2 @ ( plus_plus_real @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_475_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_476_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I2 ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_477_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I2 ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_478_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_479_ceiling__add__le,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ Y2 ) ) @ ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ ( archim7802044766580827645g_real @ Y2 ) ) ) ).

% ceiling_add_le
thf(fact_480_le__floor__add,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) @ ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y2 ) ) ) ).

% le_floor_add
thf(fact_481_verit__la__disequality,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_nat @ A2 @ B2 )
      | ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_482_verit__la__disequality,axiom,
    ! [A2: real,B2: real] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_real @ A2 @ B2 )
      | ~ ( ord_less_eq_real @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_483_verit__la__disequality,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_int @ A2 @ B2 )
      | ~ ( ord_less_eq_int @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_484_verit__la__generic,axiom,
    ! [A2: int,X: int] :
      ( ( ord_less_eq_int @ A2 @ X )
      | ( A2 = X )
      | ( ord_less_eq_int @ X @ A2 ) ) ).

% verit_la_generic
thf(fact_485_nat__le__iff,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X ) @ N )
      = ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_le_iff
thf(fact_486_nat__mono,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y2 ) ) ) ).

% nat_mono
thf(fact_487_verit__negate__coefficient_I3_J,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 = B2 )
     => ( ( uminus_uminus_int @ A2 )
        = ( uminus_uminus_int @ B2 ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_488_verit__negate__coefficient_I3_J,axiom,
    ! [A2: real,B2: real] :
      ( ( A2 = B2 )
     => ( ( uminus_uminus_real @ A2 )
        = ( uminus_uminus_real @ B2 ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_489_verit__comp__simplify1_I2_J,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_490_verit__comp__simplify1_I2_J,axiom,
    ! [A2: real] : ( ord_less_eq_real @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_491_verit__comp__simplify1_I2_J,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_492_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W2: int,Z5: int] :
        ? [N3: nat] :
          ( Z5
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_493_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_494_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_495_floor__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) ) ).

% floor_mono
thf(fact_496_ceiling__mono,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ Y2 @ X )
     => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ Y2 ) @ ( archim7802044766580827645g_real @ X ) ) ) ).

% ceiling_mono
thf(fact_497_nat__le__eq__zle,axiom,
    ! [W: int,Z2: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z2 ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_eq_int @ W @ Z2 ) ) ) ).

% nat_le_eq_zle
thf(fact_498_le__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% le_nat_iff
thf(fact_499_round__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ord_less_eq_int @ ( archim8280529875227126926d_real @ X ) @ ( archim8280529875227126926d_real @ Y2 ) ) ) ).

% round_mono
thf(fact_500_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X2: int] : ( plus_plus_int @ ( plus_plus_int @ X2 @ X2 ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_501_dbl__inc__def,axiom,
    ( neg_nu8295874005876285629c_real
    = ( ^ [X2: real] : ( plus_plus_real @ ( plus_plus_real @ X2 @ X2 ) @ one_one_real ) ) ) ).

% dbl_inc_def
thf(fact_502_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_503_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_504_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_505_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_506_add__neg__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_507_add__neg__nonpos,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ B2 @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_508_add__neg__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_509_add__nonneg__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_nonneg_pos
thf(fact_510_add__nonneg__pos,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ zero_zero_real @ B2 )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A2 @ B2 ) ) ) ) ).

% add_nonneg_pos
thf(fact_511_add__nonneg__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_nonneg_pos
thf(fact_512_add__nonpos__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_513_add__nonpos__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ zero_zero_real )
     => ( ( ord_less_real @ B2 @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_514_add__nonpos__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_515_add__pos__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_pos_nonneg
thf(fact_516_add__pos__nonneg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ B2 )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A2 @ B2 ) ) ) ) ).

% add_pos_nonneg
thf(fact_517_add__pos__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_pos_nonneg
thf(fact_518_add__strict__increasing,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_519_add__strict__increasing,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ord_less_real @ B2 @ ( plus_plus_real @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_520_add__strict__increasing,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_521_add__strict__increasing2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_522_add__strict__increasing2,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ B2 @ C )
       => ( ord_less_real @ B2 @ ( plus_plus_real @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_523_add__strict__increasing2,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_524_int__eq__iff,axiom,
    ! [M: nat,Z2: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z2 )
      = ( ( M
          = ( nat2 @ Z2 ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ) ).

% int_eq_iff
thf(fact_525_nat__0__le,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
        = Z2 ) ) ).

% nat_0_le
thf(fact_526_of__nat__ceiling,axiom,
    ! [R2: real] : ( ord_less_eq_real @ R2 @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ R2 ) ) ) ) ).

% of_nat_ceiling
thf(fact_527_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_528_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% nonpos_int_cases
thf(fact_529_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_530_zless__imp__add1__zle,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ Z2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 ) ) ).

% zless_imp_add1_zle
thf(fact_531_add1__zle__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 )
      = ( ord_less_int @ W @ Z2 ) ) ).

% add1_zle_eq
thf(fact_532_floor__add__int,axiom,
    ! [X: real,Z2: int] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ Z2 )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ ( ring_1_of_int_real @ Z2 ) ) ) ) ).

% floor_add_int
thf(fact_533_int__add__floor,axiom,
    ! [Z2: int,X: real] :
      ( ( plus_plus_int @ Z2 @ ( archim6058952711729229775r_real @ X ) )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z2 ) @ X ) ) ) ).

% int_add_floor
thf(fact_534_le__floor__iff,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_eq_int @ Z2 @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X ) ) ).

% le_floor_iff
thf(fact_535_ceiling__def,axiom,
    ( archim7802044766580827645g_real
    = ( ^ [X2: real] : ( uminus_uminus_int @ ( archim6058952711729229775r_real @ ( uminus_uminus_real @ X2 ) ) ) ) ) ).

% ceiling_def
thf(fact_536_floor__minus,axiom,
    ! [X: real] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_int @ ( archim7802044766580827645g_real @ X ) ) ) ).

% floor_minus
thf(fact_537_ceiling__minus,axiom,
    ! [X: real] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_int @ ( archim6058952711729229775r_real @ X ) ) ) ).

% ceiling_minus
thf(fact_538_ceiling__le__iff,axiom,
    ! [X: real,Z2: int] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ Z2 )
      = ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% ceiling_le_iff
thf(fact_539_ceiling__le,axiom,
    ! [X: real,A2: int] :
      ( ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ A2 ) )
     => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ A2 ) ) ).

% ceiling_le
thf(fact_540_real__arch__inverse,axiom,
    ! [E2: real] :
      ( ( ord_less_real @ zero_zero_real @ E2 )
      = ( ? [N3: nat] :
            ( ( N3 != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ E2 ) ) ) ) ).

% real_arch_inverse
thf(fact_541_forall__pos__mono,axiom,
    ! [P: real > $o,E2: real] :
      ( ! [D3: real,E: real] :
          ( ( ord_less_real @ D3 @ E )
         => ( ( P @ D3 )
           => ( P @ E ) ) )
     => ( ! [N2: nat] :
            ( ( N2 != zero_zero_nat )
           => ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( P @ E2 ) ) ) ) ).

% forall_pos_mono
thf(fact_542_verit__negate__coefficient_I2_J,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_543_verit__negate__coefficient_I2_J,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ord_less_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_544_less__minus__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( uminus_uminus_int @ B2 ) )
      = ( ord_less_int @ B2 @ ( uminus_uminus_int @ A2 ) ) ) ).

% less_minus_iff
thf(fact_545_less__minus__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ ( uminus_uminus_real @ B2 ) )
      = ( ord_less_real @ B2 @ ( uminus_uminus_real @ A2 ) ) ) ).

% less_minus_iff
thf(fact_546_minus__less__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ B2 )
      = ( ord_less_int @ ( uminus_uminus_int @ B2 ) @ A2 ) ) ).

% minus_less_iff
thf(fact_547_minus__less__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A2 ) @ B2 )
      = ( ord_less_real @ ( uminus_uminus_real @ B2 ) @ A2 ) ) ).

% minus_less_iff
thf(fact_548_verit__sum__simplify,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% verit_sum_simplify
thf(fact_549_verit__sum__simplify,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% verit_sum_simplify
thf(fact_550_verit__sum__simplify,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ A2 @ zero_zero_real )
      = A2 ) ).

% verit_sum_simplify
thf(fact_551_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_552_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_553_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ zero_zero_real @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_554_add_Ocomm__neutral,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% add.comm_neutral
thf(fact_555_add_Ocomm__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% add.comm_neutral
thf(fact_556_add_Ocomm__neutral,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ A2 @ zero_zero_real )
      = A2 ) ).

% add.comm_neutral
thf(fact_557_add_Ogroup__left__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add.group_left_neutral
thf(fact_558_add_Ogroup__left__neutral,axiom,
    ! [A2: real] :
      ( ( plus_plus_real @ zero_zero_real @ A2 )
      = A2 ) ).

% add.group_left_neutral
thf(fact_559_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_560_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_561_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_562_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_563_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_564_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( I2 = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_565_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( I2 = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_566_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( I2 = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_567_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_568_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_569_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_570_add__strict__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_strict_mono
thf(fact_571_add__strict__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_strict_mono
thf(fact_572_add__strict__mono,axiom,
    ! [A2: real,B2: real,C: real,D: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ D ) ) ) ) ).

% add_strict_mono
thf(fact_573_add__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) ) ) ).

% add_strict_left_mono
thf(fact_574_add__strict__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) ) ) ).

% add_strict_left_mono
thf(fact_575_add__strict__left__mono,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ord_less_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B2 ) ) ) ).

% add_strict_left_mono
thf(fact_576_add__strict__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add_strict_right_mono
thf(fact_577_add__strict__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add_strict_right_mono
thf(fact_578_add__strict__right__mono,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ C ) ) ) ).

% add_strict_right_mono
thf(fact_579_add__less__imp__less__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
     => ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_imp_less_left
thf(fact_580_add__less__imp__less__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
     => ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_imp_less_left
thf(fact_581_add__less__imp__less__left,axiom,
    ! [C: real,A2: real,B2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B2 ) )
     => ( ord_less_real @ A2 @ B2 ) ) ).

% add_less_imp_less_left
thf(fact_582_add__less__imp__less__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
     => ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_imp_less_right
thf(fact_583_add__less__imp__less__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
     => ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_imp_less_right
thf(fact_584_add__less__imp__less__right,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ C ) )
     => ( ord_less_real @ A2 @ B2 ) ) ).

% add_less_imp_less_right
thf(fact_585_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_586_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_587_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_588_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_589_verit__comp__simplify1_I3_J,axiom,
    ! [B4: nat,A4: nat] :
      ( ( ~ ( ord_less_eq_nat @ B4 @ A4 ) )
      = ( ord_less_nat @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_590_verit__comp__simplify1_I3_J,axiom,
    ! [B4: real,A4: real] :
      ( ( ~ ( ord_less_eq_real @ B4 @ A4 ) )
      = ( ord_less_real @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_591_verit__comp__simplify1_I3_J,axiom,
    ! [B4: int,A4: int] :
      ( ( ~ ( ord_less_eq_int @ B4 @ A4 ) )
      = ( ord_less_int @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_592_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_593_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_594_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_595_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_596_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_597_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_598_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_599_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_600_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_601_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_602_real__arch__simple,axiom,
    ! [X: real] :
    ? [N2: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% real_arch_simple
thf(fact_603_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M3 @ N3 )
          & ( M3 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_604_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_605_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
          | ( M3 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_606_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_607_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_608_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I2: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I2 @ J )
       => ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_609_int__cases2,axiom,
    ! [Z2: int] :
      ( ! [N2: nat] :
          ( Z2
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% int_cases2
thf(fact_610_of__int__of__nat,axiom,
    ( ring_1_of_int_int
    = ( ^ [K2: int] : ( if_int @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri1314217659103216013at_int @ ( nat2 @ K2 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_611_of__int__of__nat,axiom,
    ( ring_1_of_int_real
    = ( ^ [K2: int] : ( if_real @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri5074537144036343181t_real @ ( nat2 @ K2 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_612_ex__le__of__int,axiom,
    ! [X: real] :
    ? [Z3: int] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z3 ) ) ).

% ex_le_of_int
thf(fact_613_int_Olless__eq,axiom,
    ( ord_less_int
    = ( ^ [X2: int,Y3: int] :
          ( ( ord_less_eq_int @ X2 @ Y3 )
          & ( X2 != Y3 ) ) ) ) ).

% int.lless_eq
thf(fact_614_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_615_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_616_nat__less__eq__zless,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_int @ W @ Z2 ) ) ) ).

% nat_less_eq_zless
thf(fact_617_of__nat__floor,axiom,
    ! [R2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R2 )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim6058952711729229775r_real @ R2 ) ) ) @ R2 ) ) ).

% of_nat_floor
thf(fact_618_of__int__nonneg,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_nonneg
thf(fact_619_of__int__nonneg,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_nonneg
thf(fact_620_floor__exists,axiom,
    ! [X: real] :
    ? [Z3: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Z3 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_621_floor__exists1,axiom,
    ! [X: real] :
    ? [X4: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X4 ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ X4 @ one_one_int ) ) )
      & ! [Y4: int] :
          ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y4 ) @ X )
            & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Y4 @ one_one_int ) ) ) )
         => ( Y4 = X4 ) ) ) ).

% floor_exists1
thf(fact_622_one__add__floor,axiom,
    ! [X: real] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).

% one_add_floor
thf(fact_623_le__imp__0__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).

% le_imp_0_less
thf(fact_624_of__int__ceiling__le__add__one,axiom,
    ! [R2: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R2 ) ) @ ( plus_plus_real @ R2 @ one_one_real ) ) ).

% of_int_ceiling_le_add_one
thf(fact_625_ceiling__eq,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_eq_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim7802044766580827645g_real @ X )
          = ( plus_plus_int @ N @ one_one_int ) ) ) ) ).

% ceiling_eq
thf(fact_626_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_627_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_628_floor__split,axiom,
    ! [P: int > $o,T: real] :
      ( ( P @ ( archim6058952711729229775r_real @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ I4 ) @ T )
              & ( ord_less_real @ T @ ( plus_plus_real @ ( ring_1_of_int_real @ I4 ) @ one_one_real ) ) )
           => ( P @ I4 ) ) ) ) ).

% floor_split
thf(fact_629_floor__eq__iff,axiom,
    ! [X: real,A2: int] :
      ( ( ( archim6058952711729229775r_real @ X )
        = A2 )
      = ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A2 ) @ X )
        & ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ A2 ) @ one_one_real ) ) ) ) ).

% floor_eq_iff
thf(fact_630_floor__unique,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = Z2 ) ) ) ).

% floor_unique
thf(fact_631_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_632_floor__le__iff,axiom,
    ! [X: real,Z2: int] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ Z2 )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) ) ) ).

% floor_le_iff
thf(fact_633_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_634_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_635_less__floor__iff,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_int @ Z2 @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) @ X ) ) ).

% less_floor_iff
thf(fact_636_floor__correct,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ) ) ).

% floor_correct
thf(fact_637_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_638_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_639_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_640_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_641_add__less__zeroD,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X @ Y2 ) @ zero_zero_int )
     => ( ( ord_less_int @ X @ zero_zero_int )
        | ( ord_less_int @ Y2 @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_642_add__less__zeroD,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
     => ( ( ord_less_real @ X @ zero_zero_real )
        | ( ord_less_real @ Y2 @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_643_add__neg__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_644_add__neg__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_645_add__neg__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ( ord_less_real @ B2 @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_646_add__pos__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_pos_pos
thf(fact_647_add__pos__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_pos_pos
thf(fact_648_add__pos__pos,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ zero_zero_real @ B2 )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A2 @ B2 ) ) ) ) ).

% add_pos_pos
thf(fact_649_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ! [C3: nat] :
            ( ( B2
              = ( plus_plus_nat @ A2 @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_650_pos__add__strict,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_651_pos__add__strict,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_652_pos__add__strict,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ B2 @ C )
       => ( ord_less_real @ B2 @ ( plus_plus_real @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_653_less__add__one,axiom,
    ! [A2: nat] : ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ one_one_nat ) ) ).

% less_add_one
thf(fact_654_less__add__one,axiom,
    ! [A2: int] : ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ one_one_int ) ) ).

% less_add_one
thf(fact_655_less__add__one,axiom,
    ! [A2: real] : ( ord_less_real @ A2 @ ( plus_plus_real @ A2 @ one_one_real ) ) ).

% less_add_one
thf(fact_656_add__mono1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) @ ( plus_plus_nat @ B2 @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_657_add__mono1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ A2 @ one_one_int ) @ ( plus_plus_int @ B2 @ one_one_int ) ) ) ).

% add_mono1
thf(fact_658_add__mono1,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ord_less_real @ ( plus_plus_real @ A2 @ one_one_real ) @ ( plus_plus_real @ B2 @ one_one_real ) ) ) ).

% add_mono1
thf(fact_659_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_660_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_661_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_662_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_663_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_664_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_665_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_666_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_667_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_668_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_669_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).

% of_nat_0_le_iff
thf(fact_670_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_671_odd__nonzero,axiom,
    ! [Z2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_672_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I5: nat] :
                ( ( ord_less_nat @ I5 @ K3 )
               => ~ ( P @ I5 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_673_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_674_zless__add1__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z2 )
        | ( W = Z2 ) ) ) ).

% zless_add1_eq
thf(fact_675_int__gr__induct,axiom,
    ! [K: int,I2: int,P: int > $o] :
      ( ( ord_less_int @ K @ I2 )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_gr_induct
thf(fact_676_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nonneg_int_cases
thf(fact_677_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_678_of__int__floor__le,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X ) ).

% of_int_floor_le
thf(fact_679_le__of__int__ceiling,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) ) ).

% le_of_int_ceiling
thf(fact_680_floor__le__ceiling,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim7802044766580827645g_real @ X ) ) ).

% floor_le_ceiling
thf(fact_681_floor__le__round,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim8280529875227126926d_real @ X ) ) ).

% floor_le_round
thf(fact_682_ceiling__ge__round,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim8280529875227126926d_real @ X ) @ ( archim7802044766580827645g_real @ X ) ) ).

% ceiling_ge_round
thf(fact_683_nat__mono__iff,axiom,
    ! [Z2: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_int @ W @ Z2 ) ) ) ).

% nat_mono_iff
thf(fact_684_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_685_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_686_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_687_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_688_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z2: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z2 ) ) ).

% zless_nat_eq_int_zless
thf(fact_689_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_690_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_691_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_692_int__cases4,axiom,
    ! [M: int] :
      ( ! [N2: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% int_cases4
thf(fact_693_odd__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_694_int__one__le__iff__zero__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z2 )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% int_one_le_iff_zero_less
thf(fact_695_split__nat,axiom,
    ! [P: nat > $o,I2: int] :
      ( ( P @ ( nat2 @ I2 ) )
      = ( ! [N3: nat] :
            ( ( I2
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ( P @ N3 ) )
        & ( ( ord_less_int @ I2 @ zero_zero_int )
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_696_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
       => ~ ! [N2: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).

% int_cases3
thf(fact_697_inverse__le__iff__le,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ zero_zero_real @ B2 )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A2 ) @ ( inverse_inverse_real @ B2 ) )
          = ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).

% inverse_le_iff_le
thf(fact_698_inverse__le__iff__le__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ( ord_less_real @ B2 @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A2 ) @ ( inverse_inverse_real @ B2 ) )
          = ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_699_inverse__less__iff__less,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ zero_zero_real @ B2 )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A2 ) @ ( inverse_inverse_real @ B2 ) )
          = ( ord_less_real @ B2 @ A2 ) ) ) ) ).

% inverse_less_iff_less
thf(fact_700_inverse__less__iff__less__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ( ord_less_real @ B2 @ zero_zero_real )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A2 ) @ ( inverse_inverse_real @ B2 ) )
          = ( ord_less_real @ B2 @ A2 ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_701_inverse__negative__iff__negative,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A2 ) @ zero_zero_real )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% inverse_negative_iff_negative
thf(fact_702_inverse__positive__iff__positive,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A2 ) )
      = ( ord_less_real @ zero_zero_real @ A2 ) ) ).

% inverse_positive_iff_positive
thf(fact_703_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_704_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_705_inverse__minus__eq,axiom,
    ! [A2: real] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ A2 ) )
      = ( uminus_uminus_real @ ( inverse_inverse_real @ A2 ) ) ) ).

% inverse_minus_eq
thf(fact_706_real__add__minus__iff,axiom,
    ! [X: real,A2: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A2 ) )
        = zero_zero_real )
      = ( X = A2 ) ) ).

% real_add_minus_iff
thf(fact_707_inverse__inverse__eq,axiom,
    ! [A2: real] :
      ( ( inverse_inverse_real @ ( inverse_inverse_real @ A2 ) )
      = A2 ) ).

% inverse_inverse_eq
thf(fact_708_inverse__eq__iff__eq,axiom,
    ! [A2: real,B2: real] :
      ( ( ( inverse_inverse_real @ A2 )
        = ( inverse_inverse_real @ B2 ) )
      = ( A2 = B2 ) ) ).

% inverse_eq_iff_eq
thf(fact_709_inverse__nonzero__iff__nonzero,axiom,
    ! [A2: real] :
      ( ( ( inverse_inverse_real @ A2 )
        = zero_zero_real )
      = ( A2 = zero_zero_real ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_710_inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% inverse_zero
thf(fact_711_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_712_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_713_inverse__1,axiom,
    ( ( inverse_inverse_real @ one_one_real )
    = one_one_real ) ).

% inverse_1
thf(fact_714_inverse__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( inverse_inverse_real @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% inverse_eq_1_iff
thf(fact_715_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_716_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_717_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_718_floor__eq,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N ) ) ) ).

% floor_eq
thf(fact_719_floor__eq2,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N ) ) ) ).

% floor_eq2
thf(fact_720_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y3: real] :
          ( ( ord_less_real @ X2 @ Y3 )
          | ( X2 = Y3 ) ) ) ) ).

% less_eq_real_def
thf(fact_721_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N3: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_722_real__0__le__add__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y2 ) ) ).

% real_0_le_add_iff
thf(fact_723_real__add__le__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y2 @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_724_real__0__less__add__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y2 ) ) ).

% real_0_less_add_iff
thf(fact_725_real__add__less__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
      = ( ord_less_real @ Y2 @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_726_real__of__int__floor__add__one__ge,axiom,
    ! [R2: real] : ( ord_less_eq_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_ge
thf(fact_727_real__of__int__floor__add__one__gt,axiom,
    ! [R2: real] : ( ord_less_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_gt
thf(fact_728_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X5: real] : ( member_real @ X5 @ S2 )
     => ( ? [Z6: real] :
          ! [X4: real] :
            ( ( member_real @ X4 @ S2 )
           => ( ord_less_eq_real @ X4 @ Z6 ) )
       => ? [Y5: real] :
            ( ! [X5: real] :
                ( ( member_real @ X5 @ S2 )
               => ( ord_less_eq_real @ X5 @ Y5 ) )
            & ! [Z6: real] :
                ( ! [X4: real] :
                    ( ( member_real @ X4 @ S2 )
                   => ( ord_less_eq_real @ X4 @ Z6 ) )
               => ( ord_less_eq_real @ Y5 @ Z6 ) ) ) ) ) ).

% complete_real
thf(fact_729_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B2: nat] :
      ( ( P @ K )
     => ( ! [Y5: nat] :
            ( ( P @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B2 ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y4: nat] :
                ( ( P @ Y4 )
               => ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_730_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( plus_plus_nat @ M3 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_731_trans__le__add2,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_732_trans__le__add1,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_733_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_734_add__le__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_735_add__le__mono,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_736_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_737_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_738_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_739_le__trans,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_740_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_741_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_742_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_743_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_744_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_745_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_746_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).

% nat_less_real_le
thf(fact_747_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_748_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_749_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_750_trans__less__add2,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_751_trans__less__add1,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_752_add__less__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_753_not__add__less2,axiom,
    ! [J: nat,I2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I2 ) @ I2 ) ).

% not_add_less2
thf(fact_754_not__add__less1,axiom,
    ! [I2: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I2 @ J ) @ I2 ) ).

% not_add_less1
thf(fact_755_add__less__mono,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_756_add__lessD1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I2 @ J ) @ K )
     => ( ord_less_nat @ I2 @ K ) ) ).

% add_lessD1
thf(fact_757_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M4: nat,N2: nat] :
          ( ( ord_less_nat @ M4 @ N2 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_758_int__le__real__less,axiom,
    ( ord_less_eq_int
    = ( ^ [N3: int,M3: int] : ( ord_less_real @ ( ring_1_of_int_real @ N3 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M3 ) @ one_one_real ) ) ) ) ).

% int_le_real_less
thf(fact_759_int__less__real__le,axiom,
    ( ord_less_int
    = ( ^ [N3: int,M3: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N3 ) @ one_one_real ) @ ( ring_1_of_int_real @ M3 ) ) ) ) ).

% int_less_real_le
thf(fact_760_less__imp__add__positive,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I2 @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_761_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z2: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z2 ) ) ).

% zadd_int_left
thf(fact_762_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_763_int__ops_I5_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ).

% int_ops(5)
thf(fact_764_linordered__field__no__ub,axiom,
    ! [X5: real] :
    ? [X_1: real] : ( ord_less_real @ X5 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_765_linordered__field__no__lb,axiom,
    ! [X5: real] :
    ? [Y5: real] : ( ord_less_real @ Y5 @ X5 ) ).

% linordered_field_no_lb
thf(fact_766_nat__int__add,axiom,
    ! [A2: nat,B2: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) )
      = ( plus_plus_nat @ A2 @ B2 ) ) ).

% nat_int_add
thf(fact_767_inverse__eq__imp__eq,axiom,
    ! [A2: real,B2: real] :
      ( ( ( inverse_inverse_real @ A2 )
        = ( inverse_inverse_real @ B2 ) )
     => ( A2 = B2 ) ) ).

% inverse_eq_imp_eq
thf(fact_768_nat__add__distrib,axiom,
    ! [Z2: int,Z4: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z4 )
       => ( ( nat2 @ ( plus_plus_int @ Z2 @ Z4 ) )
          = ( plus_plus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z4 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_769_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% field_class.field_inverse_zero
thf(fact_770_inverse__zero__imp__zero,axiom,
    ! [A2: real] :
      ( ( ( inverse_inverse_real @ A2 )
        = zero_zero_real )
     => ( A2 = zero_zero_real ) ) ).

% inverse_zero_imp_zero
thf(fact_771_nonzero__inverse__eq__imp__eq,axiom,
    ! [A2: real,B2: real] :
      ( ( ( inverse_inverse_real @ A2 )
        = ( inverse_inverse_real @ B2 ) )
     => ( ( A2 != zero_zero_real )
       => ( ( B2 != zero_zero_real )
         => ( A2 = B2 ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_772_nonzero__inverse__inverse__eq,axiom,
    ! [A2: real] :
      ( ( A2 != zero_zero_real )
     => ( ( inverse_inverse_real @ ( inverse_inverse_real @ A2 ) )
        = A2 ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_773_nonzero__imp__inverse__nonzero,axiom,
    ! [A2: real] :
      ( ( A2 != zero_zero_real )
     => ( ( inverse_inverse_real @ A2 )
       != zero_zero_real ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_774_positive__imp__inverse__positive,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A2 ) ) ) ).

% positive_imp_inverse_positive
thf(fact_775_negative__imp__inverse__negative,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ord_less_real @ ( inverse_inverse_real @ A2 ) @ zero_zero_real ) ) ).

% negative_imp_inverse_negative
thf(fact_776_inverse__positive__imp__positive,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A2 ) )
     => ( ( A2 != zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ A2 ) ) ) ).

% inverse_positive_imp_positive
thf(fact_777_inverse__negative__imp__negative,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A2 ) @ zero_zero_real )
     => ( ( A2 != zero_zero_real )
       => ( ord_less_real @ A2 @ zero_zero_real ) ) ) ).

% inverse_negative_imp_negative
thf(fact_778_less__imp__inverse__less__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_real @ B2 @ zero_zero_real )
       => ( ord_less_real @ ( inverse_inverse_real @ B2 ) @ ( inverse_inverse_real @ A2 ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_779_inverse__less__imp__less__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A2 ) @ ( inverse_inverse_real @ B2 ) )
     => ( ( ord_less_real @ B2 @ zero_zero_real )
       => ( ord_less_real @ B2 @ A2 ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_780_less__imp__inverse__less,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_real @ zero_zero_real @ A2 )
       => ( ord_less_real @ ( inverse_inverse_real @ B2 ) @ ( inverse_inverse_real @ A2 ) ) ) ) ).

% less_imp_inverse_less
thf(fact_781_inverse__less__imp__less,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A2 ) @ ( inverse_inverse_real @ B2 ) )
     => ( ( ord_less_real @ zero_zero_real @ A2 )
       => ( ord_less_real @ B2 @ A2 ) ) ) ).

% inverse_less_imp_less
thf(fact_782_nonzero__inverse__minus__eq,axiom,
    ! [A2: real] :
      ( ( A2 != zero_zero_real )
     => ( ( inverse_inverse_real @ ( uminus_uminus_real @ A2 ) )
        = ( uminus_uminus_real @ ( inverse_inverse_real @ A2 ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_783_field__le__epsilon,axiom,
    ! [X: real,Y2: real] :
      ( ! [E: real] :
          ( ( ord_less_real @ zero_zero_real @ E )
         => ( ord_less_eq_real @ X @ ( plus_plus_real @ Y2 @ E ) ) )
     => ( ord_less_eq_real @ X @ Y2 ) ) ).

% field_le_epsilon
thf(fact_784_le__imp__inverse__le__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_real @ B2 @ zero_zero_real )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B2 ) @ ( inverse_inverse_real @ A2 ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_785_inverse__le__imp__le__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A2 ) @ ( inverse_inverse_real @ B2 ) )
     => ( ( ord_less_real @ B2 @ zero_zero_real )
       => ( ord_less_eq_real @ B2 @ A2 ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_786_le__imp__inverse__le,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_real @ zero_zero_real @ A2 )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B2 ) @ ( inverse_inverse_real @ A2 ) ) ) ) ).

% le_imp_inverse_le
thf(fact_787_inverse__le__imp__le,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A2 ) @ ( inverse_inverse_real @ B2 ) )
     => ( ( ord_less_real @ zero_zero_real @ A2 )
       => ( ord_less_eq_real @ B2 @ A2 ) ) ) ).

% inverse_le_imp_le
thf(fact_788_inverse__le__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ X ) @ one_one_real )
      = ( ( ord_less_eq_real @ X @ zero_zero_real )
        | ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% inverse_le_1_iff
thf(fact_789_one__less__inverse__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ X ) )
      = ( ( ord_less_real @ zero_zero_real @ X )
        & ( ord_less_real @ X @ one_one_real ) ) ) ).

% one_less_inverse_iff
thf(fact_790_one__less__inverse,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ A2 @ one_one_real )
       => ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ A2 ) ) ) ) ).

% one_less_inverse
thf(fact_791_one__le__inverse__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ X ) )
      = ( ( ord_less_real @ zero_zero_real @ X )
        & ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% one_le_inverse_iff
thf(fact_792_inverse__less__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ X ) @ one_one_real )
      = ( ( ord_less_eq_real @ X @ zero_zero_real )
        | ( ord_less_real @ one_one_real @ X ) ) ) ).

% inverse_less_1_iff
thf(fact_793_one__le__inverse,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_eq_real @ A2 @ one_one_real )
       => ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ A2 ) ) ) ) ).

% one_le_inverse
thf(fact_794_artanh__0,axiom,
    ( ( artanh_real @ zero_zero_real )
    = zero_zero_real ) ).

% artanh_0
thf(fact_795_arsinh__0,axiom,
    ( ( arsinh_real @ zero_zero_real )
    = zero_zero_real ) ).

% arsinh_0
thf(fact_796_arsinh__minus__real,axiom,
    ! [X: real] :
      ( ( arsinh_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( arsinh_real @ X ) ) ) ).

% arsinh_minus_real
thf(fact_797_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M5: nat] :
      ( ( P @ X )
     => ( ! [X4: nat] :
            ( ( P @ X4 )
           => ( ord_less_eq_nat @ X4 @ M5 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X5: nat] :
                    ( ( P @ X5 )
                   => ( ord_less_eq_nat @ X5 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_798_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_799_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_800_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_801_ln__less__cancel__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y2 ) )
          = ( ord_less_real @ X @ Y2 ) ) ) ) ).

% ln_less_cancel_iff
thf(fact_802_ln__inj__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ( ln_ln_real @ X )
            = ( ln_ln_real @ Y2 ) )
          = ( X = Y2 ) ) ) ) ).

% ln_inj_iff
thf(fact_803_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_804_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_805_ln__le__cancel__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y2 ) )
          = ( ord_less_eq_real @ X @ Y2 ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_806_ln__less__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_807_ln__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_iff
thf(fact_808_ln__eq__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = zero_zero_real )
        = ( X = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_809_ln__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_810_ln__ge__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_iff
thf(fact_811_ln__less__self,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_less_self
thf(fact_812_ln__bound,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_bound
thf(fact_813_ln__gt__zero__imp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_814_ln__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_815_ln__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_gt_zero
thf(fact_816_ln__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_ge_zero
thf(fact_817_ln__ge__zero__imp__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_818_ln__add__one__self__le__self,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self
thf(fact_819_ln__inverse,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( inverse_inverse_real @ X ) )
        = ( uminus_uminus_real @ ( ln_ln_real @ X ) ) ) ) ).

% ln_inverse
thf(fact_820_ln__add__one__self__le__self2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self2
thf(fact_821_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_822_order__refl,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ X ) ).

% order_refl
thf(fact_823_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_824_dual__order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_825_dual__order_Orefl,axiom,
    ! [A2: real] : ( ord_less_eq_real @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_826_dual__order_Orefl,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_827_floor__add,axiom,
    ! [X: real,Y2: real] :
      ( ( ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y2 ) ) @ one_one_real )
       => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y2 ) )
          = ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) ) )
      & ( ~ ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y2 ) ) @ one_one_real )
       => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y2 ) )
          = ( plus_plus_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) @ one_one_int ) ) ) ) ).

% floor_add
thf(fact_828_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( P @ A5 @ B5 )
          = ( P @ B5 @ A5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
       => ( ! [A5: nat,B5: nat] :
              ( ( P @ A5 @ B5 )
             => ( P @ A5 @ ( plus_plus_nat @ A5 @ B5 ) ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% Euclid_induct
thf(fact_829_frac__1,axiom,
    ( ( archim2898591450579166408c_real @ one_one_real )
    = zero_zero_real ) ).

% frac_1
thf(fact_830_frac__of__int,axiom,
    ! [Z2: int] :
      ( ( archim2898591450579166408c_real @ ( ring_1_of_int_real @ Z2 ) )
      = zero_zero_real ) ).

% frac_of_int
thf(fact_831_floor__frac,axiom,
    ! [R2: real] :
      ( ( archim6058952711729229775r_real @ ( archim2898591450579166408c_real @ R2 ) )
      = zero_zero_int ) ).

% floor_frac
thf(fact_832_frac__ge__0,axiom,
    ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( archim2898591450579166408c_real @ X ) ) ).

% frac_ge_0
thf(fact_833_frac__lt__1,axiom,
    ! [X: real] : ( ord_less_real @ ( archim2898591450579166408c_real @ X ) @ one_one_real ) ).

% frac_lt_1
thf(fact_834_frac__1__eq,axiom,
    ! [X: real] :
      ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ one_one_real ) )
      = ( archim2898591450579166408c_real @ X ) ) ).

% frac_1_eq
thf(fact_835_order__antisym__conv,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ( ( ord_less_eq_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_836_order__antisym__conv,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ Y2 @ X )
     => ( ( ord_less_eq_real @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_837_order__antisym__conv,axiom,
    ! [Y2: int,X: int] :
      ( ( ord_less_eq_int @ Y2 @ X )
     => ( ( ord_less_eq_int @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_838_linorder__le__cases,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_839_linorder__le__cases,axiom,
    ! [X: real,Y2: real] :
      ( ~ ( ord_less_eq_real @ X @ Y2 )
     => ( ord_less_eq_real @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_840_linorder__le__cases,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_eq_int @ X @ Y2 )
     => ( ord_less_eq_int @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_841_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_842_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_843_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_844_ord__le__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_845_ord__le__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_846_ord__le__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_847_ord__le__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_848_ord__le__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_849_ord__le__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_850_ord__eq__le__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_851_ord__eq__le__subst,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_852_ord__eq__le__subst,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_853_ord__eq__le__subst,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_854_ord__eq__le__subst,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_855_ord__eq__le__subst,axiom,
    ! [A2: int,F: real > int,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_856_ord__eq__le__subst,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_857_ord__eq__le__subst,axiom,
    ! [A2: real,F: int > real,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_858_ord__eq__le__subst,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_859_linorder__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_860_linorder__linear,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
      | ( ord_less_eq_real @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_861_linorder__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
      | ( ord_less_eq_int @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_862_order__eq__refl,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X = Y2 )
     => ( ord_less_eq_nat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_863_order__eq__refl,axiom,
    ! [X: real,Y2: real] :
      ( ( X = Y2 )
     => ( ord_less_eq_real @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_864_order__eq__refl,axiom,
    ! [X: int,Y2: int] :
      ( ( X = Y2 )
     => ( ord_less_eq_int @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_865_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_866_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_867_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_868_order__subst2,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_869_order__subst2,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_870_order__subst2,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_871_order__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_872_order__subst2,axiom,
    ! [A2: int,B2: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_873_order__subst2,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_874_order__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_875_order__subst1,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_876_order__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_877_order__subst1,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_878_order__subst1,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_879_order__subst1,axiom,
    ! [A2: real,F: int > real,B2: int,C: int] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_880_order__subst1,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_881_order__subst1,axiom,
    ! [A2: int,F: real > int,B2: real,C: real] :
      ( ( ord_less_eq_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_882_order__subst1,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_883_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ A @ B )
          & ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_884_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y: real,Z: real] : ( Y = Z ) )
    = ( ^ [A: real,B: real] :
          ( ( ord_less_eq_real @ A @ B )
          & ( ord_less_eq_real @ B @ A ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_885_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y: int,Z: int] : ( Y = Z ) )
    = ( ^ [A: int,B: int] :
          ( ( ord_less_eq_int @ A @ B )
          & ( ord_less_eq_int @ B @ A ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_886_antisym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_887_antisym,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_888_antisym,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_889_dual__order_Otrans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_890_dual__order_Otrans,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ord_less_eq_real @ B2 @ A2 )
     => ( ( ord_less_eq_real @ C @ B2 )
       => ( ord_less_eq_real @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_891_dual__order_Otrans,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_eq_int @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_892_dual__order_Oantisym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_893_dual__order_Oantisym,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_eq_real @ B2 @ A2 )
     => ( ( ord_less_eq_real @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_894_dual__order_Oantisym,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_895_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ B @ A )
          & ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_896_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y: real,Z: real] : ( Y = Z ) )
    = ( ^ [A: real,B: real] :
          ( ( ord_less_eq_real @ B @ A )
          & ( ord_less_eq_real @ A @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_897_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y: int,Z: int] : ( Y = Z ) )
    = ( ^ [A: int,B: int] :
          ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_eq_int @ A @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_898_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( ord_less_eq_nat @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: nat,B5: nat] :
            ( ( P @ B5 @ A5 )
           => ( P @ A5 @ B5 ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_899_linorder__wlog,axiom,
    ! [P: real > real > $o,A2: real,B2: real] :
      ( ! [A5: real,B5: real] :
          ( ( ord_less_eq_real @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: real,B5: real] :
            ( ( P @ B5 @ A5 )
           => ( P @ A5 @ B5 ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_900_linorder__wlog,axiom,
    ! [P: int > int > $o,A2: int,B2: int] :
      ( ! [A5: int,B5: int] :
          ( ( ord_less_eq_int @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: int,B5: int] :
            ( ( P @ B5 @ A5 )
           => ( P @ A5 @ B5 ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_901_order__trans,axiom,
    ! [X: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_eq_nat @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_902_order__trans,axiom,
    ! [X: real,Y2: real,Z2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ Z2 )
       => ( ord_less_eq_real @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_903_order__trans,axiom,
    ! [X: int,Y2: int,Z2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z2 )
       => ( ord_less_eq_int @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_904_order_Otrans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_905_order_Otrans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% order.trans
thf(fact_906_order_Otrans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% order.trans
thf(fact_907_order__antisym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_908_order__antisym,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_909_order__antisym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_910_ord__le__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_911_ord__le__eq__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_912_ord__le__eq__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_913_ord__eq__le__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_914_ord__eq__le__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_915_ord__eq__le__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_916_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
    = ( ^ [X2: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_917_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y: real,Z: real] : ( Y = Z ) )
    = ( ^ [X2: real,Y3: real] :
          ( ( ord_less_eq_real @ X2 @ Y3 )
          & ( ord_less_eq_real @ Y3 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_918_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y: int,Z: int] : ( Y = Z ) )
    = ( ^ [X2: int,Y3: int] :
          ( ( ord_less_eq_int @ X2 @ Y3 )
          & ( ord_less_eq_int @ Y3 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_919_le__cases3,axiom,
    ! [X: nat,Y2: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X )
         => ~ ( ord_less_eq_nat @ X @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_920_le__cases3,axiom,
    ! [X: real,Y2: real,Z2: real] :
      ( ( ( ord_less_eq_real @ X @ Y2 )
       => ~ ( ord_less_eq_real @ Y2 @ Z2 ) )
     => ( ( ( ord_less_eq_real @ Y2 @ X )
         => ~ ( ord_less_eq_real @ X @ Z2 ) )
       => ( ( ( ord_less_eq_real @ X @ Z2 )
           => ~ ( ord_less_eq_real @ Z2 @ Y2 ) )
         => ( ( ( ord_less_eq_real @ Z2 @ Y2 )
             => ~ ( ord_less_eq_real @ Y2 @ X ) )
           => ( ( ( ord_less_eq_real @ Y2 @ Z2 )
               => ~ ( ord_less_eq_real @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_real @ Z2 @ X )
                 => ~ ( ord_less_eq_real @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_921_le__cases3,axiom,
    ! [X: int,Y2: int,Z2: int] :
      ( ( ( ord_less_eq_int @ X @ Y2 )
       => ~ ( ord_less_eq_int @ Y2 @ Z2 ) )
     => ( ( ( ord_less_eq_int @ Y2 @ X )
         => ~ ( ord_less_eq_int @ X @ Z2 ) )
       => ( ( ( ord_less_eq_int @ X @ Z2 )
           => ~ ( ord_less_eq_int @ Z2 @ Y2 ) )
         => ( ( ( ord_less_eq_int @ Z2 @ Y2 )
             => ~ ( ord_less_eq_int @ Y2 @ X ) )
           => ( ( ( ord_less_eq_int @ Y2 @ Z2 )
               => ~ ( ord_less_eq_int @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_int @ Z2 @ X )
                 => ~ ( ord_less_eq_int @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_922_nle__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B2 ) )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_923_nle__le,axiom,
    ! [A2: real,B2: real] :
      ( ( ~ ( ord_less_eq_real @ A2 @ B2 ) )
      = ( ( ord_less_eq_real @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_924_nle__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ~ ( ord_less_eq_int @ A2 @ B2 ) )
      = ( ( ord_less_eq_int @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_925_order__less__imp__not__less,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_926_order__less__imp__not__less,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_927_order__less__imp__not__less,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_928_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_929_order__less__imp__not__eq2,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_930_order__less__imp__not__eq2,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_931_order__less__imp__not__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_932_order__less__imp__not__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_933_order__less__imp__not__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_934_linorder__less__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_935_linorder__less__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_int @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_936_linorder__less__linear,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_real @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_937_order__less__imp__triv,axiom,
    ! [X: nat,Y2: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_938_order__less__imp__triv,axiom,
    ! [X: int,Y2: int,P: $o] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_int @ Y2 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_939_order__less__imp__triv,axiom,
    ! [X: real,Y2: real,P: $o] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_real @ Y2 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_940_order__less__not__sym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_941_order__less__not__sym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_942_order__less__not__sym,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_943_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_944_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_945_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_946_order__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_947_order__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_948_order__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > real,C: real] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_949_order__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_950_order__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_951_order__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_952_order__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_953_order__less__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_954_order__less__subst1,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_955_order__less__subst1,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_956_order__less__subst1,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_957_order__less__subst1,axiom,
    ! [A2: int,F: real > int,B2: real,C: real] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_958_order__less__subst1,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_959_order__less__subst1,axiom,
    ! [A2: real,F: int > real,B2: int,C: int] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_960_order__less__subst1,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_961_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_962_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_963_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_964_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_965_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_966_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_967_ord__less__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_968_ord__less__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_969_ord__less__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > real,C: real] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_970_ord__less__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_971_ord__less__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_972_ord__less__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_973_ord__eq__less__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_974_ord__eq__less__subst,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_975_ord__eq__less__subst,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_976_ord__eq__less__subst,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_977_ord__eq__less__subst,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_978_ord__eq__less__subst,axiom,
    ! [A2: real,F: int > real,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_979_ord__eq__less__subst,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_980_ord__eq__less__subst,axiom,
    ! [A2: int,F: real > int,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_981_ord__eq__less__subst,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_982_order__less__trans,axiom,
    ! [X: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_983_order__less__trans,axiom,
    ! [X: int,Y2: int,Z2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z2 )
       => ( ord_less_int @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_984_order__less__trans,axiom,
    ! [X: real,Y2: real,Z2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_985_order__less__asym_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_986_order__less__asym_H,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ~ ( ord_less_int @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_987_order__less__asym_H,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ~ ( ord_less_real @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_988_linorder__neq__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
      = ( ( ord_less_nat @ X @ Y2 )
        | ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_989_linorder__neq__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
      = ( ( ord_less_int @ X @ Y2 )
        | ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_990_linorder__neq__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
      = ( ( ord_less_real @ X @ Y2 )
        | ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_991_order__less__asym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_992_order__less__asym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_993_order__less__asym,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_994_linorder__neqE,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_nat @ X @ Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_995_linorder__neqE,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_int @ X @ Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_996_linorder__neqE,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_real @ X @ Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_997_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_998_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_999_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1000_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_1001_order_Ostrict__implies__not__eq,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_1002_order_Ostrict__implies__not__eq,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_1003_dual__order_Ostrict__trans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_1004_dual__order_Ostrict__trans,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_1005_dual__order_Ostrict__trans,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ( ( ord_less_real @ C @ B2 )
       => ( ord_less_real @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_1006_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1007_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X @ Y2 ) )
      = ( ( ord_less_int @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1008_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X @ Y2 ) )
      = ( ( ord_less_real @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1009_order_Ostrict__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_1010_order_Ostrict__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_1011_order_Ostrict__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_real @ B2 @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_1012_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( ord_less_nat @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ A5 )
       => ( ! [A5: nat,B5: nat] :
              ( ( P @ B5 @ A5 )
             => ( P @ A5 @ B5 ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_1013_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A2: int,B2: int] :
      ( ! [A5: int,B5: int] :
          ( ( ord_less_int @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: int] : ( P @ A5 @ A5 )
       => ( ! [A5: int,B5: int] :
              ( ( P @ B5 @ A5 )
             => ( P @ A5 @ B5 ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_1014_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A2: real,B2: real] :
      ( ! [A5: real,B5: real] :
          ( ( ord_less_real @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: real] : ( P @ A5 @ A5 )
       => ( ! [A5: real,B5: real] :
              ( ( P @ B5 @ A5 )
             => ( P @ A5 @ B5 ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_1015_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X3: nat] : ( P2 @ X3 ) )
    = ( ^ [P3: nat > $o] :
        ? [N3: nat] :
          ( ( P3 @ N3 )
          & ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ~ ( P3 @ M3 ) ) ) ) ) ).

% exists_least_iff
thf(fact_1016_dual__order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_1017_dual__order_Oirrefl,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_1018_dual__order_Oirrefl,axiom,
    ! [A2: real] :
      ~ ( ord_less_real @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_1019_dual__order_Oasym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ~ ( ord_less_nat @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_1020_dual__order_Oasym,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ~ ( ord_less_int @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_1021_dual__order_Oasym,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ~ ( ord_less_real @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_1022_linorder__cases,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_1023_linorder__cases,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_int @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_1024_linorder__cases,axiom,
    ! [X: real,Y2: real] :
      ( ~ ( ord_less_real @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_1025_antisym__conv3,axiom,
    ! [Y2: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_1026_antisym__conv3,axiom,
    ! [Y2: int,X: int] :
      ( ~ ( ord_less_int @ Y2 @ X )
     => ( ( ~ ( ord_less_int @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_1027_antisym__conv3,axiom,
    ! [Y2: real,X: real] :
      ( ~ ( ord_less_real @ Y2 @ X )
     => ( ( ~ ( ord_less_real @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_1028_less__induct,axiom,
    ! [P: nat > $o,A2: nat] :
      ( ! [X4: nat] :
          ( ! [Y4: nat] :
              ( ( ord_less_nat @ Y4 @ X4 )
             => ( P @ Y4 ) )
         => ( P @ X4 ) )
     => ( P @ A2 ) ) ).

% less_induct
thf(fact_1029_ord__less__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1030_ord__less__eq__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1031_ord__less__eq__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1032_ord__eq__less__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1033_ord__eq__less__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( A2 = B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1034_ord__eq__less__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( A2 = B2 )
     => ( ( ord_less_real @ B2 @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1035_order_Oasym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order.asym
thf(fact_1036_order_Oasym,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ~ ( ord_less_int @ B2 @ A2 ) ) ).

% order.asym
thf(fact_1037_order_Oasym,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ~ ( ord_less_real @ B2 @ A2 ) ) ).

% order.asym
thf(fact_1038_less__imp__neq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_1039_less__imp__neq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_1040_less__imp__neq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_1041_dense,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ? [Z3: real] :
          ( ( ord_less_real @ X @ Z3 )
          & ( ord_less_real @ Z3 @ Y2 ) ) ) ).

% dense
thf(fact_1042_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_1043_gt__ex,axiom,
    ! [X: int] :
    ? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).

% gt_ex
thf(fact_1044_gt__ex,axiom,
    ! [X: real] :
    ? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).

% gt_ex
thf(fact_1045_lt__ex,axiom,
    ! [X: int] :
    ? [Y5: int] : ( ord_less_int @ Y5 @ X ) ).

% lt_ex
thf(fact_1046_lt__ex,axiom,
    ! [X: real] :
    ? [Y5: real] : ( ord_less_real @ Y5 @ X ) ).

% lt_ex
thf(fact_1047_frac__eq,axiom,
    ! [X: real] :
      ( ( ( archim2898591450579166408c_real @ X )
        = X )
      = ( ( ord_less_eq_real @ zero_zero_real @ X )
        & ( ord_less_real @ X @ one_one_real ) ) ) ).

% frac_eq
thf(fact_1048_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_nat @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1049_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_real @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1050_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_int @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1051_linorder__le__less__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_1052_linorder__le__less__linear,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
      | ( ord_less_real @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_1053_linorder__le__less__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
      | ( ord_less_int @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_1054_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1055_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1056_order__less__le__subst2,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1057_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1058_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F: int > real,C: real] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1059_order__less__le__subst2,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1060_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_nat @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1061_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_int @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1062_order__less__le__subst2,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_real @ X4 @ Y5 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1063_order__less__le__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1064_order__less__le__subst1,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1065_order__less__le__subst1,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1066_order__less__le__subst1,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1067_order__less__le__subst1,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1068_order__less__le__subst1,axiom,
    ! [A2: int,F: real > int,B2: real,C: real] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1069_order__less__le__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1070_order__less__le__subst1,axiom,
    ! [A2: real,F: int > real,B2: int,C: int] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1071_order__less__le__subst1,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1072_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X4: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1073_order__le__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1074_order__le__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1075_order__le__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X4: real,Y5: real] :
              ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1076_order__le__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1077_order__le__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1078_order__le__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X4: int,Y5: int] :
              ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1079_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N @ K3 )
         => ( P @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
           => ( ! [I5: nat] :
                  ( ( ord_less_nat @ K3 @ I5 )
                 => ( P @ I5 ) )
             => ( P @ K3 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_1080_imp__le__cong,axiom,
    ! [X: int,X6: int,P: $o,P4: $o] :
      ( ( X = X6 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X6 )
           => P4 ) ) ) ) ).

% imp_le_cong
thf(fact_1081_conj__le__cong,axiom,
    ! [X: int,X6: int,P: $o,P4: $o] :
      ( ( X = X6 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X6 )
            & P4 ) ) ) ) ).

% conj_le_cong
thf(fact_1082_one__less__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% one_less_nat_eq
thf(fact_1083_ln__one__minus__pos__upper__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) @ ( uminus_uminus_real @ X ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_1084_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_1085_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_1086_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_1087_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_1088_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_1089_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_1090_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_1091_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_1092_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1093_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_1094_negative__zless,axiom,
    ! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_1095_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X4: nat] : ( R @ X4 @ X4 )
       => ( ! [X4: nat,Y5: nat,Z3: nat] :
              ( ( R @ X4 @ Y5 )
             => ( ( R @ Y5 @ Z3 )
               => ( R @ X4 @ Z3 ) ) )
         => ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1096_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_1097_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
             => ( P @ M2 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_1098_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1099_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_1100_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_1101_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M4: nat] :
          ( M6
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_1102_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_1103_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_1104_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_1105_nat__arith_Osuc1,axiom,
    ! [A3: nat,K: nat,A2: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A2 ) )
     => ( ( suc @ A3 )
        = ( plus_plus_nat @ K @ ( suc @ A2 ) ) ) ) ).

% nat_arith.suc1
thf(fact_1106_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1107_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1108_Suc__inject,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y2 ) )
     => ( X = Y2 ) ) ).

% Suc_inject
thf(fact_1109_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_1110_Nat_OlessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ K )
     => ( ( K
         != ( suc @ I2 ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1111_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_1112_Suc__lessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I2 @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_1113_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_1114_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_1115_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_1116_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_1117_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_1118_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_1119_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ I4 ) ) ) ) ).

% All_less_Suc
thf(fact_1120_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M7: nat] :
            ( ( M
              = ( suc @ M7 ) )
            & ( ord_less_nat @ N @ M7 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1121_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_1122_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_1123_less__trans__Suc,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I2 ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_1124_less__Suc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K3: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K3 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K3 )
                   => ( P @ I3 @ K3 ) ) ) ) )
         => ( P @ I2 @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1125_strict__inc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I2 ) ) ) ) ).

% strict_inc_induct
thf(fact_1126_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1127_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_1128_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1129_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_1130_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_1131_old_Onat_Oexhaust,axiom,
    ! [Y2: nat] :
      ( ( Y2 != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y2
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_1132_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( P @ ( suc @ N2 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_1133_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
     => ( ! [Y5: nat] : ( P @ zero_zero_nat @ ( suc @ Y5 ) )
       => ( ! [X4: nat,Y5: nat] :
              ( ( P @ X4 @ Y5 )
             => ( P @ ( suc @ X4 ) @ ( suc @ Y5 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_1134_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_1135_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_1136_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_1137_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_1138_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_1139_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_12: nat] : ( P @ X_12 )
       => ? [N2: nat] :
            ( ~ ( P @ N2 )
            & ( P @ ( suc @ N2 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_1140_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1141_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_1142_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ ( suc @ I4 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1143_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M3: nat] :
            ( N
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1144_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ ( suc @ I4 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1145_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1146_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1147_dec__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P @ I2 )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P @ N2 )
                 => ( P @ ( suc @ N2 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_1148_inc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P @ J )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P @ ( suc @ N2 ) )
                 => ( P @ N2 ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% inc_induct
thf(fact_1149_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1150_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1151_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1152_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1153_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1154_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1155_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1156_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1157_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1158_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( suc @ ( plus_plus_nat @ M3 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1159_less__add__Suc2,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ M @ I2 ) ) ) ).

% less_add_Suc2
thf(fact_1160_less__add__Suc1,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ I2 @ M ) ) ) ).

% less_add_Suc1
thf(fact_1161_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q ) ) ) ) ).

% less_natE
thf(fact_1162_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1163_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1164_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1165_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X2: real,Y3: real] : ( plus_plus_real @ X2 @ ( uminus_uminus_real @ Y3 ) ) ) ) ).

% minus_real_def
thf(fact_1166_int__cases,axiom,
    ! [Z2: int] :
      ( ! [N2: nat] :
          ( Z2
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% int_cases
thf(fact_1167_int__of__nat__induct,axiom,
    ! [P: int > $o,Z2: int] :
      ( ! [N2: nat] : ( P @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ! [N2: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) )
       => ( P @ Z2 ) ) ) ).

% int_of_nat_induct
thf(fact_1168_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I5: nat] :
                ( ( ord_less_eq_nat @ I5 @ K3 )
               => ~ ( P @ I5 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1169_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1170_int__ops_I4_J,axiom,
    ! [A2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1171_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1172_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W2: int,Z5: int] :
        ? [N3: nat] :
          ( Z5
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_1173_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_1174_ln__eq__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = ( minus_minus_real @ X @ one_one_real ) )
       => ( X = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_1175_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N2: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% negD
thf(fact_1176_negative__zless__0,axiom,
    ! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_1177_Suc__as__int,axiom,
    ( suc
    = ( ^ [A: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_1178_forall__pos__mono__1,axiom,
    ! [P: real > $o,E2: real] :
      ( ! [D3: real,E: real] :
          ( ( ord_less_real @ D3 @ E )
         => ( ( P @ D3 )
           => ( P @ E ) ) )
     => ( ! [N2: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( P @ E2 ) ) ) ) ).

% forall_pos_mono_1
thf(fact_1179_real__of__int__floor__gt__diff__one,axiom,
    ! [R2: real] : ( ord_less_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).

% real_of_int_floor_gt_diff_one
thf(fact_1180_real__of__int__floor__ge__diff__one,axiom,
    ! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).

% real_of_int_floor_ge_diff_one
thf(fact_1181_floor__eq3,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
          = N ) ) ) ).

% floor_eq3
thf(fact_1182_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( suc @ ( nat2 @ Z2 ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_1183_ln__le__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_1184_floor__eq4,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
          = N ) ) ) ).

% floor_eq4
thf(fact_1185_Bolzano,axiom,
    ! [A2: real,B2: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ! [A5: real,B5: real,C3: real] :
            ( ( P @ A5 @ B5 )
           => ( ( P @ B5 @ C3 )
             => ( ( ord_less_eq_real @ A5 @ B5 )
               => ( ( ord_less_eq_real @ B5 @ C3 )
                 => ( P @ A5 @ C3 ) ) ) ) )
       => ( ! [X4: real] :
              ( ( ord_less_eq_real @ A2 @ X4 )
             => ( ( ord_less_eq_real @ X4 @ B2 )
               => ? [D4: real] :
                    ( ( ord_less_real @ zero_zero_real @ D4 )
                    & ! [A5: real,B5: real] :
                        ( ( ( ord_less_eq_real @ A5 @ X4 )
                          & ( ord_less_eq_real @ X4 @ B5 )
                          & ( ord_less_real @ ( minus_minus_real @ B5 @ A5 ) @ D4 ) )
                       => ( P @ A5 @ B5 ) ) ) ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% Bolzano
thf(fact_1186_eq__diff__eq_H,axiom,
    ! [X: real,Y2: real,Z2: real] :
      ( ( X
        = ( minus_minus_real @ Y2 @ Z2 ) )
      = ( Y2
        = ( plus_plus_real @ X @ Z2 ) ) ) ).

% eq_diff_eq'
thf(fact_1187_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1188_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1189_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_1190_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1191_diff__diff__cancel,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_1192_diff__diff__left,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K )
      = ( minus_minus_nat @ I2 @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_1193_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_1194_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_1195_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1196_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_1197_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1198_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I2 ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1199_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1200_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_1201_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I2 )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1202_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I2 @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1203_zle__diff1__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z2 @ one_one_int ) )
      = ( ord_less_int @ W @ Z2 ) ) ).

% zle_diff1_eq
thf(fact_1204_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_1205_nat__diff__distrib_H,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( nat2 @ ( minus_minus_int @ X @ Y2 ) )
          = ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y2 ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_1206_nat__diff__distrib,axiom,
    ! [Z4: int,Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z4 )
     => ( ( ord_less_eq_int @ Z4 @ Z2 )
       => ( ( nat2 @ ( minus_minus_int @ Z2 @ Z4 ) )
          = ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z4 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_1207_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_1208_le__diff__iff_H,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ C )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A2 ) @ ( minus_minus_nat @ C @ B2 ) )
          = ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).

% le_diff_iff'
thf(fact_1209_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_1210_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_1211_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1212_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_1213_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_1214_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_1215_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_1216_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_1217_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_1218_int__diff__cases,axiom,
    ! [Z2: int] :
      ~ ! [M4: nat,N2: nat] :
          ( Z2
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M4 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% int_diff_cases
thf(fact_1219_diff__commute,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I2 @ K ) @ J ) ) ).

% diff_commute
thf(fact_1220_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I2: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ ( minus_minus_nat @ K @ I2 ) ) ) ) ).

% zero_induct_lemma
thf(fact_1221_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_1222_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_1223_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_1224_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_1225_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_1226_int__minus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_1227_int__ops_I6_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A2 @ B2 ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A2 @ B2 ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% int_ops(6)
thf(fact_1228_zdiff__int__split,axiom,
    ! [P: int > $o,X: nat,Y2: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y2 ) ) )
      = ( ( ( ord_less_eq_nat @ Y2 @ X )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y2 ) ) ) )
        & ( ( ord_less_nat @ X @ Y2 )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_1229_int__le__induct,axiom,
    ! [I2: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I2 @ K )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_le_induct
thf(fact_1230_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_1231_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_1232_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_1233_minus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( minus_minus_int @ zero_zero_int @ L )
      = ( uminus_uminus_int @ L ) ) ).

% minus_int_code(2)
thf(fact_1234_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1235_diff__less__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ A2 )
       => ( ord_less_nat @ ( minus_minus_nat @ A2 @ C ) @ ( minus_minus_nat @ B2 @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1236_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1237_int_Ominus__eq,axiom,
    ( minus_minus_int
    = ( ^ [X2: int,Y3: int] : ( plus_plus_int @ X2 @ ( uminus_uminus_int @ Y3 ) ) ) ) ).

% int.minus_eq
thf(fact_1238_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1239_int__less__induct,axiom,
    ! [I2: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I2 @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_less_induct
thf(fact_1240_less__diff__conv,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1241_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1242_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1243_le__diff__conv,axiom,
    ! [J: nat,K: nat,I2: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I2 @ K ) ) ) ).

% le_diff_conv
thf(fact_1244_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1245_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J ) @ K )
        = ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1246_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I2 ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I2 ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1247_Nat_Ole__imp__diff__is__add,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ( minus_minus_nat @ J @ I2 )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1248_int__induct,axiom,
    ! [P: int > $o,K: int,I2: int] :
      ( ( P @ K )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K @ I3 )
           => ( ( P @ I3 )
             => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_induct
thf(fact_1249_diff__Suc__less,axiom,
    ! [N: nat,I2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I2 ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_1250_nat__diff__split,axiom,
    ! [P: nat > $o,A2: nat,B2: nat] :
      ( ( P @ ( minus_minus_nat @ A2 @ B2 ) )
      = ( ( ( ord_less_nat @ A2 @ B2 )
         => ( P @ zero_zero_nat ) )
        & ! [D5: nat] :
            ( ( A2
              = ( plus_plus_nat @ B2 @ D5 ) )
           => ( P @ D5 ) ) ) ) ).

% nat_diff_split
thf(fact_1251_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A2: nat,B2: nat] :
      ( ( P @ ( minus_minus_nat @ A2 @ B2 ) )
      = ( ~ ( ( ( ord_less_nat @ A2 @ B2 )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D5: nat] :
                ( ( A2
                  = ( plus_plus_nat @ B2 @ D5 ) )
                & ~ ( P @ D5 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1252_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I2 @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1253_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1254_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1255_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% add_eq_if
thf(fact_1256_nat0__intermed__int__val,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_1257_zabs__less__one__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z2 ) @ one_one_int )
      = ( Z2 = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_1258_zabs__def,axiom,
    ( abs_abs_int
    = ( ^ [I4: int] : ( if_int @ ( ord_less_int @ I4 @ zero_zero_int ) @ ( uminus_uminus_int @ I4 ) @ I4 ) ) ) ).

% zabs_def
thf(fact_1259_nat__abs__triangle__ineq,axiom,
    ! [K: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).

% nat_abs_triangle_ineq
thf(fact_1260_nat__abs__int__diff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) )
          = ( minus_minus_nat @ B2 @ A2 ) ) )
      & ( ~ ( ord_less_eq_nat @ A2 @ B2 )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) )
          = ( minus_minus_nat @ A2 @ B2 ) ) ) ) ).

% nat_abs_int_diff
thf(fact_1261_nat__intermed__int__val,axiom,
    ! [M: nat,N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ( ord_less_eq_nat @ M @ I3 )
            & ( ord_less_nat @ I3 @ N ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N ) )
           => ? [I3: nat] :
                ( ( ord_less_eq_nat @ M @ I3 )
                & ( ord_less_eq_nat @ I3 @ N )
                & ( ( F @ I3 )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_1262_nat__ivt__aux,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_1263_decr__lemma,axiom,
    ! [D: int,X: int,Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) @ Z2 ) ) ).

% decr_lemma
thf(fact_1264_incr__lemma,axiom,
    ! [D: int,Z2: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z2 @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma

% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y2: int] :
      ( ( if_int @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y2: int] :
      ( ( if_int @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y2: nat] :
      ( ( if_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y2: nat] :
      ( ( if_nat @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y2: real] :
      ( ( if_real @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y2: real] :
      ( ( if_real @ $true @ X @ Y2 )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    cring_3079150759069666002t_unit @ ( zFact @ ( semiri1314217659103216013at_int @ n ) ) ).

%------------------------------------------------------------------------------