TPTP Problem File: SLH0058^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : ResiduatedTransitionSystem/0000_ResiduatedTransitionSystem/prob_04681_181992__14185924_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1543 ( 426 unt; 252 typ;   0 def)
%            Number of atoms       : 4598 (1915 equ;   0 cnn)
%            Maximal formula atoms :   17 (   3 avg)
%            Number of connectives : 17888 ( 921   ~;  47   |; 491   &;14284   @)
%                                         (   0 <=>;2145  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   25 (   7 avg)
%            Number of types       :   30 (  29 usr)
%            Number of type conns  : 1430 (1430   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  226 ( 223 usr;  21 con; 0-4 aty)
%            Number of variables   : 3911 (  88   ^;3716   !; 107   ?;3911   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 11:48:04.825
%------------------------------------------------------------------------------
% Could-be-implicit typings (29)
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_It__List__Olist_Itf__a_J_J_Mt__List__Olist_It__List__Olist_Itf__a_J_J_J_J,type,
    set_Pr5382606609415531783list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_Itf__a_Mtf__a_J_Mt__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J_J,type,
    produc1473018763691903991list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_It__List__Olist_Itf__a_J_J_Mt__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    produc7709606177366032167list_a: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_It__List__Olist_Itf__a_J_J_J_J,type,
    set_Pr4412185308373534093list_a: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_It__List__Olist_Itf__a_J_J_Mt__List__Olist_Itf__a_J_J_J,type,
    set_Pr1060768173594829441list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    produc7034990643107109933list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_It__List__Olist_Itf__a_J_J_Mt__List__Olist_Itf__a_J_J,type,
    produc7489172080673977121list_a: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J_J,type,
    set_Pr4048851178543822343list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_Itf__a_M_062_Itf__a_M_Eo_J_J_Mt__List__Olist_Itf__a_J_J,type,
    produc5032551385658279741list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J,type,
    produc9164743771328383783list_a: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J_J,type,
    list_P4541805568828049459list_a: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J_J,type,
    list_P2210424090985720871st_a_a: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J_J,type,
    set_Pr2070066670564046349list_a: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J_J,type,
    set_Pr8962057229576493569st_a_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    produc8685980395799941037list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    produc2579390645249093025st_a_a: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    list_P1396940483166286381od_a_a: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    set_Product_prod_a_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    product_prod_a_a: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    list_list_a: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    set_list_a: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_Itf__a_J_J,type,
    list_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (223)
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_If_001t__List__Olist_Itf__a_J,type,
    if_list_a: $o > list_a > list_a > list_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    inf_inf_set_list_a: set_list_a > set_list_a > set_list_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
    inf_inf_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J_J,type,
    inf_in7504020401910655727st_a_a: set_Pr8962057229576493569st_a_a > set_Pr8962057229576493569st_a_a > set_Pr8962057229576493569st_a_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J_J,type,
    inf_in612029842898208507list_a: set_Pr2070066670564046349list_a > set_Pr2070066670564046349list_a > set_Pr2070066670564046349list_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    inf_in8905007599844390133od_a_a: set_Product_prod_a_a > set_Product_prod_a_a > set_Product_prod_a_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_List_Oappend_001t__List__Olist_Itf__a_J,type,
    append_list_a: list_list_a > list_list_a > list_list_a ).

thf(sy_c_List_Oappend_001tf__a,type,
    append_a: list_a > list_a > list_a ).

thf(sy_c_List_Obind_001tf__a_001tf__a,type,
    bind_a_a: list_a > ( a > list_a ) > list_a ).

thf(sy_c_List_Obutlast_001tf__a,type,
    butlast_a: list_a > list_a ).

thf(sy_c_List_Oconcat_001tf__a,type,
    concat_a: list_list_a > list_a ).

thf(sy_c_List_Ocoset_001tf__a,type,
    coset_a: list_a > set_a ).

thf(sy_c_List_Odistinct__adj_001tf__a,type,
    distinct_adj_a: list_a > $o ).

thf(sy_c_List_Odrop_001tf__a,type,
    drop_a: nat > list_a > list_a ).

thf(sy_c_List_Ogen__length_001tf__a,type,
    gen_length_a: nat > list_a > nat ).

thf(sy_c_List_Oinsert_001tf__a,type,
    insert_a: a > list_a > list_a ).

thf(sy_c_List_Olast_001tf__a,type,
    last_a: list_a > a ).

thf(sy_c_List_Olex_001t__List__Olist_Itf__a_J,type,
    lex_list_a: set_Pr4048851178543822343list_a > set_Pr5382606609415531783list_a ).

thf(sy_c_List_Olex_001tf__a,type,
    lex_a: set_Product_prod_a_a > set_Pr4048851178543822343list_a ).

thf(sy_c_List_Olexord_001t__List__Olist_Itf__a_J,type,
    lexord_list_a: set_Pr4048851178543822343list_a > set_Pr5382606609415531783list_a ).

thf(sy_c_List_Olexord_001tf__a,type,
    lexord_a: set_Product_prod_a_a > set_Pr4048851178543822343list_a ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_Itf__a_J,type,
    cons_list_a: list_a > list_list_a > list_list_a ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    cons_P2018802349718741079st_a_a: produc2579390645249093025st_a_a > list_P2210424090985720871st_a_a > list_P2210424090985720871st_a_a ).

thf(sy_c_List_Olist_OCons_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    cons_P8125392100269589091list_a: produc8685980395799941037list_a > list_P4541805568828049459list_a > list_P4541805568828049459list_a ).

thf(sy_c_List_Olist_OCons_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    cons_P7316939126706565853od_a_a: product_prod_a_a > list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a ).

thf(sy_c_List_Olist_OCons_001t__Set__Oset_Itf__a_J,type,
    cons_set_a: set_a > list_set_a > list_set_a ).

thf(sy_c_List_Olist_OCons_001tf__a,type,
    cons_a: a > list_a > list_a ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_Itf__a_J,type,
    nil_list_a: list_list_a ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    nil_Pr523822031547952295st_a_a: list_P2210424090985720871st_a_a ).

thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    nil_Pr6630411782098800307list_a: list_P4541805568828049459list_a ).

thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    nil_Product_prod_a_a: list_P1396940483166286381od_a_a ).

thf(sy_c_List_Olist_ONil_001t__Set__Oset_Itf__a_J,type,
    nil_set_a: list_set_a ).

thf(sy_c_List_Olist_ONil_001tf__a,type,
    nil_a: list_a ).

thf(sy_c_List_Olist_Ohd_001t__List__Olist_Itf__a_J,type,
    hd_list_a: list_list_a > list_a ).

thf(sy_c_List_Olist_Ohd_001tf__a,type,
    hd_a: list_a > a ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_Itf__a_J,type,
    set_list_a2: list_list_a > set_list_a ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_Itf__a_J,type,
    set_set_a2: list_set_a > set_set_a ).

thf(sy_c_List_Olist_Oset_001tf__a,type,
    set_a2: list_a > set_a ).

thf(sy_c_List_Olist_Otl_001tf__a,type,
    tl_a: list_a > list_a ).

thf(sy_c_List_Olistrel1_001t__List__Olist_Itf__a_J,type,
    listrel1_list_a: set_Pr4048851178543822343list_a > set_Pr5382606609415531783list_a ).

thf(sy_c_List_Olistrel1_001tf__a,type,
    listrel1_a: set_Product_prod_a_a > set_Pr4048851178543822343list_a ).

thf(sy_c_List_Olistrel_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J,type,
    listre6772471554020304241list_a: set_Pr4048851178543822343list_a > set_Pr5382606609415531783list_a ).

thf(sy_c_List_Olistrel_001t__List__Olist_Itf__a_J_001tf__a,type,
    listrel_list_a_a: set_Pr8962057229576493569st_a_a > set_Pr1060768173594829441list_a ).

thf(sy_c_List_Olistrel_001tf__a_001t__List__Olist_Itf__a_J,type,
    listrel_a_list_a: set_Pr2070066670564046349list_a > set_Pr4412185308373534093list_a ).

thf(sy_c_List_Olistrel_001tf__a_001tf__a,type,
    listrel_a_a: set_Product_prod_a_a > set_Pr4048851178543822343list_a ).

thf(sy_c_List_Olists_001tf__a,type,
    lists_a: set_a > set_list_a ).

thf(sy_c_List_Olistset_001tf__a,type,
    listset_a: list_set_a > set_list_a ).

thf(sy_c_List_Omaps_001tf__a_001tf__a,type,
    maps_a_a: ( a > list_a ) > list_a > list_a ).

thf(sy_c_List_On__lists_001tf__a,type,
    n_lists_a: nat > list_a > list_list_a ).

thf(sy_c_List_Onth_001tf__a,type,
    nth_a: list_a > nat > a ).

thf(sy_c_List_Onths_001tf__a,type,
    nths_a: list_a > set_nat > list_a ).

thf(sy_c_List_Onull_001tf__a,type,
    null_a: list_a > $o ).

thf(sy_c_List_Oproduct__lists_001tf__a,type,
    product_lists_a: list_list_a > list_list_a ).

thf(sy_c_List_Oreplicate_001t__List__Olist_Itf__a_J,type,
    replicate_list_a: nat > list_a > list_list_a ).

thf(sy_c_List_Oreplicate_001tf__a,type,
    replicate_a: nat > a > list_a ).

thf(sy_c_List_Orotate1_001tf__a,type,
    rotate1_a: list_a > list_a ).

thf(sy_c_List_Oshuffles_001tf__a,type,
    shuffles_a: list_a > list_a > set_list_a ).

thf(sy_c_List_Oshuffles__rel_001tf__a,type,
    shuffles_rel_a: produc9164743771328383783list_a > produc9164743771328383783list_a > $o ).

thf(sy_c_List_Osplice_001tf__a,type,
    splice_a: list_a > list_a > list_a ).

thf(sy_c_List_Osplice__rel_001tf__a,type,
    splice_rel_a: produc9164743771328383783list_a > produc9164743771328383783list_a > $o ).

thf(sy_c_List_Osubseqs_001tf__a,type,
    subseqs_a: list_a > list_list_a ).

thf(sy_c_List_Osuccessively_001tf__a,type,
    successively_a: ( a > a > $o ) > list_a > $o ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    size_s349497388124573686list_a: list_list_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_Itf__a_J,type,
    size_size_list_a: list_a > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
    bot_bot_a_o: a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    bot_bot_set_list_a: set_list_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J_J,type,
    bot_bo6692430193118440045st_a_a: set_Pr8962057229576493569st_a_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J_J,type,
    bot_bo9023811670960768633list_a: set_Pr2070066670564046349list_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    bot_bo3357376287454694259od_a_a: set_Product_prod_a_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    ord_le8861187494160871172list_a: set_list_a > set_list_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J_J,type,
    ord_le2808437291371905441st_a_a: set_Pr8962057229576493569st_a_a > set_Pr8962057229576493569st_a_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J_J,type,
    ord_le5139818769214234029list_a: set_Pr2070066670564046349list_a > set_Pr2070066670564046349list_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    ord_le746702958409616551od_a_a: set_Product_prod_a_a > set_Product_prod_a_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Product__Type_OPair_001_062_Itf__a_M_062_Itf__a_M_Eo_J_J_001t__List__Olist_Itf__a_J,type,
    produc8111569692950616493list_a: ( a > a > $o ) > list_a > produc5032551385658279741list_a ).

thf(sy_c_Product__Type_OPair_001_062_Itf__a_Mtf__a_J_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J,type,
    produc8643929849434629545list_a: ( a > a ) > produc9164743771328383783list_a > produc1473018763691903991list_a ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_It__List__Olist_Itf__a_J_J_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    produc8696003437204565271list_a: list_list_a > list_list_a > produc7709606177366032167list_a ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_It__List__Olist_Itf__a_J_J_001t__List__Olist_Itf__a_J,type,
    produc1599761694186162065list_a: list_list_a > list_a > produc7489172080673977121list_a ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_Itf__a_J_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    produc5682643643425543581list_a: list_a > list_list_a > produc7034990643107109933list_a ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J,type,
    produc6837034575241423639list_a: list_a > list_a > produc9164743771328383783list_a ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_Itf__a_J_001tf__a,type,
    produc4781227316648555537st_a_a: list_a > a > produc2579390645249093025st_a_a ).

thf(sy_c_Product__Type_OPair_001tf__a_001t__List__Olist_Itf__a_J,type,
    produc6670463072477821725list_a: a > list_a > produc8685980395799941037list_a ).

thf(sy_c_Product__Type_OPair_001tf__a_001tf__a,type,
    product_Pair_a_a: a > a > product_prod_a_a ).

thf(sy_c_ResiduatedTransitionSystem_Ocoherent__normal__sub__rts_001tf__a,type,
    cohere6072184133013167079_rts_a: ( a > a > a ) > set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Ocoherent__normal__sub__rts__axioms_001tf__a,type,
    cohere4894532172567702276ioms_a: ( a > a > a ) > set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oconfluent__rts_001tf__a,type,
    confluent_rts_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oconfluent__rts__axioms_001tf__a,type,
    conflu3014480972103220363ioms_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Onormal__sub__rts_001tf__a,type,
    normal_sub_rts_a: ( a > a > a ) > set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Onormal__sub__rts_OCong_001tf__a,type,
    normal_sub_Cong_a: ( a > a > a ) > set_a > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Onormal__sub__rts__axioms_001tf__a,type,
    normal7698203753654205830ioms_a: ( a > a > a ) > set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opartial__magma_001tf__a,type,
    partial_magma_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opartial__magma_Onull_001tf__a,type,
    partial_null_a: ( a > a > a ) > a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_001t__List__Olist_Itf__a_J,type,
    paths_in_rts_list_a: ( list_a > list_a > list_a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_001t__Nat__Onat,type,
    paths_in_rts_nat: ( nat > nat > nat ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    paths_4232552623637367430st_a_a: ( produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    paths_1115770337333439634list_a: ( produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    paths_2703364527051407500od_a_a: ( product_prod_a_a > product_prod_a_a > product_prod_a_a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_001t__Set__Oset_Itf__a_J,type,
    paths_in_rts_set_a: ( set_a > set_a > set_a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_001tf__a,type,
    paths_in_rts_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OArr_001t__List__Olist_Itf__a_J,type,
    paths_in_Arr_list_a: ( list_a > list_a > list_a ) > list_list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OArr_001t__Nat__Onat,type,
    paths_in_Arr_nat: ( nat > nat > nat ) > list_nat > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OArr_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    paths_424260355915577769st_a_a: ( produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a ) > list_P2210424090985720871st_a_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OArr_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    paths_6530850106466425781list_a: ( produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a ) > list_P4541805568828049459list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OArr_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    paths_2884821253938355503od_a_a: ( product_prod_a_a > product_prod_a_a > product_prod_a_a ) > list_P1396940483166286381od_a_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OArr_001t__Set__Oset_Itf__a_J,type,
    paths_in_Arr_set_a: ( set_a > set_a > set_a ) > list_set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OArr_001tf__a,type,
    paths_in_Arr_a: ( a > a > a ) > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OArr__rel_001tf__a,type,
    paths_in_Arr_rel_a: list_a > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OIde_001t__List__Olist_Itf__a_J,type,
    paths_in_Ide_list_a: ( list_a > list_a > list_a ) > list_list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OIde_001t__Set__Oset_Itf__a_J,type,
    paths_in_Ide_set_a: ( set_a > set_a > set_a ) > list_set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OIde_001tf__a,type,
    paths_in_Ide_a: ( a > a > a ) > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OIde__rel_001tf__a,type,
    paths_in_Ide_rel_a: list_a > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid1x_001t__List__Olist_Itf__a_J,type,
    paths_1777230443808135851list_a: ( list_a > list_a > list_a ) > list_a > list_list_a > list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid1x_001t__Set__Oset_Itf__a_J,type,
    paths_9113339907585739525_set_a: ( set_a > set_a > set_a ) > set_a > list_set_a > set_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid1x_001tf__a,type,
    paths_in_Resid1x_a: ( a > a > a ) > a > list_a > a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid1x__rel_001tf__a,type,
    paths_6492648068886854876_rel_a: ( a > a > a ) > produc8685980395799941037list_a > produc8685980395799941037list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid_001t__List__Olist_Itf__a_J,type,
    paths_8620460302779588466list_a: ( list_a > list_a > list_a ) > list_list_a > list_list_a > list_list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid_001t__Nat__Onat,type,
    paths_in_Resid_nat: ( nat > nat > nat ) > list_nat > list_nat > list_nat ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    paths_8255835059299053455st_a_a: ( produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a ) > list_P2210424090985720871st_a_a > list_P2210424090985720871st_a_a > list_P2210424090985720871st_a_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    paths_5139052772995125659list_a: ( produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a ) > list_P4541805568828049459list_a > list_P4541805568828049459list_a > list_P4541805568828049459list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    paths_4544677030372982293od_a_a: ( product_prod_a_a > product_prod_a_a > product_prod_a_a ) > list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid_001t__Set__Oset_Itf__a_J,type,
    paths_in_Resid_set_a: ( set_a > set_a > set_a ) > list_set_a > list_set_a > list_set_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid_001tf__a,type,
    paths_in_Resid_a: ( a > a > a ) > list_a > list_a > list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResid__rel_001tf__a,type,
    paths_in_Resid_rel_a: ( a > a > a ) > produc9164743771328383783list_a > produc9164743771328383783list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResidx1_001t__List__Olist_Itf__a_J,type,
    paths_3541054012941122297list_a: ( list_a > list_a > list_a ) > list_list_a > list_a > list_list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResidx1_001t__Set__Oset_Itf__a_J,type,
    paths_5162067660074578515_set_a: ( set_a > set_a > set_a ) > list_set_a > set_a > list_set_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OResidx1_001tf__a,type,
    paths_in_Residx1_a: ( a > a > a ) > list_a > a > list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OSrcs_001t__List__Olist_Itf__a_J,type,
    paths_in_Srcs_list_a: ( list_a > list_a > list_a ) > list_list_a > set_list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OSrcs_001t__Nat__Onat,type,
    paths_in_Srcs_nat: ( nat > nat > nat ) > list_nat > set_nat ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OSrcs_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    paths_332773396847195111st_a_a: ( produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a ) > list_P2210424090985720871st_a_a > set_Pr8962057229576493569st_a_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OSrcs_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    paths_6439363147398043123list_a: ( produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a ) > list_P4541805568828049459list_a > set_Pr2070066670564046349list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OSrcs_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    paths_2488790558265101933od_a_a: ( product_prod_a_a > product_prod_a_a > product_prod_a_a ) > list_P1396940483166286381od_a_a > set_Product_prod_a_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OSrcs_001t__Set__Oset_Itf__a_J,type,
    paths_in_Srcs_set_a: ( set_a > set_a > set_a ) > list_set_a > set_set_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OSrcs_001tf__a,type,
    paths_in_Srcs_a: ( a > a > a ) > list_a > set_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OSrcs__rel_001tf__a,type,
    paths_in_Srcs_rel_a: list_a > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OTrgs_001t__List__Olist_Itf__a_J,type,
    paths_in_Trgs_list_a: ( list_a > list_a > list_a ) > list_list_a > set_list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OTrgs_001t__Nat__Onat,type,
    paths_in_Trgs_nat: ( nat > nat > nat ) > list_nat > set_nat ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OTrgs_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    paths_2794423126656725868st_a_a: ( produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a ) > list_P2210424090985720871st_a_a > set_Pr8962057229576493569st_a_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OTrgs_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    paths_8901012877207573880list_a: ( produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a ) > list_P4541805568828049459list_a > set_Pr2070066670564046349list_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OTrgs_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    paths_4392315070405530738od_a_a: ( product_prod_a_a > product_prod_a_a > product_prod_a_a ) > list_P1396940483166286381od_a_a > set_Product_prod_a_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OTrgs_001t__Set__Oset_Itf__a_J,type,
    paths_in_Trgs_set_a: ( set_a > set_a > set_a ) > list_set_a > set_set_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OTrgs_001tf__a,type,
    paths_in_Trgs_a: ( a > a > a ) > list_a > set_a ).

thf(sy_c_ResiduatedTransitionSystem_Opaths__in__rts_OTrgs__rel_001tf__a,type,
    paths_in_Trgs_rel_a: list_a > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_001tf__a,type,
    residuation_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oarr_001t__List__Olist_Itf__a_J,type,
    arr_list_a: ( list_a > list_a > list_a ) > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oarr_001t__Set__Oset_Itf__a_J,type,
    arr_set_a: ( set_a > set_a > set_a ) > set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oarr_001tf__a,type,
    arr_a: ( a > a > a ) > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Ocon_001t__List__Olist_Itf__a_J,type,
    con_list_a: ( list_a > list_a > list_a ) > list_a > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Ocon_001t__Nat__Onat,type,
    con_nat: ( nat > nat > nat ) > nat > nat > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Ocon_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    con_Pr7383801431968512653st_a_a: ( produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a ) > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Ocon_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    con_Pr4267019145664584857list_a: ( produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a ) > produc8685980395799941037list_a > produc8685980395799941037list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Ocon_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    con_Product_prod_a_a: ( product_prod_a_a > product_prod_a_a > product_prod_a_a ) > product_prod_a_a > product_prod_a_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Ocon_001t__Set__Oset_Itf__a_J,type,
    con_set_a: ( set_a > set_a > set_a ) > set_a > set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Ocon_001tf__a,type,
    con_a: ( a > a > a ) > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oide_001t__List__Olist_Itf__a_J,type,
    ide_list_a: ( list_a > list_a > list_a ) > list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oide_001t__Nat__Onat,type,
    ide_nat: ( nat > nat > nat ) > nat > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oide_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    ide_Pr4006845958993808965st_a_a: ( produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a ) > produc2579390645249093025st_a_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oide_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    ide_Pr890063672689881169list_a: ( produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a ) > produc8685980395799941037list_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oide_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    ide_Product_prod_a_a: ( product_prod_a_a > product_prod_a_a > product_prod_a_a ) > product_prod_a_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oide_001t__Set__Oset_Itf__a_J,type,
    ide_set_a: ( set_a > set_a > set_a ) > set_a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Oide_001tf__a,type,
    ide_a: ( a > a > a ) > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation_Otrg_001tf__a,type,
    trg_a: ( a > a > a ) > a > a ).

thf(sy_c_ResiduatedTransitionSystem_Oresiduation__axioms_001tf__a,type,
    residuation_axioms_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Ocoinitial_001tf__a,type,
    coinitial_a: ( a > a > a ) > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Ocomposable_001tf__a,type,
    composable_a: ( a > a > a ) > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Ocomposite__of_001tf__a,type,
    composite_of_a: ( a > a > a ) > a > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Ocoterminal_001tf__a,type,
    coterminal_a: ( a > a > a ) > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Ojoin__of_001tf__a,type,
    join_of_a: ( a > a > a ) > a > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Ojoinable_001tf__a,type,
    joinable_a: ( a > a > a ) > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Oseq_001tf__a,type,
    seq_a: ( a > a > a ) > a > a > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Osources_001tf__a,type,
    sources_a: ( a > a > a ) > a > set_a ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Otargets_001t__List__Olist_Itf__a_J,type,
    targets_list_a: ( list_a > list_a > list_a ) > list_a > set_list_a ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Otargets_001t__Nat__Onat,type,
    targets_nat: ( nat > nat > nat ) > nat > set_nat ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Otargets_001t__Set__Oset_Itf__a_J,type,
    targets_set_a: ( set_a > set_a > set_a ) > set_a > set_set_a ).

thf(sy_c_ResiduatedTransitionSystem_Orts_Otargets_001tf__a,type,
    targets_a: ( a > a > a ) > a > set_a ).

thf(sy_c_ResiduatedTransitionSystem_Orts__axioms_001tf__a,type,
    rts_axioms_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts__with__composites__axioms_001tf__a,type,
    rts_wi2614412583573296275ioms_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Orts__with__joins__axioms_001tf__a,type,
    rts_wi560353115624263628ioms_a: ( a > a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Osimulation__axioms_001tf__a_001tf__a,type,
    simula3868467710248865958ms_a_a: ( a > a > a ) > ( a > a > a ) > ( a > a ) > $o ).

thf(sy_c_ResiduatedTransitionSystem_Osimulation__to__weakly__extensional__rts_001tf__a_001tf__a,type,
    simula2709571904647515914ts_a_a: ( a > a > a ) > ( a > a > a ) > ( a > a ) > $o ).

thf(sy_c_Set_OCollect_001t__List__Olist_Itf__a_J,type,
    collect_list_a: ( list_a > $o ) > set_list_a ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    collec3957028472668211340st_a_a: ( produc2579390645249093025st_a_a > $o ) > set_Pr8962057229576493569st_a_a ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    collec840246186364283544list_a: ( produc8685980395799941037list_a > $o ) > set_Pr2070066670564046349list_a ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    collec3336397797384452498od_a_a: ( product_prod_a_a > $o ) > set_Product_prod_a_a ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oinsert_001t__List__Olist_Itf__a_J,type,
    insert_list_a: list_a > set_list_a > set_list_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a2: a > set_a > set_a ).

thf(sy_c_Set_Ois__empty_001tf__a,type,
    is_empty_a: set_a > $o ).

thf(sy_c_Set_Ois__singleton_001tf__a,type,
    is_singleton_a: set_a > $o ).

thf(sy_c_Set_Oremove_001tf__a,type,
    remove_a: a > set_a > set_a ).

thf(sy_c_Set_Othe__elem_001tf__a,type,
    the_elem_a: set_a > a ).

thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_Itf__a_J,type,
    accp_list_a: ( list_a > list_a > $o ) > list_a > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J,type,
    accp_P7377042638478740784list_a: ( produc9164743771328383783list_a > produc9164743771328383783list_a > $o ) > produc9164743771328383783list_a > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    accp_P3213725926765619766list_a: ( produc8685980395799941037list_a > produc8685980395799941037list_a > $o ) > produc8685980395799941037list_a > $o ).

thf(sy_c_member_001t__List__Olist_Itf__a_J,type,
    member_list_a: list_a > set_list_a > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__List__Olist_It__List__Olist_Itf__a_J_J_Mt__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    member1318342207407915856list_a: produc7709606177366032167list_a > set_Pr5382606609415531783list_a > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__List__Olist_It__List__Olist_Itf__a_J_J_Mt__List__Olist_Itf__a_J_J,type,
    member4371779931761811402list_a: produc7489172080673977121list_a > set_Pr1060768173594829441list_a > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    member3917598494194944214list_a: produc7034990643107109933list_a > set_Pr4412185308373534093list_a > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J,type,
    member8191768239178080336list_a: produc9164743771328383783list_a > set_Pr4048851178543822343list_a > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mtf__a_J,type,
    member8006451231845903178st_a_a: produc2579390645249093025st_a_a > set_Pr8962057229576493569st_a_a > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_Itf__a_Mt__List__Olist_Itf__a_J_J,type,
    member4889668945541975382list_a: produc8685980395799941037list_a > set_Pr2070066670564046349list_a > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    member1426531477525435216od_a_a: product_prod_a_a > set_Product_prod_a_a > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_Ta____,type,
    ta: list_a ).

thf(sy_v_aa____,type,
    aa: a ).

thf(sy_v_resid,type,
    resid: a > a > a ).

thf(sy_v_t____,type,
    t: a ).

% Relevant facts (1278)
thf(fact_0_Resid1x__rel_Ocong,axiom,
    paths_6492648068886854876_rel_a = paths_6492648068886854876_rel_a ).

% Resid1x_rel.cong
thf(fact_1_T,axiom,
    ta != nil_a ).

% T
thf(fact_2_R_Ocube,axiom,
    ! [V: a,T: a,U: a] :
      ( ( resid @ ( resid @ V @ T ) @ ( resid @ U @ T ) )
      = ( resid @ ( resid @ V @ U ) @ ( resid @ T @ U ) ) ) ).

% R.cube
thf(fact_3_R_Oex__un__null,axiom,
    ? [X: a] :
      ( ! [T2: a] :
          ( ( ( resid @ X @ T2 )
            = X )
          & ( ( resid @ T2 @ X )
            = X ) )
      & ! [Y: a] :
          ( ! [T3: a] :
              ( ( ( resid @ Y @ T3 )
                = Y )
              & ( ( resid @ T3 @ Y )
                = Y ) )
         => ( Y = X ) ) ) ).

% R.ex_un_null
thf(fact_4_Trgs_Ocases,axiom,
    ! [X2: list_a] :
      ( ( X2 != nil_a )
     => ( ! [T3: a] :
            ( X2
           != ( cons_a @ T3 @ nil_a ) )
       => ~ ! [T3: a,V2: a,Va: list_a] :
              ( X2
             != ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ).

% Trgs.cases
thf(fact_5_a,axiom,
    ide_a @ resid @ aa ).

% a
thf(fact_6_R_Ocong__symmetric,axiom,
    ! [T: a,U: a] :
      ( ( ( ide_a @ resid @ ( resid @ T @ U ) )
        & ( ide_a @ resid @ ( resid @ U @ T ) ) )
     => ( ( ide_a @ resid @ ( resid @ U @ T ) )
        & ( ide_a @ resid @ ( resid @ T @ U ) ) ) ) ).

% R.cong_symmetric
thf(fact_7_R_Ocong__transitive,axiom,
    ! [T: a,U: a,V: a] :
      ( ( ( ide_a @ resid @ ( resid @ T @ U ) )
        & ( ide_a @ resid @ ( resid @ U @ T ) ) )
     => ( ( ( ide_a @ resid @ ( resid @ U @ V ) )
          & ( ide_a @ resid @ ( resid @ V @ U ) ) )
       => ( ( ide_a @ resid @ ( resid @ T @ V ) )
          & ( ide_a @ resid @ ( resid @ V @ T ) ) ) ) ) ).

% R.cong_transitive
thf(fact_8_R_Oide__backward__stable,axiom,
    ! [A: a,T: a] :
      ( ( ide_a @ resid @ A )
     => ( ( ide_a @ resid @ ( resid @ T @ A ) )
       => ( ide_a @ resid @ T ) ) ) ).

% R.ide_backward_stable
thf(fact_9_R_Oprfx__transitive,axiom,
    ! [T: a,U: a,V: a] :
      ( ( ide_a @ resid @ ( resid @ T @ U ) )
     => ( ( ide_a @ resid @ ( resid @ U @ V ) )
       => ( ide_a @ resid @ ( resid @ T @ V ) ) ) ) ).

% R.prfx_transitive
thf(fact_10_R_Ocon__sym,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( con_a @ resid @ U @ T ) ) ).

% R.con_sym
thf(fact_11_R_Oresid__reflects__con,axiom,
    ! [T: a,V: a,U: a] :
      ( ( con_a @ resid @ T @ V )
     => ( ( con_a @ resid @ U @ V )
       => ( ( con_a @ resid @ ( resid @ T @ V ) @ ( resid @ U @ V ) )
         => ( con_a @ resid @ T @ U ) ) ) ) ).

% R.resid_reflects_con
thf(fact_12_Resid_Osimps_I1_J,axiom,
    ! [Uu: list_a] :
      ( ( paths_in_Resid_a @ resid @ nil_a @ Uu )
      = nil_a ) ).

% Resid.simps(1)
thf(fact_13_Con__sym,axiom,
    ! [T4: list_a,U2: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ T4 @ U2 )
       != nil_a )
      = ( ( paths_in_Resid_a @ resid @ U2 @ T4 )
       != nil_a ) ) ).

% Con_sym
thf(fact_14_R_Ocong__subst__left_I2_J,axiom,
    ! [T: a,T5: a,U: a] :
      ( ( ( ide_a @ resid @ ( resid @ T @ T5 ) )
        & ( ide_a @ resid @ ( resid @ T5 @ T ) ) )
     => ( ( con_a @ resid @ T @ U )
       => ( ( ide_a @ resid @ ( resid @ ( resid @ T @ U ) @ ( resid @ T5 @ U ) ) )
          & ( ide_a @ resid @ ( resid @ ( resid @ T5 @ U ) @ ( resid @ T @ U ) ) ) ) ) ) ).

% R.cong_subst_left(2)
thf(fact_15_R_Ocong__subst__left_I1_J,axiom,
    ! [T: a,T5: a,U: a] :
      ( ( ( ide_a @ resid @ ( resid @ T @ T5 ) )
        & ( ide_a @ resid @ ( resid @ T5 @ T ) ) )
     => ( ( con_a @ resid @ T @ U )
       => ( con_a @ resid @ T5 @ U ) ) ) ).

% R.cong_subst_left(1)
thf(fact_16_R_Ocong__subst__right_I2_J,axiom,
    ! [U: a,U3: a,T: a] :
      ( ( ( ide_a @ resid @ ( resid @ U @ U3 ) )
        & ( ide_a @ resid @ ( resid @ U3 @ U ) ) )
     => ( ( con_a @ resid @ T @ U )
       => ( ( ide_a @ resid @ ( resid @ ( resid @ T @ U ) @ ( resid @ T @ U3 ) ) )
          & ( ide_a @ resid @ ( resid @ ( resid @ T @ U3 ) @ ( resid @ T @ U ) ) ) ) ) ) ).

% R.cong_subst_right(2)
thf(fact_17_R_Ocong__subst__right_I1_J,axiom,
    ! [U: a,U3: a,T: a] :
      ( ( ( ide_a @ resid @ ( resid @ U @ U3 ) )
        & ( ide_a @ resid @ ( resid @ U3 @ U ) ) )
     => ( ( con_a @ resid @ T @ U )
       => ( con_a @ resid @ T @ U3 ) ) ) ).

% R.cong_subst_right(1)
thf(fact_18_R_Ocon__imp__coinitial__ax,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ? [A2: a] :
          ( ( ide_a @ resid @ A2 )
          & ( con_a @ resid @ A2 @ T )
          & ( con_a @ resid @ A2 @ U ) ) ) ).

% R.con_imp_coinitial_ax
thf(fact_19_R_Ocon__target,axiom,
    ! [T: a,U: a,V: a] :
      ( ( ide_a @ resid @ ( resid @ T @ U ) )
     => ( ( con_a @ resid @ U @ V )
       => ( con_a @ resid @ ( resid @ T @ U ) @ ( resid @ V @ U ) ) ) ) ).

% R.con_target
thf(fact_20_R_Ocon__transitive__on__ide,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ide_a @ resid @ A )
     => ( ( ide_a @ resid @ B )
       => ( ( ide_a @ resid @ C )
         => ( ( con_a @ resid @ A @ B )
           => ( ( con_a @ resid @ B @ C )
             => ( con_a @ resid @ A @ C ) ) ) ) ) ) ).

% R.con_transitive_on_ide
thf(fact_21_R_OideE,axiom,
    ! [A: a] :
      ( ( ide_a @ resid @ A )
     => ~ ( ( con_a @ resid @ A @ A )
         => ( ( resid @ A @ A )
           != A ) ) ) ).

% R.ideE
thf(fact_22_R_Oide__def,axiom,
    ! [A: a] :
      ( ( ide_a @ resid @ A )
      = ( ( con_a @ resid @ A @ A )
        & ( ( resid @ A @ A )
          = A ) ) ) ).

% R.ide_def
thf(fact_23_R_Oide__imp__con__iff__cong,axiom,
    ! [T: a,U: a] :
      ( ( ide_a @ resid @ T )
     => ( ( ide_a @ resid @ U )
       => ( ( con_a @ resid @ T @ U )
          = ( ( ide_a @ resid @ ( resid @ T @ U ) )
            & ( ide_a @ resid @ ( resid @ U @ T ) ) ) ) ) ) ).

% R.ide_imp_con_iff_cong
thf(fact_24_R_Oprfx__implies__con,axiom,
    ! [T: a,U: a] :
      ( ( ide_a @ resid @ ( resid @ T @ U ) )
     => ( con_a @ resid @ T @ U ) ) ).

% R.prfx_implies_con
thf(fact_25_R_Oresid__arr__ide,axiom,
    ! [A: a,T: a] :
      ( ( ide_a @ resid @ A )
     => ( ( con_a @ resid @ T @ A )
       => ( ( resid @ T @ A )
          = T ) ) ) ).

% R.resid_arr_ide
thf(fact_26_R_Oresid__ide__arr,axiom,
    ! [A: a,T: a] :
      ( ( ide_a @ resid @ A )
     => ( ( con_a @ resid @ A @ T )
       => ( ide_a @ resid @ ( resid @ A @ T ) ) ) ) ).

% R.resid_ide_arr
thf(fact_27_R_Ocong__reflexive,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
     => ( ( ide_a @ resid @ ( resid @ T @ T ) )
        & ( ide_a @ resid @ ( resid @ T @ T ) ) ) ) ).

% R.cong_reflexive
thf(fact_28_R_Oide__implies__arr,axiom,
    ! [A: a] :
      ( ( ide_a @ resid @ A )
     => ( arr_a @ resid @ A ) ) ).

% R.ide_implies_arr
thf(fact_29_R_Oprfx__reflexive,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
     => ( ide_a @ resid @ ( resid @ T @ T ) ) ) ).

% R.prfx_reflexive
thf(fact_30_Arr_Osimps_I1_J,axiom,
    ~ ( paths_in_Arr_a @ resid @ nil_a ) ).

% Arr.simps(1)
thf(fact_31_R_Ocon__implies__arr_I2_J,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( arr_a @ resid @ U ) ) ).

% R.con_implies_arr(2)
thf(fact_32_R_Ocon__implies__arr_I1_J,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( arr_a @ resid @ T ) ) ).

% R.con_implies_arr(1)
thf(fact_33_R_OarrE,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
     => ( con_a @ resid @ T @ T ) ) ).

% R.arrE
thf(fact_34_mem__Collect__eq,axiom,
    ! [A: produc2579390645249093025st_a_a,P: produc2579390645249093025st_a_a > $o] :
      ( ( member8006451231845903178st_a_a @ A @ ( collec3957028472668211340st_a_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_35_mem__Collect__eq,axiom,
    ! [A: produc8685980395799941037list_a,P: produc8685980395799941037list_a > $o] :
      ( ( member4889668945541975382list_a @ A @ ( collec840246186364283544list_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_36_mem__Collect__eq,axiom,
    ! [A: product_prod_a_a,P: product_prod_a_a > $o] :
      ( ( member1426531477525435216od_a_a @ A @ ( collec3336397797384452498od_a_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_37_mem__Collect__eq,axiom,
    ! [A: list_a,P: list_a > $o] :
      ( ( member_list_a @ A @ ( collect_list_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_38_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_39_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_40_Collect__mem__eq,axiom,
    ! [A3: set_Pr8962057229576493569st_a_a] :
      ( ( collec3957028472668211340st_a_a
        @ ^ [X3: produc2579390645249093025st_a_a] : ( member8006451231845903178st_a_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_41_Collect__mem__eq,axiom,
    ! [A3: set_Pr2070066670564046349list_a] :
      ( ( collec840246186364283544list_a
        @ ^ [X3: produc8685980395799941037list_a] : ( member4889668945541975382list_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_42_Collect__mem__eq,axiom,
    ! [A3: set_Product_prod_a_a] :
      ( ( collec3336397797384452498od_a_a
        @ ^ [X3: product_prod_a_a] : ( member1426531477525435216od_a_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_43_Collect__mem__eq,axiom,
    ! [A3: set_list_a] :
      ( ( collect_list_a
        @ ^ [X3: list_a] : ( member_list_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_44_Collect__mem__eq,axiom,
    ! [A3: set_nat] :
      ( ( collect_nat
        @ ^ [X3: nat] : ( member_nat @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_45_Collect__mem__eq,axiom,
    ! [A3: set_a] :
      ( ( collect_a
        @ ^ [X3: a] : ( member_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_46_Collect__cong,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X: a] :
          ( ( P @ X )
          = ( Q @ X ) )
     => ( ( collect_a @ P )
        = ( collect_a @ Q ) ) ) ).

% Collect_cong
thf(fact_47_R_Oarr__def,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
      = ( con_a @ resid @ T @ T ) ) ).

% R.arr_def
thf(fact_48_R_Oarr__resid,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( arr_a @ resid @ ( resid @ T @ U ) ) ) ).

% R.arr_resid
thf(fact_49_R_Oarr__resid__iff__con,axiom,
    ! [T: a,U: a] :
      ( ( arr_a @ resid @ ( resid @ T @ U ) )
      = ( con_a @ resid @ T @ U ) ) ).

% R.arr_resid_iff_con
thf(fact_50_Srcs__are__con,axiom,
    ! [A: a,T4: list_a,A4: a] :
      ( ( member_a @ A @ ( paths_in_Srcs_a @ resid @ T4 ) )
     => ( ( member_a @ A4 @ ( paths_in_Srcs_a @ resid @ T4 ) )
       => ( con_a @ resid @ A @ A4 ) ) ) ).

% Srcs_are_con
thf(fact_51_Con__cons_I2_J,axiom,
    ! [T4: list_a,U2: list_a,U: a] :
      ( ( T4 != nil_a )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ U2 ) )
           != nil_a )
          = ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) )
             != nil_a )
            & ( ( paths_in_Resid_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) ) @ U2 )
             != nil_a ) ) ) ) ) ).

% Con_cons(2)
thf(fact_52_Con__cons_I1_J,axiom,
    ! [T4: list_a,U2: list_a,T: a] :
      ( ( T4 != nil_a )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ U2 )
           != nil_a )
          = ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 )
             != nil_a )
            & ( ( paths_in_Resid_a @ resid @ T4 @ ( paths_in_Resid_a @ resid @ U2 @ ( cons_a @ T @ nil_a ) ) )
             != nil_a ) ) ) ) ) ).

% Con_cons(1)
thf(fact_53_Resid_Osimps_I2_J,axiom,
    ! [V: a,Va2: list_a] :
      ( ( paths_in_Resid_a @ resid @ ( cons_a @ V @ Va2 ) @ nil_a )
      = nil_a ) ).

% Resid.simps(2)
thf(fact_54_Resid__cons_I2_J,axiom,
    ! [U2: list_a,T4: list_a,U: a] :
      ( ( U2 != nil_a )
     => ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ U2 ) )
         != nil_a )
       => ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ U2 ) )
          = ( paths_in_Resid_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) ) @ U2 ) ) ) ) ).

% Resid_cons(2)
thf(fact_55_Resid__rec_I3_J,axiom,
    ! [U2: list_a,T: a,U: a] :
      ( ( U2 != nil_a )
     => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ U2 ) )
         != nil_a )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ U2 ) )
          = ( paths_in_Resid_a @ resid @ ( cons_a @ ( resid @ T @ U ) @ nil_a ) @ U2 ) ) ) ) ).

% Resid_rec(3)
thf(fact_56_Resid__rec_I2_J,axiom,
    ! [T4: list_a,T: a,U: a] :
      ( ( T4 != nil_a )
     => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ nil_a ) )
         != nil_a )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ nil_a ) )
          = ( cons_a @ ( resid @ T @ U ) @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ ( resid @ U @ T ) @ nil_a ) ) ) ) ) ) ).

% Resid_rec(2)
thf(fact_57_Con__initial__left,axiom,
    ! [T: a,T4: list_a,U2: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ U2 )
       != nil_a )
     => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 )
       != nil_a ) ) ).

% Con_initial_left
thf(fact_58_Con__initial__right,axiom,
    ! [T4: list_a,U: a,U2: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ U2 ) )
       != nil_a )
     => ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) )
       != nil_a ) ) ).

% Con_initial_right
thf(fact_59_Srcs__con__closed,axiom,
    ! [A: a,T4: list_a,A4: a] :
      ( ( member_a @ A @ ( paths_in_Srcs_a @ resid @ T4 ) )
     => ( ( ide_a @ resid @ A4 )
       => ( ( con_a @ resid @ A @ A4 )
         => ( member_a @ A4 @ ( paths_in_Srcs_a @ resid @ T4 ) ) ) ) ) ).

% Srcs_con_closed
thf(fact_60_Srcs__are__ide,axiom,
    ! [T4: list_a] : ( ord_less_eq_set_a @ ( paths_in_Srcs_a @ resid @ T4 ) @ ( collect_a @ ( ide_a @ resid ) ) ) ).

% Srcs_are_ide
thf(fact_61_Con__rec_I4_J,axiom,
    ! [T4: list_a,U2: list_a,T: a,U: a] :
      ( ( T4 != nil_a )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ U2 ) )
           != nil_a )
          = ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ ( resid @ U @ T ) @ nil_a ) )
             != nil_a )
            & ( ( paths_in_Resid_a @ resid @ ( cons_a @ ( resid @ T @ U ) @ nil_a ) @ U2 )
             != nil_a )
            & ( ( paths_in_Resid_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ ( resid @ U @ T ) @ nil_a ) ) @ ( paths_in_Resid_a @ resid @ U2 @ ( cons_a @ ( resid @ T @ U ) @ nil_a ) ) )
             != nil_a ) ) ) ) ) ).

% Con_rec(4)
thf(fact_62_Con__rec_I3_J,axiom,
    ! [U2: list_a,T: a,U: a] :
      ( ( U2 != nil_a )
     => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ U2 ) )
         != nil_a )
        = ( ( con_a @ resid @ T @ U )
          & ( ( paths_in_Resid_a @ resid @ ( cons_a @ ( resid @ T @ U ) @ nil_a ) @ U2 )
           != nil_a ) ) ) ) ).

% Con_rec(3)
thf(fact_63_Con__rec_I2_J,axiom,
    ! [T4: list_a,T: a,U: a] :
      ( ( T4 != nil_a )
     => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ nil_a ) )
         != nil_a )
        = ( ( con_a @ resid @ T @ U )
          & ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ ( resid @ U @ T ) @ nil_a ) )
           != nil_a ) ) ) ) ).

% Con_rec(2)
thf(fact_64_Con__rec_I1_J,axiom,
    ! [T: a,U: a] :
      ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
       != nil_a )
      = ( con_a @ resid @ T @ U ) ) ).

% Con_rec(1)
thf(fact_65_Resid_Osimps_I3_J,axiom,
    ! [T: a,U: a] :
      ( ( ( con_a @ resid @ T @ U )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
          = ( cons_a @ ( resid @ T @ U ) @ nil_a ) ) )
      & ( ~ ( con_a @ resid @ T @ U )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
          = nil_a ) ) ) ).

% Resid.simps(3)
thf(fact_66_Arr_Osimps_I2_J,axiom,
    ! [T: a] :
      ( ( paths_in_Arr_a @ resid @ ( cons_a @ T @ nil_a ) )
      = ( arr_a @ resid @ T ) ) ).

% Arr.simps(2)
thf(fact_67__092_060open_062_092_060And_062a_O_A_I_091a_093_A_092_060_094sup_062_K_092_092_060_094sup_062_K_A_091_093_A_092_060noteq_062_A_091_093_J_A_061_A_IArr_A_091_093_A_092_060and_062_Aa_A_092_060in_062_ASrcs_A_091_093_J_092_060close_062,axiom,
    ! [A: a] :
      ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ A @ nil_a ) @ nil_a )
       != nil_a )
      = ( ( paths_in_Arr_a @ resid @ nil_a )
        & ( member_a @ A @ ( paths_in_Srcs_a @ resid @ nil_a ) ) ) ) ).

% \<open>\<And>a. ([a] \<^sup>*\\<^sup>* [] \<noteq> []) = (Arr [] \<and> a \<in> Srcs [])\<close>
thf(fact_68_Resid__Arr__Src,axiom,
    ! [T4: list_a,A: a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( ( member_a @ A @ ( paths_in_Srcs_a @ resid @ T4 ) )
       => ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ A @ nil_a ) )
          = T4 ) ) ) ).

% Resid_Arr_Src
thf(fact_69_Resid__rel_Ocong,axiom,
    paths_in_Resid_rel_a = paths_in_Resid_rel_a ).

% Resid_rel.cong
thf(fact_70_ind,axiom,
    ! [A: a] :
      ( ( ide_a @ resid @ A )
     => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ A @ nil_a ) @ ta )
         != nil_a )
        = ( ( paths_in_Arr_a @ resid @ ta )
          & ( member_a @ A @ ( paths_in_Srcs_a @ resid @ ta ) ) ) ) ) ).

% ind
thf(fact_71__C1_C,axiom,
    ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ aa @ nil_a ) @ ( cons_a @ t @ ta ) )
     != nil_a )
    = ( ( con_a @ resid @ aa @ t )
      & ( ( paths_in_Resid_a @ resid @ ( cons_a @ ( resid @ aa @ t ) @ nil_a ) @ ta )
       != nil_a ) ) ) ).

% "1"
thf(fact_72__092_060open_062T_A_061_A_091_093_A_092_060Longrightarrow_062_A_I_091a_093_A_092_060_094sup_062_K_092_092_060_094sup_062_K_A_It_A_D_AT_J_A_092_060noteq_062_A_091_093_J_A_061_A_IArr_A_It_A_D_AT_J_A_092_060and_062_Aa_A_092_060in_062_ASrcs_A_It_A_D_AT_J_J_092_060close_062,axiom,
    ( ( ta = nil_a )
   => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ aa @ nil_a ) @ ( cons_a @ t @ ta ) )
       != nil_a )
      = ( ( paths_in_Arr_a @ resid @ ( cons_a @ t @ ta ) )
        & ( member_a @ aa @ ( paths_in_Srcs_a @ resid @ ( cons_a @ t @ ta ) ) ) ) ) ) ).

% \<open>T = [] \<Longrightarrow> ([a] \<^sup>*\\<^sup>* (t # T) \<noteq> []) = (Arr (t # T) \<and> a \<in> Srcs (t # T))\<close>
thf(fact_73__C2_C,axiom,
    ( ( ( con_a @ resid @ aa @ t )
      & ( ( paths_in_Resid_a @ resid @ ( cons_a @ ( resid @ aa @ t ) @ nil_a ) @ ta )
       != nil_a ) )
    = ( ( con_a @ resid @ aa @ t )
      & ( paths_in_Arr_a @ resid @ ta )
      & ( member_a @ ( resid @ aa @ t ) @ ( paths_in_Srcs_a @ resid @ ta ) ) ) ) ).

% "2"
thf(fact_74_calculation,axiom,
    ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ aa @ nil_a ) @ ( cons_a @ t @ ta ) )
     != nil_a )
    = ( ( con_a @ resid @ aa @ t )
      & ( paths_in_Arr_a @ resid @ ta )
      & ( member_a @ ( resid @ aa @ t ) @ ( paths_in_Srcs_a @ resid @ ta ) ) ) ) ).

% calculation
thf(fact_75_R_OideI,axiom,
    ! [A: a] :
      ( ( con_a @ resid @ A @ A )
     => ( ( ( resid @ A @ A )
          = A )
       => ( ide_a @ resid @ A ) ) ) ).

% R.ideI
thf(fact_76_R_OarrI,axiom,
    ! [T: a] :
      ( ( con_a @ resid @ T @ T )
     => ( arr_a @ resid @ T ) ) ).

% R.arrI
thf(fact_77_Con__consI_I2_J,axiom,
    ! [T4: list_a,U2: list_a,U: a] :
      ( ( T4 != nil_a )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) )
           != nil_a )
         => ( ( ( paths_in_Resid_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) ) @ U2 )
             != nil_a )
           => ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ U2 ) )
             != nil_a ) ) ) ) ) ).

% Con_consI(2)
thf(fact_78_Con__consI_I1_J,axiom,
    ! [T4: list_a,U2: list_a,T: a] :
      ( ( T4 != nil_a )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 )
           != nil_a )
         => ( ( ( paths_in_Resid_a @ resid @ T4 @ ( paths_in_Resid_a @ resid @ U2 @ ( cons_a @ T @ nil_a ) ) )
             != nil_a )
           => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ U2 )
             != nil_a ) ) ) ) ) ).

% Con_consI(1)
thf(fact_79_Resid__rec_I1_J,axiom,
    ! [T: a,U: a] :
      ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
       != nil_a )
     => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
        = ( cons_a @ ( resid @ T @ U ) @ nil_a ) ) ) ).

% Resid_rec(1)
thf(fact_80_paths__in__rts__axioms,axiom,
    paths_in_rts_a @ resid ).

% paths_in_rts_axioms
thf(fact_81_residuation_Oarr_Ocong,axiom,
    arr_a = arr_a ).

% residuation.arr.cong
thf(fact_82_residuation_Ocon_Ocong,axiom,
    con_a = con_a ).

% residuation.con.cong
thf(fact_83_residuation_Oide_Ocong,axiom,
    ide_a = ide_a ).

% residuation.ide.cong
thf(fact_84_paths__in__rts_OArr_Ocong,axiom,
    paths_in_Arr_a = paths_in_Arr_a ).

% paths_in_rts.Arr.cong
thf(fact_85_paths__in__rts_OSrcs_Ocong,axiom,
    paths_in_Srcs_a = paths_in_Srcs_a ).

% paths_in_rts.Srcs.cong
thf(fact_86_paths__in__rts_OResid_Ocong,axiom,
    paths_in_Resid_a = paths_in_Resid_a ).

% paths_in_rts.Resid.cong
thf(fact_87_R_Opartial__magma__axioms,axiom,
    partial_magma_a @ resid ).

% R.partial_magma_axioms
thf(fact_88_R_Oidentities__form__coherent__normal__sub__rts,axiom,
    cohere6072184133013167079_rts_a @ resid @ ( collect_a @ ( ide_a @ resid ) ) ).

% R.identities_form_coherent_normal_sub_rts
thf(fact_89_R_Ocong__implies__coterminal,axiom,
    ! [U: a,U3: a] :
      ( ( ( ide_a @ resid @ ( resid @ U @ U3 ) )
        & ( ide_a @ resid @ ( resid @ U3 @ U ) ) )
     => ( coterminal_a @ resid @ U @ U3 ) ) ).

% R.cong_implies_coterminal
thf(fact_90_Arr_Oelims_I3_J,axiom,
    ! [X2: list_a] :
      ( ~ ( paths_in_Arr_a @ resid @ X2 )
     => ( ( X2 != nil_a )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ( arr_a @ resid @ T3 ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ( ( arr_a @ resid @ T3 )
                  & ( paths_in_Arr_a @ resid @ ( cons_a @ V2 @ Va ) )
                  & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% Arr.elims(3)
thf(fact_91_Arr_Oelims_I2_J,axiom,
    ! [X2: list_a] :
      ( ( paths_in_Arr_a @ resid @ X2 )
     => ( ! [T3: a] :
            ( ( X2
              = ( cons_a @ T3 @ nil_a ) )
           => ~ ( arr_a @ resid @ T3 ) )
       => ~ ! [T3: a,V2: a,Va: list_a] :
              ( ( X2
                = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
             => ~ ( ( arr_a @ resid @ T3 )
                  & ( paths_in_Arr_a @ resid @ ( cons_a @ V2 @ Va ) )
                  & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ).

% Arr.elims(2)
thf(fact_92_Arr_Oelims_I1_J,axiom,
    ! [X2: list_a,Y2: $o] :
      ( ( ( paths_in_Arr_a @ resid @ X2 )
        = Y2 )
     => ( ( ( X2 = nil_a )
         => Y2 )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ( Y2
                = ( ~ ( arr_a @ resid @ T3 ) ) ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ( Y2
                  = ( ~ ( ( arr_a @ resid @ T3 )
                        & ( paths_in_Arr_a @ resid @ ( cons_a @ V2 @ Va ) )
                        & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% Arr.elims(1)
thf(fact_93_Srcs__Resid__single__Arr,axiom,
    ! [U: a,T4: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ U @ nil_a ) @ T4 )
       != nil_a )
     => ( ( paths_in_Srcs_a @ resid @ ( paths_in_Resid_a @ resid @ ( cons_a @ U @ nil_a ) @ T4 ) )
        = ( paths_in_Trgs_a @ resid @ T4 ) ) ) ).

% Srcs_Resid_single_Arr
thf(fact_94_Arr_Osimps_I3_J,axiom,
    ! [T: a,V: a,Va2: list_a] :
      ( ( paths_in_Arr_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) )
      = ( ( arr_a @ resid @ T )
        & ( paths_in_Arr_a @ resid @ ( cons_a @ V @ Va2 ) )
        & ( ord_less_eq_set_a @ ( targets_a @ resid @ T ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V @ Va2 ) ) ) ) ) ).

% Arr.simps(3)
thf(fact_95_Resid_Osimps_I5_J,axiom,
    ! [T: a,U: a,V: a,Va2: list_a] :
      ( ( ( ( con_a @ resid @ T @ U )
          & ( ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) )
           != nil_a ) )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) )
          = ( cons_a @ ( resid @ T @ U ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) ) ) )
      & ( ~ ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) )
             != nil_a ) )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) )
          = nil_a ) ) ) ).

% Resid.simps(5)
thf(fact_96_R_Ojoinable__implies__con,axiom,
    ! [T: a,U: a] :
      ( ( joinable_a @ resid @ T @ U )
     => ( con_a @ resid @ T @ U ) ) ).

% R.joinable_implies_con
thf(fact_97_set__Arr__subset__arr,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( collect_a @ ( arr_a @ resid ) ) ) ) ).

% set_Arr_subset_arr
thf(fact_98_Ide_Osimps_I2_J,axiom,
    ! [T: a] :
      ( ( paths_in_Ide_a @ resid @ ( cons_a @ T @ nil_a ) )
      = ( ide_a @ resid @ T ) ) ).

% Ide.simps(2)
thf(fact_99_R_Otargets__cong__closed,axiom,
    ! [B: a,T: a,B2: a] :
      ( ( member_a @ B @ ( targets_a @ resid @ T ) )
     => ( ( ( ide_a @ resid @ ( resid @ B @ B2 ) )
          & ( ide_a @ resid @ ( resid @ B2 @ B ) ) )
       => ( member_a @ B2 @ ( targets_a @ resid @ T ) ) ) ) ).

% R.targets_cong_closed
thf(fact_100_R_Otargets__are__cong,axiom,
    ! [B: a,T: a,B2: a] :
      ( ( member_a @ B @ ( targets_a @ resid @ T ) )
     => ( ( member_a @ B2 @ ( targets_a @ resid @ T ) )
       => ( ( ide_a @ resid @ ( resid @ B @ B2 ) )
          & ( ide_a @ resid @ ( resid @ B2 @ B ) ) ) ) ) ).

% R.targets_are_cong
thf(fact_101_R_Otarget__is__ide,axiom,
    ! [A: a,T: a] :
      ( ( member_a @ A @ ( targets_a @ resid @ T ) )
     => ( ide_a @ resid @ A ) ) ).

% R.target_is_ide
thf(fact_102_R_Otargets__resid__sym,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( ( targets_a @ resid @ ( resid @ T @ U ) )
        = ( targets_a @ resid @ ( resid @ U @ T ) ) ) ) ).

% R.targets_resid_sym
thf(fact_103_R_Otargets__are__con,axiom,
    ! [B: a,T: a,B2: a] :
      ( ( member_a @ B @ ( targets_a @ resid @ T ) )
     => ( ( member_a @ B2 @ ( targets_a @ resid @ T ) )
       => ( con_a @ resid @ B @ B2 ) ) ) ).

% R.targets_are_con
thf(fact_104_Residx1_Osimps_I1_J,axiom,
    ! [U: a] :
      ( ( paths_in_Residx1_a @ resid @ nil_a @ U )
      = nil_a ) ).

% Residx1.simps(1)
thf(fact_105_Trgs_Osimps_I3_J,axiom,
    ! [T: a,V: a,Va2: list_a] :
      ( ( paths_in_Trgs_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) )
      = ( paths_in_Trgs_a @ resid @ ( cons_a @ V @ Va2 ) ) ) ).

% Trgs.simps(3)
thf(fact_106_Ide_Osimps_I1_J,axiom,
    ~ ( paths_in_Ide_a @ resid @ nil_a ) ).

% Ide.simps(1)
thf(fact_107_Trgs__are__con,axiom,
    ! [B: a,T4: list_a,B2: a] :
      ( ( member_a @ B @ ( paths_in_Trgs_a @ resid @ T4 ) )
     => ( ( member_a @ B2 @ ( paths_in_Trgs_a @ resid @ T4 ) )
       => ( con_a @ resid @ B @ B2 ) ) ) ).

% Trgs_are_con
thf(fact_108_Ide__implies__Arr,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Ide_a @ resid @ T4 )
     => ( paths_in_Arr_a @ resid @ T4 ) ) ).

% Ide_implies_Arr
thf(fact_109_R_Otargets__con__closed,axiom,
    ! [B: a,T: a,B2: a] :
      ( ( member_a @ B @ ( targets_a @ resid @ T ) )
     => ( ( ide_a @ resid @ B2 )
       => ( ( con_a @ resid @ B @ B2 )
         => ( member_a @ B2 @ ( targets_a @ resid @ T ) ) ) ) ) ).

% R.targets_con_closed
thf(fact_110_Trgs__con__closed,axiom,
    ! [B: a,T4: list_a,B2: a] :
      ( ( member_a @ B @ ( paths_in_Trgs_a @ resid @ T4 ) )
     => ( ( ide_a @ resid @ B2 )
       => ( ( con_a @ resid @ B @ B2 )
         => ( member_a @ B2 @ ( paths_in_Trgs_a @ resid @ T4 ) ) ) ) ) ).

% Trgs_con_closed
thf(fact_111_Trgs__are__ide,axiom,
    ! [T4: list_a] : ( ord_less_eq_set_a @ ( paths_in_Trgs_a @ resid @ T4 ) @ ( collect_a @ ( ide_a @ resid ) ) ) ).

% Trgs_are_ide
thf(fact_112_R_Ocoterminal__iff,axiom,
    ! [T: a,T5: a] :
      ( ( coterminal_a @ resid @ T @ T5 )
      = ( ( arr_a @ resid @ T )
        & ( arr_a @ resid @ T5 )
        & ( ( targets_a @ resid @ T )
          = ( targets_a @ resid @ T5 ) ) ) ) ).

% R.coterminal_iff
thf(fact_113_R_OcoterminalE,axiom,
    ! [T: a,U: a] :
      ( ( coterminal_a @ resid @ T @ U )
     => ~ ( ( arr_a @ resid @ T )
         => ( ( arr_a @ resid @ U )
           => ( ( targets_a @ resid @ T )
             != ( targets_a @ resid @ U ) ) ) ) ) ).

% R.coterminalE
thf(fact_114_Residx1__as__Resid,axiom,
    ! [T4: list_a,U: a] :
      ( ( paths_in_Residx1_a @ resid @ T4 @ U )
      = ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) ) ) ).

% Residx1_as_Resid
thf(fact_115_Trgs__Resid__sym__Arr__single,axiom,
    ! [T4: list_a,U: a] :
      ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) )
       != nil_a )
     => ( ( paths_in_Trgs_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) ) )
        = ( paths_in_Trgs_a @ resid @ ( paths_in_Resid_a @ resid @ ( cons_a @ U @ nil_a ) @ T4 ) ) ) ) ).

% Trgs_Resid_sym_Arr_single
thf(fact_116_Residx1_Osimps_I2_J,axiom,
    ! [T: a,U: a] :
      ( ( ( con_a @ resid @ T @ U )
       => ( ( paths_in_Residx1_a @ resid @ ( cons_a @ T @ nil_a ) @ U )
          = ( cons_a @ ( resid @ T @ U ) @ nil_a ) ) )
      & ( ~ ( con_a @ resid @ T @ U )
       => ( ( paths_in_Residx1_a @ resid @ ( cons_a @ T @ nil_a ) @ U )
          = nil_a ) ) ) ).

% Residx1.simps(2)
thf(fact_117_Residx1_Osimps_I3_J,axiom,
    ! [T: a,U: a,V: a,Va2: list_a] :
      ( ( ( ( con_a @ resid @ T @ U )
          & ( ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) )
           != nil_a ) )
       => ( ( paths_in_Residx1_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ U )
          = ( cons_a @ ( resid @ T @ U ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) ) ) )
      & ( ~ ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) )
             != nil_a ) )
       => ( ( paths_in_Residx1_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ U )
          = nil_a ) ) ) ).

% Residx1.simps(3)
thf(fact_118_Trgs_Osimps_I2_J,axiom,
    ! [T: a] :
      ( ( paths_in_Trgs_a @ resid @ ( cons_a @ T @ nil_a ) )
      = ( targets_a @ resid @ T ) ) ).

% Trgs.simps(2)
thf(fact_119_set__Ide__subset__ide,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Ide_a @ resid @ T4 )
     => ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( collect_a @ ( ide_a @ resid ) ) ) ) ).

% set_Ide_subset_ide
thf(fact_120_Srcs__Resid__Arr__single,axiom,
    ! [T4: list_a,U: a] :
      ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) )
       != nil_a )
     => ( ( paths_in_Srcs_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U @ nil_a ) ) )
        = ( targets_a @ resid @ U ) ) ) ).

% Srcs_Resid_Arr_single
thf(fact_121_Ide__char,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Ide_a @ resid @ T4 )
      = ( ( paths_in_Arr_a @ resid @ T4 )
        & ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( collect_a @ ( ide_a @ resid ) ) ) ) ) ).

% Ide_char
thf(fact_122_Ide_Osimps_I3_J,axiom,
    ! [T: a,V: a,Va2: list_a] :
      ( ( paths_in_Ide_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) )
      = ( ( ide_a @ resid @ T )
        & ( paths_in_Ide_a @ resid @ ( cons_a @ V @ Va2 ) )
        & ( ord_less_eq_set_a @ ( targets_a @ resid @ T ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V @ Va2 ) ) ) ) ) ).

% Ide.simps(3)
thf(fact_123_Ide_Oelims_I1_J,axiom,
    ! [X2: list_a,Y2: $o] :
      ( ( ( paths_in_Ide_a @ resid @ X2 )
        = Y2 )
     => ( ( ( X2 = nil_a )
         => Y2 )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ( Y2
                = ( ~ ( ide_a @ resid @ T3 ) ) ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ( Y2
                  = ( ~ ( ( ide_a @ resid @ T3 )
                        & ( paths_in_Ide_a @ resid @ ( cons_a @ V2 @ Va ) )
                        & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% Ide.elims(1)
thf(fact_124_Ide_Oelims_I2_J,axiom,
    ! [X2: list_a] :
      ( ( paths_in_Ide_a @ resid @ X2 )
     => ( ! [T3: a] :
            ( ( X2
              = ( cons_a @ T3 @ nil_a ) )
           => ~ ( ide_a @ resid @ T3 ) )
       => ~ ! [T3: a,V2: a,Va: list_a] :
              ( ( X2
                = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
             => ~ ( ( ide_a @ resid @ T3 )
                  & ( paths_in_Ide_a @ resid @ ( cons_a @ V2 @ Va ) )
                  & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ).

% Ide.elims(2)
thf(fact_125_Ide_Oelims_I3_J,axiom,
    ! [X2: list_a] :
      ( ~ ( paths_in_Ide_a @ resid @ X2 )
     => ( ( X2 != nil_a )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ( ide_a @ resid @ T3 ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ( ( ide_a @ resid @ T3 )
                  & ( paths_in_Ide_a @ resid @ ( cons_a @ V2 @ Va ) )
                  & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% Ide.elims(3)
thf(fact_126_Trgs__Resid__sym,axiom,
    ! [T4: list_a,U2: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ T4 @ U2 )
       != nil_a )
     => ( ( paths_in_Trgs_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ U2 ) )
        = ( paths_in_Trgs_a @ resid @ ( paths_in_Resid_a @ resid @ U2 @ T4 ) ) ) ) ).

% Trgs_Resid_sym
thf(fact_127_R_OcoterminalI,axiom,
    ! [T: a,U: a] :
      ( ( arr_a @ resid @ T )
     => ( ( ( targets_a @ resid @ T )
          = ( targets_a @ resid @ U ) )
       => ( coterminal_a @ resid @ T @ U ) ) ) ).

% R.coterminalI
thf(fact_128_Srcs__Resid,axiom,
    ! [T4: list_a,U2: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ T4 @ U2 )
       != nil_a )
     => ( ( paths_in_Srcs_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ U2 ) )
        = ( paths_in_Trgs_a @ resid @ U2 ) ) ) ).

% Srcs_Resid
thf(fact_129_IdeI,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( collect_a @ ( ide_a @ resid ) ) )
       => ( paths_in_Ide_a @ resid @ T4 ) ) ) ).

% IdeI
thf(fact_130_rts_Otargets_Ocong,axiom,
    targets_a = targets_a ).

% rts.targets.cong
thf(fact_131_rts_Ojoinable_Ocong,axiom,
    joinable_a = joinable_a ).

% rts.joinable.cong
thf(fact_132_paths__in__rts_OIde_Ocong,axiom,
    paths_in_Ide_a = paths_in_Ide_a ).

% paths_in_rts.Ide.cong
thf(fact_133_paths__in__rts_OTrgs_Ocong,axiom,
    paths_in_Trgs_a = paths_in_Trgs_a ).

% paths_in_rts.Trgs.cong
thf(fact_134_paths__in__rts_OResidx1_Ocong,axiom,
    paths_in_Residx1_a = paths_in_Residx1_a ).

% paths_in_rts.Residx1.cong
thf(fact_135_rts_Ocoterminal_Ocong,axiom,
    coterminal_a = coterminal_a ).

% rts.coterminal.cong
thf(fact_136_partial__magma__def,axiom,
    ( partial_magma_a
    = ( ^ [OP: a > a > a] :
        ? [X3: a] :
          ( ! [T6: a] :
              ( ( ( OP @ X3 @ T6 )
                = X3 )
              & ( ( OP @ T6 @ X3 )
                = X3 ) )
          & ! [Y3: a] :
              ( ! [T6: a] :
                  ( ( ( OP @ Y3 @ T6 )
                    = Y3 )
                  & ( ( OP @ T6 @ Y3 )
                    = Y3 ) )
             => ( Y3 = X3 ) ) ) ) ) ).

% partial_magma_def
thf(fact_137_partial__magma_Oex__un__null,axiom,
    ! [OP2: a > a > a] :
      ( ( partial_magma_a @ OP2 )
     => ? [X: a] :
          ( ! [T2: a] :
              ( ( ( OP2 @ X @ T2 )
                = X )
              & ( ( OP2 @ T2 @ X )
                = X ) )
          & ! [Y: a] :
              ( ! [T3: a] :
                  ( ( ( OP2 @ Y @ T3 )
                    = Y )
                  & ( ( OP2 @ T3 @ Y )
                    = Y ) )
             => ( Y = X ) ) ) ) ).

% partial_magma.ex_un_null
thf(fact_138_partial__magma_Ointro,axiom,
    ! [OP2: a > a > a] :
      ( ? [X4: a] :
          ( ! [T3: a] :
              ( ( ( OP2 @ X4 @ T3 )
                = X4 )
              & ( ( OP2 @ T3 @ X4 )
                = X4 ) )
          & ! [Y4: a] :
              ( ! [T2: a] :
                  ( ( ( OP2 @ Y4 @ T2 )
                    = Y4 )
                  & ( ( OP2 @ T2 @ Y4 )
                    = Y4 ) )
             => ( Y4 = X4 ) ) )
     => ( partial_magma_a @ OP2 ) ) ).

% partial_magma.intro
thf(fact_139_paths__in__rts_OResidx1_Osimps_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_3541054012941122297list_a @ Resid @ nil_list_a @ U )
        = nil_list_a ) ) ).

% paths_in_rts.Residx1.simps(1)
thf(fact_140_paths__in__rts_OResidx1_Osimps_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_5162067660074578515_set_a @ Resid @ nil_set_a @ U )
        = nil_set_a ) ) ).

% paths_in_rts.Residx1.simps(1)
thf(fact_141_paths__in__rts_OResidx1_Osimps_I1_J,axiom,
    ! [Resid: a > a > a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Residx1_a @ Resid @ nil_a @ U )
        = nil_a ) ) ).

% paths_in_rts.Residx1.simps(1)
thf(fact_142_paths__in__rts_OTrgs_Osimps_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,V: list_a,Va2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Trgs_list_a @ Resid @ ( cons_list_a @ T @ ( cons_list_a @ V @ Va2 ) ) )
        = ( paths_in_Trgs_list_a @ Resid @ ( cons_list_a @ V @ Va2 ) ) ) ) ).

% paths_in_rts.Trgs.simps(3)
thf(fact_143_paths__in__rts_OTrgs_Osimps_I3_J,axiom,
    ! [Resid: a > a > a,T: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Trgs_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) )
        = ( paths_in_Trgs_a @ Resid @ ( cons_a @ V @ Va2 ) ) ) ) ).

% paths_in_rts.Trgs.simps(3)
thf(fact_144_paths__in__rts_OIde_Osimps_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ~ ( paths_in_Ide_list_a @ Resid @ nil_list_a ) ) ).

% paths_in_rts.Ide.simps(1)
thf(fact_145_paths__in__rts_OIde_Osimps_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ~ ( paths_in_Ide_set_a @ Resid @ nil_set_a ) ) ).

% paths_in_rts.Ide.simps(1)
thf(fact_146_paths__in__rts_OIde_Osimps_I1_J,axiom,
    ! [Resid: a > a > a] :
      ( ( paths_in_rts_a @ Resid )
     => ~ ( paths_in_Ide_a @ Resid @ nil_a ) ) ).

% paths_in_rts.Ide.simps(1)
thf(fact_147_paths__in__rts_OTrgs__are__con,axiom,
    ! [Resid: produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a,B: produc2579390645249093025st_a_a,T4: list_P2210424090985720871st_a_a,B2: produc2579390645249093025st_a_a] :
      ( ( paths_4232552623637367430st_a_a @ Resid )
     => ( ( member8006451231845903178st_a_a @ B @ ( paths_2794423126656725868st_a_a @ Resid @ T4 ) )
       => ( ( member8006451231845903178st_a_a @ B2 @ ( paths_2794423126656725868st_a_a @ Resid @ T4 ) )
         => ( con_Pr7383801431968512653st_a_a @ Resid @ B @ B2 ) ) ) ) ).

% paths_in_rts.Trgs_are_con
thf(fact_148_paths__in__rts_OTrgs__are__con,axiom,
    ! [Resid: produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a,B: produc8685980395799941037list_a,T4: list_P4541805568828049459list_a,B2: produc8685980395799941037list_a] :
      ( ( paths_1115770337333439634list_a @ Resid )
     => ( ( member4889668945541975382list_a @ B @ ( paths_8901012877207573880list_a @ Resid @ T4 ) )
       => ( ( member4889668945541975382list_a @ B2 @ ( paths_8901012877207573880list_a @ Resid @ T4 ) )
         => ( con_Pr4267019145664584857list_a @ Resid @ B @ B2 ) ) ) ) ).

% paths_in_rts.Trgs_are_con
thf(fact_149_paths__in__rts_OTrgs__are__con,axiom,
    ! [Resid: product_prod_a_a > product_prod_a_a > product_prod_a_a,B: product_prod_a_a,T4: list_P1396940483166286381od_a_a,B2: product_prod_a_a] :
      ( ( paths_2703364527051407500od_a_a @ Resid )
     => ( ( member1426531477525435216od_a_a @ B @ ( paths_4392315070405530738od_a_a @ Resid @ T4 ) )
       => ( ( member1426531477525435216od_a_a @ B2 @ ( paths_4392315070405530738od_a_a @ Resid @ T4 ) )
         => ( con_Product_prod_a_a @ Resid @ B @ B2 ) ) ) ) ).

% paths_in_rts.Trgs_are_con
thf(fact_150_paths__in__rts_OTrgs__are__con,axiom,
    ! [Resid: list_a > list_a > list_a,B: list_a,T4: list_list_a,B2: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( member_list_a @ B @ ( paths_in_Trgs_list_a @ Resid @ T4 ) )
       => ( ( member_list_a @ B2 @ ( paths_in_Trgs_list_a @ Resid @ T4 ) )
         => ( con_list_a @ Resid @ B @ B2 ) ) ) ) ).

% paths_in_rts.Trgs_are_con
thf(fact_151_paths__in__rts_OTrgs__are__con,axiom,
    ! [Resid: nat > nat > nat,B: nat,T4: list_nat,B2: nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( member_nat @ B @ ( paths_in_Trgs_nat @ Resid @ T4 ) )
       => ( ( member_nat @ B2 @ ( paths_in_Trgs_nat @ Resid @ T4 ) )
         => ( con_nat @ Resid @ B @ B2 ) ) ) ) ).

% paths_in_rts.Trgs_are_con
thf(fact_152_paths__in__rts_OTrgs__are__con,axiom,
    ! [Resid: a > a > a,B: a,T4: list_a,B2: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( member_a @ B @ ( paths_in_Trgs_a @ Resid @ T4 ) )
       => ( ( member_a @ B2 @ ( paths_in_Trgs_a @ Resid @ T4 ) )
         => ( con_a @ Resid @ B @ B2 ) ) ) ) ).

% paths_in_rts.Trgs_are_con
thf(fact_153_paths__in__rts_OTrgs_Osimps_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Trgs_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) )
        = ( targets_set_a @ Resid @ T ) ) ) ).

% paths_in_rts.Trgs.simps(2)
thf(fact_154_paths__in__rts_OTrgs_Osimps_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Trgs_list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) )
        = ( targets_list_a @ Resid @ T ) ) ) ).

% paths_in_rts.Trgs.simps(2)
thf(fact_155_paths__in__rts_OTrgs_Osimps_I2_J,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Trgs_a @ Resid @ ( cons_a @ T @ nil_a ) )
        = ( targets_a @ Resid @ T ) ) ) ).

% paths_in_rts.Trgs.simps(2)
thf(fact_156_paths__in__rts_OIde__implies__Arr,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ T4 )
       => ( paths_in_Arr_a @ Resid @ T4 ) ) ) ).

% paths_in_rts.Ide_implies_Arr
thf(fact_157_paths__in__rts_Oset__Ide__subset__ide,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Ide_list_a @ Resid @ T4 )
       => ( ord_le8861187494160871172list_a @ ( set_list_a2 @ T4 ) @ ( collect_list_a @ ( ide_list_a @ Resid ) ) ) ) ) ).

% paths_in_rts.set_Ide_subset_ide
thf(fact_158_paths__in__rts_Oset__Ide__subset__ide,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ T4 )
       => ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( collect_a @ ( ide_a @ Resid ) ) ) ) ) ).

% paths_in_rts.set_Ide_subset_ide
thf(fact_159_paths__in__rts_OIde__char,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Ide_list_a @ Resid @ T4 )
        = ( ( paths_in_Arr_list_a @ Resid @ T4 )
          & ( ord_le8861187494160871172list_a @ ( set_list_a2 @ T4 ) @ ( collect_list_a @ ( ide_list_a @ Resid ) ) ) ) ) ) ).

% paths_in_rts.Ide_char
thf(fact_160_paths__in__rts_OIde__char,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ T4 )
        = ( ( paths_in_Arr_a @ Resid @ T4 )
          & ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( collect_a @ ( ide_a @ Resid ) ) ) ) ) ) ).

% paths_in_rts.Ide_char
thf(fact_161_paths__in__rts_OIdeI,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Arr_list_a @ Resid @ T4 )
       => ( ( ord_le8861187494160871172list_a @ ( set_list_a2 @ T4 ) @ ( collect_list_a @ ( ide_list_a @ Resid ) ) )
         => ( paths_in_Ide_list_a @ Resid @ T4 ) ) ) ) ).

% paths_in_rts.IdeI
thf(fact_162_paths__in__rts_OIdeI,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( collect_a @ ( ide_a @ Resid ) ) )
         => ( paths_in_Ide_a @ Resid @ T4 ) ) ) ) ).

% paths_in_rts.IdeI
thf(fact_163_paths__in__rts_OTrgs__are__ide,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ord_le8861187494160871172list_a @ ( paths_in_Trgs_list_a @ Resid @ T4 ) @ ( collect_list_a @ ( ide_list_a @ Resid ) ) ) ) ).

% paths_in_rts.Trgs_are_ide
thf(fact_164_paths__in__rts_OTrgs__are__ide,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ord_less_eq_set_a @ ( paths_in_Trgs_a @ Resid @ T4 ) @ ( collect_a @ ( ide_a @ Resid ) ) ) ) ).

% paths_in_rts.Trgs_are_ide
thf(fact_165_paths__in__rts_OTrgs__Resid__sym,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ U2 )
         != nil_list_a )
       => ( ( paths_in_Trgs_list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ T4 @ U2 ) )
          = ( paths_in_Trgs_list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ U2 @ T4 ) ) ) ) ) ).

% paths_in_rts.Trgs_Resid_sym
thf(fact_166_paths__in__rts_OTrgs__Resid__sym,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ U2 )
         != nil_set_a )
       => ( ( paths_in_Trgs_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ T4 @ U2 ) )
          = ( paths_in_Trgs_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ U2 @ T4 ) ) ) ) ) ).

% paths_in_rts.Trgs_Resid_sym
thf(fact_167_paths__in__rts_OTrgs__Resid__sym,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ T4 @ U2 )
         != nil_a )
       => ( ( paths_in_Trgs_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ U2 ) )
          = ( paths_in_Trgs_a @ Resid @ ( paths_in_Resid_a @ Resid @ U2 @ T4 ) ) ) ) ) ).

% paths_in_rts.Trgs_Resid_sym
thf(fact_168_paths__in__rts_OTrgs__con__closed,axiom,
    ! [Resid: produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a,B: produc2579390645249093025st_a_a,T4: list_P2210424090985720871st_a_a,B2: produc2579390645249093025st_a_a] :
      ( ( paths_4232552623637367430st_a_a @ Resid )
     => ( ( member8006451231845903178st_a_a @ B @ ( paths_2794423126656725868st_a_a @ Resid @ T4 ) )
       => ( ( ide_Pr4006845958993808965st_a_a @ Resid @ B2 )
         => ( ( con_Pr7383801431968512653st_a_a @ Resid @ B @ B2 )
           => ( member8006451231845903178st_a_a @ B2 @ ( paths_2794423126656725868st_a_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Trgs_con_closed
thf(fact_169_paths__in__rts_OTrgs__con__closed,axiom,
    ! [Resid: produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a,B: produc8685980395799941037list_a,T4: list_P4541805568828049459list_a,B2: produc8685980395799941037list_a] :
      ( ( paths_1115770337333439634list_a @ Resid )
     => ( ( member4889668945541975382list_a @ B @ ( paths_8901012877207573880list_a @ Resid @ T4 ) )
       => ( ( ide_Pr890063672689881169list_a @ Resid @ B2 )
         => ( ( con_Pr4267019145664584857list_a @ Resid @ B @ B2 )
           => ( member4889668945541975382list_a @ B2 @ ( paths_8901012877207573880list_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Trgs_con_closed
thf(fact_170_paths__in__rts_OTrgs__con__closed,axiom,
    ! [Resid: product_prod_a_a > product_prod_a_a > product_prod_a_a,B: product_prod_a_a,T4: list_P1396940483166286381od_a_a,B2: product_prod_a_a] :
      ( ( paths_2703364527051407500od_a_a @ Resid )
     => ( ( member1426531477525435216od_a_a @ B @ ( paths_4392315070405530738od_a_a @ Resid @ T4 ) )
       => ( ( ide_Product_prod_a_a @ Resid @ B2 )
         => ( ( con_Product_prod_a_a @ Resid @ B @ B2 )
           => ( member1426531477525435216od_a_a @ B2 @ ( paths_4392315070405530738od_a_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Trgs_con_closed
thf(fact_171_paths__in__rts_OTrgs__con__closed,axiom,
    ! [Resid: list_a > list_a > list_a,B: list_a,T4: list_list_a,B2: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( member_list_a @ B @ ( paths_in_Trgs_list_a @ Resid @ T4 ) )
       => ( ( ide_list_a @ Resid @ B2 )
         => ( ( con_list_a @ Resid @ B @ B2 )
           => ( member_list_a @ B2 @ ( paths_in_Trgs_list_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Trgs_con_closed
thf(fact_172_paths__in__rts_OTrgs__con__closed,axiom,
    ! [Resid: nat > nat > nat,B: nat,T4: list_nat,B2: nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( member_nat @ B @ ( paths_in_Trgs_nat @ Resid @ T4 ) )
       => ( ( ide_nat @ Resid @ B2 )
         => ( ( con_nat @ Resid @ B @ B2 )
           => ( member_nat @ B2 @ ( paths_in_Trgs_nat @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Trgs_con_closed
thf(fact_173_paths__in__rts_OTrgs__con__closed,axiom,
    ! [Resid: a > a > a,B: a,T4: list_a,B2: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( member_a @ B @ ( paths_in_Trgs_a @ Resid @ T4 ) )
       => ( ( ide_a @ Resid @ B2 )
         => ( ( con_a @ Resid @ B @ B2 )
           => ( member_a @ B2 @ ( paths_in_Trgs_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Trgs_con_closed
thf(fact_174_paths__in__rts_OIde_Osimps_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,V: list_a,Va2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Ide_list_a @ Resid @ ( cons_list_a @ T @ ( cons_list_a @ V @ Va2 ) ) )
        = ( ( ide_list_a @ Resid @ T )
          & ( paths_in_Ide_list_a @ Resid @ ( cons_list_a @ V @ Va2 ) )
          & ( ord_le8861187494160871172list_a @ ( targets_list_a @ Resid @ T ) @ ( paths_in_Srcs_list_a @ Resid @ ( cons_list_a @ V @ Va2 ) ) ) ) ) ) ).

% paths_in_rts.Ide.simps(3)
thf(fact_175_paths__in__rts_OIde_Osimps_I3_J,axiom,
    ! [Resid: a > a > a,T: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) )
        = ( ( ide_a @ Resid @ T )
          & ( paths_in_Ide_a @ Resid @ ( cons_a @ V @ Va2 ) )
          & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V @ Va2 ) ) ) ) ) ) ).

% paths_in_rts.Ide.simps(3)
thf(fact_176_paths__in__rts_Oset__Arr__subset__arr,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Arr_list_a @ Resid @ T4 )
       => ( ord_le8861187494160871172list_a @ ( set_list_a2 @ T4 ) @ ( collect_list_a @ ( arr_list_a @ Resid ) ) ) ) ) ).

% paths_in_rts.set_Arr_subset_arr
thf(fact_177_paths__in__rts_Oset__Arr__subset__arr,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( collect_a @ ( arr_a @ Resid ) ) ) ) ) ).

% paths_in_rts.set_Arr_subset_arr
thf(fact_178_paths__in__rts_OResidx1_Osimps_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( con_set_a @ Resid @ T @ U )
         => ( ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ U )
            = ( cons_set_a @ ( Resid @ T @ U ) @ nil_set_a ) ) )
        & ( ~ ( con_set_a @ Resid @ T @ U )
         => ( ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ U )
            = nil_set_a ) ) ) ) ).

% paths_in_rts.Residx1.simps(2)
thf(fact_179_paths__in__rts_OResidx1_Osimps_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( con_list_a @ Resid @ T @ U )
         => ( ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ U )
            = ( cons_list_a @ ( Resid @ T @ U ) @ nil_list_a ) ) )
        & ( ~ ( con_list_a @ Resid @ T @ U )
         => ( ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ U )
            = nil_list_a ) ) ) ) ).

% paths_in_rts.Residx1.simps(2)
thf(fact_180_paths__in__rts_OResidx1_Osimps_I2_J,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( con_a @ Resid @ T @ U )
         => ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ T @ nil_a ) @ U )
            = ( cons_a @ ( Resid @ T @ U ) @ nil_a ) ) )
        & ( ~ ( con_a @ Resid @ T @ U )
         => ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ T @ nil_a ) @ U )
            = nil_a ) ) ) ) ).

% paths_in_rts.Residx1.simps(2)
thf(fact_181_paths__in__rts_OResidx1_Osimps_I3_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,U: set_a,V: set_a,Va2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( ( con_set_a @ Resid @ T @ U )
            & ( ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
             != nil_set_a ) )
         => ( ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ T @ ( cons_set_a @ V @ Va2 ) ) @ U )
            = ( cons_set_a @ ( Resid @ T @ U ) @ ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) ) ) )
        & ( ~ ( ( con_set_a @ Resid @ T @ U )
              & ( ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
               != nil_set_a ) )
         => ( ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ T @ ( cons_set_a @ V @ Va2 ) ) @ U )
            = nil_set_a ) ) ) ) ).

% paths_in_rts.Residx1.simps(3)
thf(fact_182_paths__in__rts_OResidx1_Osimps_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U: list_a,V: list_a,Va2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( ( con_list_a @ Resid @ T @ U )
            & ( ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
             != nil_list_a ) )
         => ( ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ T @ ( cons_list_a @ V @ Va2 ) ) @ U )
            = ( cons_list_a @ ( Resid @ T @ U ) @ ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) ) ) )
        & ( ~ ( ( con_list_a @ Resid @ T @ U )
              & ( ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
               != nil_list_a ) )
         => ( ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ T @ ( cons_list_a @ V @ Va2 ) ) @ U )
            = nil_list_a ) ) ) ) ).

% paths_in_rts.Residx1.simps(3)
thf(fact_183_paths__in__rts_OResidx1_Osimps_I3_J,axiom,
    ! [Resid: a > a > a,T: a,U: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( ( con_a @ Resid @ T @ U )
            & ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
             != nil_a ) )
         => ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ U )
            = ( cons_a @ ( Resid @ T @ U ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) ) ) )
        & ( ~ ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
               != nil_a ) )
         => ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ U )
            = nil_a ) ) ) ) ).

% paths_in_rts.Residx1.simps(3)
thf(fact_184_paths__in__rts_OResidx1__as__Resid,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_5162067660074578515_set_a @ Resid @ T4 @ U )
        = ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) ) ) ) ).

% paths_in_rts.Residx1_as_Resid
thf(fact_185_paths__in__rts_OResidx1__as__Resid,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_3541054012941122297list_a @ Resid @ T4 @ U )
        = ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) ) ) ) ).

% paths_in_rts.Residx1_as_Resid
thf(fact_186_paths__in__rts_OResidx1__as__Resid,axiom,
    ! [Resid: a > a > a,T4: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Residx1_a @ Resid @ T4 @ U )
        = ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) ) ) ) ).

% paths_in_rts.Residx1_as_Resid
thf(fact_187_paths__in__rts_OTrgs__Resid__sym__Arr__single,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) )
         != nil_set_a )
       => ( ( paths_in_Trgs_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) ) )
          = ( paths_in_Trgs_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ U @ nil_set_a ) @ T4 ) ) ) ) ) ).

% paths_in_rts.Trgs_Resid_sym_Arr_single
thf(fact_188_paths__in__rts_OTrgs__Resid__sym__Arr__single,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) )
         != nil_list_a )
       => ( ( paths_in_Trgs_list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) ) )
          = ( paths_in_Trgs_list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ U @ nil_list_a ) @ T4 ) ) ) ) ) ).

% paths_in_rts.Trgs_Resid_sym_Arr_single
thf(fact_189_paths__in__rts_OTrgs__Resid__sym__Arr__single,axiom,
    ! [Resid: a > a > a,T4: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) )
         != nil_a )
       => ( ( paths_in_Trgs_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) ) )
          = ( paths_in_Trgs_a @ Resid @ ( paths_in_Resid_a @ Resid @ ( cons_a @ U @ nil_a ) @ T4 ) ) ) ) ) ).

% paths_in_rts.Trgs_Resid_sym_Arr_single
thf(fact_190_paths__in__rts_OIde_Osimps_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Ide_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) )
        = ( ide_set_a @ Resid @ T ) ) ) ).

% paths_in_rts.Ide.simps(2)
thf(fact_191_paths__in__rts_OIde_Osimps_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Ide_list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) )
        = ( ide_list_a @ Resid @ T ) ) ) ).

% paths_in_rts.Ide.simps(2)
thf(fact_192_paths__in__rts_OIde_Osimps_I2_J,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ ( cons_a @ T @ nil_a ) )
        = ( ide_a @ Resid @ T ) ) ) ).

% paths_in_rts.Ide.simps(2)
thf(fact_193_paths__in__rts_OSrcs__Resid,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ U2 )
         != nil_list_a )
       => ( ( paths_in_Srcs_list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ T4 @ U2 ) )
          = ( paths_in_Trgs_list_a @ Resid @ U2 ) ) ) ) ).

% paths_in_rts.Srcs_Resid
thf(fact_194_paths__in__rts_OSrcs__Resid,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ U2 )
         != nil_set_a )
       => ( ( paths_in_Srcs_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ T4 @ U2 ) )
          = ( paths_in_Trgs_set_a @ Resid @ U2 ) ) ) ) ).

% paths_in_rts.Srcs_Resid
thf(fact_195_paths__in__rts_OSrcs__Resid,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ T4 @ U2 )
         != nil_a )
       => ( ( paths_in_Srcs_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ U2 ) )
          = ( paths_in_Trgs_a @ Resid @ U2 ) ) ) ) ).

% paths_in_rts.Srcs_Resid
thf(fact_196_paths__in__rts_OIde_Oelims_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a,X2: list_set_a,Y2: $o] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Ide_set_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_set_a )
           => Y2 )
         => ( ! [T3: set_a] :
                ( ( X2
                  = ( cons_set_a @ T3 @ nil_set_a ) )
               => ( Y2
                  = ( ~ ( ide_set_a @ Resid @ T3 ) ) ) )
           => ~ ! [T3: set_a,V2: set_a,Va: list_set_a] :
                  ( ( X2
                    = ( cons_set_a @ T3 @ ( cons_set_a @ V2 @ Va ) ) )
                 => ( Y2
                    = ( ~ ( ( ide_set_a @ Resid @ T3 )
                          & ( paths_in_Ide_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) )
                          & ( ord_le3724670747650509150_set_a @ ( targets_set_a @ Resid @ T3 ) @ ( paths_in_Srcs_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(1)
thf(fact_197_paths__in__rts_OIde_Oelims_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a,X2: list_list_a,Y2: $o] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_in_Ide_list_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_list_a )
           => Y2 )
         => ( ! [T3: list_a] :
                ( ( X2
                  = ( cons_list_a @ T3 @ nil_list_a ) )
               => ( Y2
                  = ( ~ ( ide_list_a @ Resid @ T3 ) ) ) )
           => ~ ! [T3: list_a,V2: list_a,Va: list_list_a] :
                  ( ( X2
                    = ( cons_list_a @ T3 @ ( cons_list_a @ V2 @ Va ) ) )
                 => ( Y2
                    = ( ~ ( ( ide_list_a @ Resid @ T3 )
                          & ( paths_in_Ide_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) )
                          & ( ord_le8861187494160871172list_a @ ( targets_list_a @ Resid @ T3 ) @ ( paths_in_Srcs_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(1)
thf(fact_198_paths__in__rts_OIde_Oelims_I1_J,axiom,
    ! [Resid: a > a > a,X2: list_a,Y2: $o] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Ide_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_a )
           => Y2 )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( Y2
                  = ( ~ ( ide_a @ Resid @ T3 ) ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( Y2
                    = ( ~ ( ( ide_a @ Resid @ T3 )
                          & ( paths_in_Ide_a @ Resid @ ( cons_a @ V2 @ Va ) )
                          & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(1)
thf(fact_199_paths__in__rts_OIde_Oelims_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,X2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Ide_set_a @ Resid @ X2 )
       => ( ! [T3: set_a] :
              ( ( X2
                = ( cons_set_a @ T3 @ nil_set_a ) )
             => ~ ( ide_set_a @ Resid @ T3 ) )
         => ~ ! [T3: set_a,V2: set_a,Va: list_set_a] :
                ( ( X2
                  = ( cons_set_a @ T3 @ ( cons_set_a @ V2 @ Va ) ) )
               => ~ ( ( ide_set_a @ Resid @ T3 )
                    & ( paths_in_Ide_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) )
                    & ( ord_le3724670747650509150_set_a @ ( targets_set_a @ Resid @ T3 ) @ ( paths_in_Srcs_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(2)
thf(fact_200_paths__in__rts_OIde_Oelims_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,X2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Ide_list_a @ Resid @ X2 )
       => ( ! [T3: list_a] :
              ( ( X2
                = ( cons_list_a @ T3 @ nil_list_a ) )
             => ~ ( ide_list_a @ Resid @ T3 ) )
         => ~ ! [T3: list_a,V2: list_a,Va: list_list_a] :
                ( ( X2
                  = ( cons_list_a @ T3 @ ( cons_list_a @ V2 @ Va ) ) )
               => ~ ( ( ide_list_a @ Resid @ T3 )
                    & ( paths_in_Ide_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) )
                    & ( ord_le8861187494160871172list_a @ ( targets_list_a @ Resid @ T3 ) @ ( paths_in_Srcs_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(2)
thf(fact_201_paths__in__rts_OIde_Oelims_I2_J,axiom,
    ! [Resid: a > a > a,X2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ X2 )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ~ ( ide_a @ Resid @ T3 ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ~ ( ( ide_a @ Resid @ T3 )
                    & ( paths_in_Ide_a @ Resid @ ( cons_a @ V2 @ Va ) )
                    & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(2)
thf(fact_202_paths__in__rts_OIde_Oelims_I3_J,axiom,
    ! [Resid: set_a > set_a > set_a,X2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ~ ( paths_in_Ide_set_a @ Resid @ X2 )
       => ( ( X2 != nil_set_a )
         => ( ! [T3: set_a] :
                ( ( X2
                  = ( cons_set_a @ T3 @ nil_set_a ) )
               => ( ide_set_a @ Resid @ T3 ) )
           => ~ ! [T3: set_a,V2: set_a,Va: list_set_a] :
                  ( ( X2
                    = ( cons_set_a @ T3 @ ( cons_set_a @ V2 @ Va ) ) )
                 => ( ( ide_set_a @ Resid @ T3 )
                    & ( paths_in_Ide_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) )
                    & ( ord_le3724670747650509150_set_a @ ( targets_set_a @ Resid @ T3 ) @ ( paths_in_Srcs_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(3)
thf(fact_203_paths__in__rts_OIde_Oelims_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,X2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ~ ( paths_in_Ide_list_a @ Resid @ X2 )
       => ( ( X2 != nil_list_a )
         => ( ! [T3: list_a] :
                ( ( X2
                  = ( cons_list_a @ T3 @ nil_list_a ) )
               => ( ide_list_a @ Resid @ T3 ) )
           => ~ ! [T3: list_a,V2: list_a,Va: list_list_a] :
                  ( ( X2
                    = ( cons_list_a @ T3 @ ( cons_list_a @ V2 @ Va ) ) )
                 => ( ( ide_list_a @ Resid @ T3 )
                    & ( paths_in_Ide_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) )
                    & ( ord_le8861187494160871172list_a @ ( targets_list_a @ Resid @ T3 ) @ ( paths_in_Srcs_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(3)
thf(fact_204_paths__in__rts_OIde_Oelims_I3_J,axiom,
    ! [Resid: a > a > a,X2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ~ ( paths_in_Ide_a @ Resid @ X2 )
       => ( ( X2 != nil_a )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ide_a @ Resid @ T3 ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( ide_a @ Resid @ T3 )
                    & ( paths_in_Ide_a @ Resid @ ( cons_a @ V2 @ Va ) )
                    & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.elims(3)
thf(fact_205_paths__in__rts_OSrcs__Resid__Arr__single,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) )
         != nil_set_a )
       => ( ( paths_in_Srcs_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) ) )
          = ( targets_set_a @ Resid @ U ) ) ) ) ).

% paths_in_rts.Srcs_Resid_Arr_single
thf(fact_206_paths__in__rts_OSrcs__Resid__Arr__single,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) )
         != nil_list_a )
       => ( ( paths_in_Srcs_list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) ) )
          = ( targets_list_a @ Resid @ U ) ) ) ) ).

% paths_in_rts.Srcs_Resid_Arr_single
thf(fact_207_paths__in__rts_OSrcs__Resid__Arr__single,axiom,
    ! [Resid: a > a > a,T4: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) )
         != nil_a )
       => ( ( paths_in_Srcs_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) ) )
          = ( targets_a @ Resid @ U ) ) ) ) ).

% paths_in_rts.Srcs_Resid_Arr_single
thf(fact_208_paths__in__rts_OTrgs_Ocases,axiom,
    ! [Resid: set_a > set_a > set_a,X2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( X2 != nil_set_a )
       => ( ! [T3: set_a] :
              ( X2
             != ( cons_set_a @ T3 @ nil_set_a ) )
         => ~ ! [T3: set_a,V2: set_a,Va: list_set_a] :
                ( X2
               != ( cons_set_a @ T3 @ ( cons_set_a @ V2 @ Va ) ) ) ) ) ) ).

% paths_in_rts.Trgs.cases
thf(fact_209_paths__in__rts_OTrgs_Ocases,axiom,
    ! [Resid: list_a > list_a > list_a,X2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( X2 != nil_list_a )
       => ( ! [T3: list_a] :
              ( X2
             != ( cons_list_a @ T3 @ nil_list_a ) )
         => ~ ! [T3: list_a,V2: list_a,Va: list_list_a] :
                ( X2
               != ( cons_list_a @ T3 @ ( cons_list_a @ V2 @ Va ) ) ) ) ) ) ).

% paths_in_rts.Trgs.cases
thf(fact_210_paths__in__rts_OTrgs_Ocases,axiom,
    ! [Resid: a > a > a,X2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( X2 != nil_a )
       => ( ! [T3: a] :
              ( X2
             != ( cons_a @ T3 @ nil_a ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( X2
               != ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ).

% paths_in_rts.Trgs.cases
thf(fact_211_paths__in__rts_OCon__sym,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ U2 )
         != nil_list_a )
        = ( ( paths_8620460302779588466list_a @ Resid @ U2 @ T4 )
         != nil_list_a ) ) ) ).

% paths_in_rts.Con_sym
thf(fact_212_paths__in__rts_OCon__sym,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ U2 )
         != nil_set_a )
        = ( ( paths_in_Resid_set_a @ Resid @ U2 @ T4 )
         != nil_set_a ) ) ) ).

% paths_in_rts.Con_sym
thf(fact_213_paths__in__rts_OCon__sym,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ T4 @ U2 )
         != nil_a )
        = ( ( paths_in_Resid_a @ Resid @ U2 @ T4 )
         != nil_a ) ) ) ).

% paths_in_rts.Con_sym
thf(fact_214_paths__in__rts_OResid_Osimps_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a,Uu: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_8620460302779588466list_a @ Resid @ nil_list_a @ Uu )
        = nil_list_a ) ) ).

% paths_in_rts.Resid.simps(1)
thf(fact_215_paths__in__rts_OResid_Osimps_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a,Uu: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Resid_set_a @ Resid @ nil_set_a @ Uu )
        = nil_set_a ) ) ).

% paths_in_rts.Resid.simps(1)
thf(fact_216_paths__in__rts_OResid_Osimps_I1_J,axiom,
    ! [Resid: a > a > a,Uu: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Resid_a @ Resid @ nil_a @ Uu )
        = nil_a ) ) ).

% paths_in_rts.Resid.simps(1)
thf(fact_217_paths__in__rts_OArr_Osimps_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ~ ( paths_in_Arr_list_a @ Resid @ nil_list_a ) ) ).

% paths_in_rts.Arr.simps(1)
thf(fact_218_paths__in__rts_OArr_Osimps_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ~ ( paths_in_Arr_set_a @ Resid @ nil_set_a ) ) ).

% paths_in_rts.Arr.simps(1)
thf(fact_219_paths__in__rts_OArr_Osimps_I1_J,axiom,
    ! [Resid: a > a > a] :
      ( ( paths_in_rts_a @ Resid )
     => ~ ( paths_in_Arr_a @ Resid @ nil_a ) ) ).

% paths_in_rts.Arr.simps(1)
thf(fact_220_paths__in__rts_OResid_Osimps_I5_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,U: set_a,V: set_a,Va2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( ( con_set_a @ Resid @ T @ U )
            & ( ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
             != nil_set_a ) )
         => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ ( cons_set_a @ V @ Va2 ) ) @ ( cons_set_a @ U @ nil_set_a ) )
            = ( cons_set_a @ ( Resid @ T @ U ) @ ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) ) ) )
        & ( ~ ( ( con_set_a @ Resid @ T @ U )
              & ( ( paths_5162067660074578515_set_a @ Resid @ ( cons_set_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
               != nil_set_a ) )
         => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ ( cons_set_a @ V @ Va2 ) ) @ ( cons_set_a @ U @ nil_set_a ) )
            = nil_set_a ) ) ) ) ).

% paths_in_rts.Resid.simps(5)
thf(fact_221_paths__in__rts_OResid_Osimps_I5_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U: list_a,V: list_a,Va2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( ( con_list_a @ Resid @ T @ U )
            & ( ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
             != nil_list_a ) )
         => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ ( cons_list_a @ V @ Va2 ) ) @ ( cons_list_a @ U @ nil_list_a ) )
            = ( cons_list_a @ ( Resid @ T @ U ) @ ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) ) ) )
        & ( ~ ( ( con_list_a @ Resid @ T @ U )
              & ( ( paths_3541054012941122297list_a @ Resid @ ( cons_list_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
               != nil_list_a ) )
         => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ ( cons_list_a @ V @ Va2 ) ) @ ( cons_list_a @ U @ nil_list_a ) )
            = nil_list_a ) ) ) ) ).

% paths_in_rts.Resid.simps(5)
thf(fact_222_paths__in__rts_OResid_Osimps_I5_J,axiom,
    ! [Resid: a > a > a,T: a,U: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( ( con_a @ Resid @ T @ U )
            & ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
             != nil_a ) )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) )
            = ( cons_a @ ( Resid @ T @ U ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) ) ) )
        & ( ~ ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
               != nil_a ) )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) )
            = nil_a ) ) ) ) ).

% paths_in_rts.Resid.simps(5)
thf(fact_223_paths__in__rts_OSrcs__are__con,axiom,
    ! [Resid: produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a,A: produc2579390645249093025st_a_a,T4: list_P2210424090985720871st_a_a,A4: produc2579390645249093025st_a_a] :
      ( ( paths_4232552623637367430st_a_a @ Resid )
     => ( ( member8006451231845903178st_a_a @ A @ ( paths_332773396847195111st_a_a @ Resid @ T4 ) )
       => ( ( member8006451231845903178st_a_a @ A4 @ ( paths_332773396847195111st_a_a @ Resid @ T4 ) )
         => ( con_Pr7383801431968512653st_a_a @ Resid @ A @ A4 ) ) ) ) ).

% paths_in_rts.Srcs_are_con
thf(fact_224_paths__in__rts_OSrcs__are__con,axiom,
    ! [Resid: produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a,A: produc8685980395799941037list_a,T4: list_P4541805568828049459list_a,A4: produc8685980395799941037list_a] :
      ( ( paths_1115770337333439634list_a @ Resid )
     => ( ( member4889668945541975382list_a @ A @ ( paths_6439363147398043123list_a @ Resid @ T4 ) )
       => ( ( member4889668945541975382list_a @ A4 @ ( paths_6439363147398043123list_a @ Resid @ T4 ) )
         => ( con_Pr4267019145664584857list_a @ Resid @ A @ A4 ) ) ) ) ).

% paths_in_rts.Srcs_are_con
thf(fact_225_paths__in__rts_OSrcs__are__con,axiom,
    ! [Resid: product_prod_a_a > product_prod_a_a > product_prod_a_a,A: product_prod_a_a,T4: list_P1396940483166286381od_a_a,A4: product_prod_a_a] :
      ( ( paths_2703364527051407500od_a_a @ Resid )
     => ( ( member1426531477525435216od_a_a @ A @ ( paths_2488790558265101933od_a_a @ Resid @ T4 ) )
       => ( ( member1426531477525435216od_a_a @ A4 @ ( paths_2488790558265101933od_a_a @ Resid @ T4 ) )
         => ( con_Product_prod_a_a @ Resid @ A @ A4 ) ) ) ) ).

% paths_in_rts.Srcs_are_con
thf(fact_226_paths__in__rts_OSrcs__are__con,axiom,
    ! [Resid: list_a > list_a > list_a,A: list_a,T4: list_list_a,A4: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( member_list_a @ A @ ( paths_in_Srcs_list_a @ Resid @ T4 ) )
       => ( ( member_list_a @ A4 @ ( paths_in_Srcs_list_a @ Resid @ T4 ) )
         => ( con_list_a @ Resid @ A @ A4 ) ) ) ) ).

% paths_in_rts.Srcs_are_con
thf(fact_227_paths__in__rts_OSrcs__are__con,axiom,
    ! [Resid: nat > nat > nat,A: nat,T4: list_nat,A4: nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( member_nat @ A @ ( paths_in_Srcs_nat @ Resid @ T4 ) )
       => ( ( member_nat @ A4 @ ( paths_in_Srcs_nat @ Resid @ T4 ) )
         => ( con_nat @ Resid @ A @ A4 ) ) ) ) ).

% paths_in_rts.Srcs_are_con
thf(fact_228_paths__in__rts_OSrcs__are__con,axiom,
    ! [Resid: a > a > a,A: a,T4: list_a,A4: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( member_a @ A @ ( paths_in_Srcs_a @ Resid @ T4 ) )
       => ( ( member_a @ A4 @ ( paths_in_Srcs_a @ Resid @ T4 ) )
         => ( con_a @ Resid @ A @ A4 ) ) ) ) ).

% paths_in_rts.Srcs_are_con
thf(fact_229_paths__in__rts_OSrcs__Resid__single__Arr,axiom,
    ! [Resid: set_a > set_a > set_a,U: set_a,T4: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ U @ nil_set_a ) @ T4 )
         != nil_set_a )
       => ( ( paths_in_Srcs_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ U @ nil_set_a ) @ T4 ) )
          = ( paths_in_Trgs_set_a @ Resid @ T4 ) ) ) ) ).

% paths_in_rts.Srcs_Resid_single_Arr
thf(fact_230_paths__in__rts_OSrcs__Resid__single__Arr,axiom,
    ! [Resid: list_a > list_a > list_a,U: list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ U @ nil_list_a ) @ T4 )
         != nil_list_a )
       => ( ( paths_in_Srcs_list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ U @ nil_list_a ) @ T4 ) )
          = ( paths_in_Trgs_list_a @ Resid @ T4 ) ) ) ) ).

% paths_in_rts.Srcs_Resid_single_Arr
thf(fact_231_paths__in__rts_OSrcs__Resid__single__Arr,axiom,
    ! [Resid: a > a > a,U: a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ U @ nil_a ) @ T4 )
         != nil_a )
       => ( ( paths_in_Srcs_a @ Resid @ ( paths_in_Resid_a @ Resid @ ( cons_a @ U @ nil_a ) @ T4 ) )
          = ( paths_in_Trgs_a @ Resid @ T4 ) ) ) ) ).

% paths_in_rts.Srcs_Resid_single_Arr
thf(fact_232_paths__in__rts_OArr_Osimps_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,V: list_a,Va2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Arr_list_a @ Resid @ ( cons_list_a @ T @ ( cons_list_a @ V @ Va2 ) ) )
        = ( ( arr_list_a @ Resid @ T )
          & ( paths_in_Arr_list_a @ Resid @ ( cons_list_a @ V @ Va2 ) )
          & ( ord_le8861187494160871172list_a @ ( targets_list_a @ Resid @ T ) @ ( paths_in_Srcs_list_a @ Resid @ ( cons_list_a @ V @ Va2 ) ) ) ) ) ) ).

% paths_in_rts.Arr.simps(3)
thf(fact_233_paths__in__rts_OArr_Osimps_I3_J,axiom,
    ! [Resid: a > a > a,T: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) )
        = ( ( arr_a @ Resid @ T )
          & ( paths_in_Arr_a @ Resid @ ( cons_a @ V @ Va2 ) )
          & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V @ Va2 ) ) ) ) ) ) ).

% paths_in_rts.Arr.simps(3)
thf(fact_234_paths__in__rts_OCon__initial__right,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U: set_a,U2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ U2 ) )
         != nil_set_a )
       => ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) )
         != nil_set_a ) ) ) ).

% paths_in_rts.Con_initial_right
thf(fact_235_paths__in__rts_OCon__initial__right,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U: list_a,U2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ U2 ) )
         != nil_list_a )
       => ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) )
         != nil_list_a ) ) ) ).

% paths_in_rts.Con_initial_right
thf(fact_236_paths__in__rts_OCon__initial__right,axiom,
    ! [Resid: a > a > a,T4: list_a,U: a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ U2 ) )
         != nil_a )
       => ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) )
         != nil_a ) ) ) ).

% paths_in_rts.Con_initial_right
thf(fact_237_paths__in__rts_OCon__initial__left,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,T4: list_set_a,U2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ U2 )
         != nil_set_a )
       => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ U2 )
         != nil_set_a ) ) ) ).

% paths_in_rts.Con_initial_left
thf(fact_238_paths__in__rts_OCon__initial__left,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,T4: list_list_a,U2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ U2 )
         != nil_list_a )
       => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ U2 )
         != nil_list_a ) ) ) ).

% paths_in_rts.Con_initial_left
thf(fact_239_paths__in__rts_OCon__initial__left,axiom,
    ! [Resid: a > a > a,T: a,T4: list_a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ U2 )
         != nil_a )
       => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 )
         != nil_a ) ) ) ).

% paths_in_rts.Con_initial_left
thf(fact_240_paths__in__rts_OResid_Osimps_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,V: set_a,Va2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ V @ Va2 ) @ nil_set_a )
        = nil_set_a ) ) ).

% paths_in_rts.Resid.simps(2)
thf(fact_241_paths__in__rts_OResid_Osimps_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,V: list_a,Va2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ V @ Va2 ) @ nil_list_a )
        = nil_list_a ) ) ).

% paths_in_rts.Resid.simps(2)
thf(fact_242_paths__in__rts_OResid_Osimps_I2_J,axiom,
    ! [Resid: a > a > a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ V @ Va2 ) @ nil_a )
        = nil_a ) ) ).

% paths_in_rts.Resid.simps(2)
thf(fact_243_paths__in__rts_OResid__cons_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,U2: list_set_a,T4: list_set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( U2 != nil_set_a )
       => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ U2 ) )
           != nil_set_a )
         => ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ U2 ) )
            = ( paths_in_Resid_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) ) @ U2 ) ) ) ) ) ).

% paths_in_rts.Resid_cons(2)
thf(fact_244_paths__in__rts_OResid__cons_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,U2: list_list_a,T4: list_list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( U2 != nil_list_a )
       => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ U2 ) )
           != nil_list_a )
         => ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ U2 ) )
            = ( paths_8620460302779588466list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) ) @ U2 ) ) ) ) ) ).

% paths_in_rts.Resid_cons(2)
thf(fact_245_paths__in__rts_OResid__cons_I2_J,axiom,
    ! [Resid: a > a > a,U2: list_a,T4: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ U2 ) )
           != nil_a )
         => ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ U2 ) )
            = ( paths_in_Resid_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) ) @ U2 ) ) ) ) ) ).

% paths_in_rts.Resid_cons(2)
thf(fact_246_paths__in__rts_OResid__rec_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ ( cons_set_a @ U @ nil_set_a ) )
         != nil_set_a )
       => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ ( cons_set_a @ U @ nil_set_a ) )
          = ( cons_set_a @ ( Resid @ T @ U ) @ nil_set_a ) ) ) ) ).

% paths_in_rts.Resid_rec(1)
thf(fact_247_paths__in__rts_OResid__rec_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ ( cons_list_a @ U @ nil_list_a ) )
         != nil_list_a )
       => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ ( cons_list_a @ U @ nil_list_a ) )
          = ( cons_list_a @ ( Resid @ T @ U ) @ nil_list_a ) ) ) ) ).

% paths_in_rts.Resid_rec(1)
thf(fact_248_paths__in__rts_OResid__rec_I1_J,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
         != nil_a )
       => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
          = ( cons_a @ ( Resid @ T @ U ) @ nil_a ) ) ) ) ).

% paths_in_rts.Resid_rec(1)
thf(fact_249_paths__in__rts_OResid__rec_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( T4 != nil_set_a )
       => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ ( cons_set_a @ U @ nil_set_a ) )
           != nil_set_a )
         => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ ( cons_set_a @ U @ nil_set_a ) )
            = ( cons_set_a @ ( Resid @ T @ U ) @ ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ ( Resid @ U @ T ) @ nil_set_a ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_rec(2)
thf(fact_250_paths__in__rts_OResid__rec_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( T4 != nil_list_a )
       => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ ( cons_list_a @ U @ nil_list_a ) )
           != nil_list_a )
         => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ ( cons_list_a @ U @ nil_list_a ) )
            = ( cons_list_a @ ( Resid @ T @ U ) @ ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ ( Resid @ U @ T ) @ nil_list_a ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_rec(2)
thf(fact_251_paths__in__rts_OResid__rec_I2_J,axiom,
    ! [Resid: a > a > a,T4: list_a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ nil_a ) )
           != nil_a )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ nil_a ) )
            = ( cons_a @ ( Resid @ T @ U ) @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ ( Resid @ U @ T ) @ nil_a ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_rec(2)
thf(fact_252_paths__in__rts_OResid__rec_I3_J,axiom,
    ! [Resid: set_a > set_a > set_a,U2: list_set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( U2 != nil_set_a )
       => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ ( cons_set_a @ U @ U2 ) )
           != nil_set_a )
         => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ ( cons_set_a @ U @ U2 ) )
            = ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ ( Resid @ T @ U ) @ nil_set_a ) @ U2 ) ) ) ) ) ).

% paths_in_rts.Resid_rec(3)
thf(fact_253_paths__in__rts_OResid__rec_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,U2: list_list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( U2 != nil_list_a )
       => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ ( cons_list_a @ U @ U2 ) )
           != nil_list_a )
         => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ ( cons_list_a @ U @ U2 ) )
            = ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ ( Resid @ T @ U ) @ nil_list_a ) @ U2 ) ) ) ) ) ).

% paths_in_rts.Resid_rec(3)
thf(fact_254_paths__in__rts_OResid__rec_I3_J,axiom,
    ! [Resid: a > a > a,U2: list_a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ U2 ) )
           != nil_a )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ U2 ) )
            = ( paths_in_Resid_a @ Resid @ ( cons_a @ ( Resid @ T @ U ) @ nil_a ) @ U2 ) ) ) ) ) ).

% paths_in_rts.Resid_rec(3)
thf(fact_255_paths__in__rts_OCon__consI_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U2: list_set_a,T: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( T4 != nil_set_a )
       => ( ( U2 != nil_set_a )
         => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ U2 )
             != nil_set_a )
           => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( paths_in_Resid_set_a @ Resid @ U2 @ ( cons_set_a @ T @ nil_set_a ) ) )
               != nil_set_a )
             => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ U2 )
               != nil_set_a ) ) ) ) ) ) ).

% paths_in_rts.Con_consI(1)
thf(fact_256_paths__in__rts_OCon__consI_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U2: list_list_a,T: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( T4 != nil_list_a )
       => ( ( U2 != nil_list_a )
         => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ U2 )
             != nil_list_a )
           => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( paths_8620460302779588466list_a @ Resid @ U2 @ ( cons_list_a @ T @ nil_list_a ) ) )
               != nil_list_a )
             => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ U2 )
               != nil_list_a ) ) ) ) ) ) ).

% paths_in_rts.Con_consI(1)
thf(fact_257_paths__in__rts_OCon__consI_I1_J,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,T: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( U2 != nil_a )
         => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 )
             != nil_a )
           => ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( paths_in_Resid_a @ Resid @ U2 @ ( cons_a @ T @ nil_a ) ) )
               != nil_a )
             => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ U2 )
               != nil_a ) ) ) ) ) ) ).

% paths_in_rts.Con_consI(1)
thf(fact_258_paths__in__rts_OCon__consI_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U2: list_set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( T4 != nil_set_a )
       => ( ( U2 != nil_set_a )
         => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) )
             != nil_set_a )
           => ( ( ( paths_in_Resid_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) ) @ U2 )
               != nil_set_a )
             => ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ U2 ) )
               != nil_set_a ) ) ) ) ) ) ).

% paths_in_rts.Con_consI(2)
thf(fact_259_paths__in__rts_OCon__consI_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U2: list_list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( T4 != nil_list_a )
       => ( ( U2 != nil_list_a )
         => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) )
             != nil_list_a )
           => ( ( ( paths_8620460302779588466list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) ) @ U2 )
               != nil_list_a )
             => ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ U2 ) )
               != nil_list_a ) ) ) ) ) ) ).

% paths_in_rts.Con_consI(2)
thf(fact_260_paths__in__rts_OCon__consI_I2_J,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( U2 != nil_a )
         => ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) )
             != nil_a )
           => ( ( ( paths_in_Resid_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) ) @ U2 )
               != nil_a )
             => ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ U2 ) )
               != nil_a ) ) ) ) ) ) ).

% paths_in_rts.Con_consI(2)
thf(fact_261_paths__in__rts_OCon__cons_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U2: list_set_a,T: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( T4 != nil_set_a )
       => ( ( U2 != nil_set_a )
         => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ U2 )
             != nil_set_a )
            = ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ U2 )
               != nil_set_a )
              & ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( paths_in_Resid_set_a @ Resid @ U2 @ ( cons_set_a @ T @ nil_set_a ) ) )
               != nil_set_a ) ) ) ) ) ) ).

% paths_in_rts.Con_cons(1)
thf(fact_262_paths__in__rts_OCon__cons_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U2: list_list_a,T: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( T4 != nil_list_a )
       => ( ( U2 != nil_list_a )
         => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ U2 )
             != nil_list_a )
            = ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ U2 )
               != nil_list_a )
              & ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( paths_8620460302779588466list_a @ Resid @ U2 @ ( cons_list_a @ T @ nil_list_a ) ) )
               != nil_list_a ) ) ) ) ) ) ).

% paths_in_rts.Con_cons(1)
thf(fact_263_paths__in__rts_OCon__cons_I1_J,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,T: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( U2 != nil_a )
         => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ U2 )
             != nil_a )
            = ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 )
               != nil_a )
              & ( ( paths_in_Resid_a @ Resid @ T4 @ ( paths_in_Resid_a @ Resid @ U2 @ ( cons_a @ T @ nil_a ) ) )
               != nil_a ) ) ) ) ) ) ).

% paths_in_rts.Con_cons(1)
thf(fact_264_paths__in__rts_OCon__cons_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U2: list_set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( T4 != nil_set_a )
       => ( ( U2 != nil_set_a )
         => ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ U2 ) )
             != nil_set_a )
            = ( ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) )
               != nil_set_a )
              & ( ( paths_in_Resid_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ U @ nil_set_a ) ) @ U2 )
               != nil_set_a ) ) ) ) ) ) ).

% paths_in_rts.Con_cons(2)
thf(fact_265_paths__in__rts_OCon__cons_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U2: list_list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( T4 != nil_list_a )
       => ( ( U2 != nil_list_a )
         => ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ U2 ) )
             != nil_list_a )
            = ( ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) )
               != nil_list_a )
              & ( ( paths_8620460302779588466list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ U @ nil_list_a ) ) @ U2 )
               != nil_list_a ) ) ) ) ) ) ).

% paths_in_rts.Con_cons(2)
thf(fact_266_paths__in__rts_OCon__cons_I2_J,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( U2 != nil_a )
         => ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ U2 ) )
             != nil_a )
            = ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) )
               != nil_a )
              & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U @ nil_a ) ) @ U2 )
               != nil_a ) ) ) ) ) ) ).

% paths_in_rts.Con_cons(2)
thf(fact_267_paths__in__rts_OArr_Oelims_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a,X2: list_set_a,Y2: $o] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Arr_set_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_set_a )
           => Y2 )
         => ( ! [T3: set_a] :
                ( ( X2
                  = ( cons_set_a @ T3 @ nil_set_a ) )
               => ( Y2
                  = ( ~ ( arr_set_a @ Resid @ T3 ) ) ) )
           => ~ ! [T3: set_a,V2: set_a,Va: list_set_a] :
                  ( ( X2
                    = ( cons_set_a @ T3 @ ( cons_set_a @ V2 @ Va ) ) )
                 => ( Y2
                    = ( ~ ( ( arr_set_a @ Resid @ T3 )
                          & ( paths_in_Arr_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) )
                          & ( ord_le3724670747650509150_set_a @ ( targets_set_a @ Resid @ T3 ) @ ( paths_in_Srcs_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(1)
thf(fact_268_paths__in__rts_OArr_Oelims_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a,X2: list_list_a,Y2: $o] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_in_Arr_list_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_list_a )
           => Y2 )
         => ( ! [T3: list_a] :
                ( ( X2
                  = ( cons_list_a @ T3 @ nil_list_a ) )
               => ( Y2
                  = ( ~ ( arr_list_a @ Resid @ T3 ) ) ) )
           => ~ ! [T3: list_a,V2: list_a,Va: list_list_a] :
                  ( ( X2
                    = ( cons_list_a @ T3 @ ( cons_list_a @ V2 @ Va ) ) )
                 => ( Y2
                    = ( ~ ( ( arr_list_a @ Resid @ T3 )
                          & ( paths_in_Arr_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) )
                          & ( ord_le8861187494160871172list_a @ ( targets_list_a @ Resid @ T3 ) @ ( paths_in_Srcs_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(1)
thf(fact_269_paths__in__rts_OArr_Oelims_I1_J,axiom,
    ! [Resid: a > a > a,X2: list_a,Y2: $o] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Arr_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_a )
           => Y2 )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( Y2
                  = ( ~ ( arr_a @ Resid @ T3 ) ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( Y2
                    = ( ~ ( ( arr_a @ Resid @ T3 )
                          & ( paths_in_Arr_a @ Resid @ ( cons_a @ V2 @ Va ) )
                          & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(1)
thf(fact_270_paths__in__rts_OArr_Oelims_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,X2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Arr_set_a @ Resid @ X2 )
       => ( ! [T3: set_a] :
              ( ( X2
                = ( cons_set_a @ T3 @ nil_set_a ) )
             => ~ ( arr_set_a @ Resid @ T3 ) )
         => ~ ! [T3: set_a,V2: set_a,Va: list_set_a] :
                ( ( X2
                  = ( cons_set_a @ T3 @ ( cons_set_a @ V2 @ Va ) ) )
               => ~ ( ( arr_set_a @ Resid @ T3 )
                    & ( paths_in_Arr_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) )
                    & ( ord_le3724670747650509150_set_a @ ( targets_set_a @ Resid @ T3 ) @ ( paths_in_Srcs_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(2)
thf(fact_271_paths__in__rts_OArr_Oelims_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,X2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Arr_list_a @ Resid @ X2 )
       => ( ! [T3: list_a] :
              ( ( X2
                = ( cons_list_a @ T3 @ nil_list_a ) )
             => ~ ( arr_list_a @ Resid @ T3 ) )
         => ~ ! [T3: list_a,V2: list_a,Va: list_list_a] :
                ( ( X2
                  = ( cons_list_a @ T3 @ ( cons_list_a @ V2 @ Va ) ) )
               => ~ ( ( arr_list_a @ Resid @ T3 )
                    & ( paths_in_Arr_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) )
                    & ( ord_le8861187494160871172list_a @ ( targets_list_a @ Resid @ T3 ) @ ( paths_in_Srcs_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(2)
thf(fact_272_paths__in__rts_OArr_Oelims_I2_J,axiom,
    ! [Resid: a > a > a,X2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ X2 )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ~ ( arr_a @ Resid @ T3 ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ~ ( ( arr_a @ Resid @ T3 )
                    & ( paths_in_Arr_a @ Resid @ ( cons_a @ V2 @ Va ) )
                    & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(2)
thf(fact_273_paths__in__rts_OArr_Oelims_I3_J,axiom,
    ! [Resid: set_a > set_a > set_a,X2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ~ ( paths_in_Arr_set_a @ Resid @ X2 )
       => ( ( X2 != nil_set_a )
         => ( ! [T3: set_a] :
                ( ( X2
                  = ( cons_set_a @ T3 @ nil_set_a ) )
               => ( arr_set_a @ Resid @ T3 ) )
           => ~ ! [T3: set_a,V2: set_a,Va: list_set_a] :
                  ( ( X2
                    = ( cons_set_a @ T3 @ ( cons_set_a @ V2 @ Va ) ) )
                 => ( ( arr_set_a @ Resid @ T3 )
                    & ( paths_in_Arr_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) )
                    & ( ord_le3724670747650509150_set_a @ ( targets_set_a @ Resid @ T3 ) @ ( paths_in_Srcs_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(3)
thf(fact_274_paths__in__rts_OArr_Oelims_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,X2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ~ ( paths_in_Arr_list_a @ Resid @ X2 )
       => ( ( X2 != nil_list_a )
         => ( ! [T3: list_a] :
                ( ( X2
                  = ( cons_list_a @ T3 @ nil_list_a ) )
               => ( arr_list_a @ Resid @ T3 ) )
           => ~ ! [T3: list_a,V2: list_a,Va: list_list_a] :
                  ( ( X2
                    = ( cons_list_a @ T3 @ ( cons_list_a @ V2 @ Va ) ) )
                 => ( ( arr_list_a @ Resid @ T3 )
                    & ( paths_in_Arr_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) )
                    & ( ord_le8861187494160871172list_a @ ( targets_list_a @ Resid @ T3 ) @ ( paths_in_Srcs_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(3)
thf(fact_275_paths__in__rts_OArr_Oelims_I3_J,axiom,
    ! [Resid: a > a > a,X2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ~ ( paths_in_Arr_a @ Resid @ X2 )
       => ( ( X2 != nil_a )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( arr_a @ Resid @ T3 ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( arr_a @ Resid @ T3 )
                    & ( paths_in_Arr_a @ Resid @ ( cons_a @ V2 @ Va ) )
                    & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.elims(3)
thf(fact_276_paths__in__rts_OSrcs__are__ide,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ord_le8861187494160871172list_a @ ( paths_in_Srcs_list_a @ Resid @ T4 ) @ ( collect_list_a @ ( ide_list_a @ Resid ) ) ) ) ).

% paths_in_rts.Srcs_are_ide
thf(fact_277_paths__in__rts_OSrcs__are__ide,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ord_less_eq_set_a @ ( paths_in_Srcs_a @ Resid @ T4 ) @ ( collect_a @ ( ide_a @ Resid ) ) ) ) ).

% paths_in_rts.Srcs_are_ide
thf(fact_278_paths__in__rts_OSrcs__con__closed,axiom,
    ! [Resid: produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a,A: produc2579390645249093025st_a_a,T4: list_P2210424090985720871st_a_a,A4: produc2579390645249093025st_a_a] :
      ( ( paths_4232552623637367430st_a_a @ Resid )
     => ( ( member8006451231845903178st_a_a @ A @ ( paths_332773396847195111st_a_a @ Resid @ T4 ) )
       => ( ( ide_Pr4006845958993808965st_a_a @ Resid @ A4 )
         => ( ( con_Pr7383801431968512653st_a_a @ Resid @ A @ A4 )
           => ( member8006451231845903178st_a_a @ A4 @ ( paths_332773396847195111st_a_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Srcs_con_closed
thf(fact_279_paths__in__rts_OSrcs__con__closed,axiom,
    ! [Resid: produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a,A: produc8685980395799941037list_a,T4: list_P4541805568828049459list_a,A4: produc8685980395799941037list_a] :
      ( ( paths_1115770337333439634list_a @ Resid )
     => ( ( member4889668945541975382list_a @ A @ ( paths_6439363147398043123list_a @ Resid @ T4 ) )
       => ( ( ide_Pr890063672689881169list_a @ Resid @ A4 )
         => ( ( con_Pr4267019145664584857list_a @ Resid @ A @ A4 )
           => ( member4889668945541975382list_a @ A4 @ ( paths_6439363147398043123list_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Srcs_con_closed
thf(fact_280_paths__in__rts_OSrcs__con__closed,axiom,
    ! [Resid: product_prod_a_a > product_prod_a_a > product_prod_a_a,A: product_prod_a_a,T4: list_P1396940483166286381od_a_a,A4: product_prod_a_a] :
      ( ( paths_2703364527051407500od_a_a @ Resid )
     => ( ( member1426531477525435216od_a_a @ A @ ( paths_2488790558265101933od_a_a @ Resid @ T4 ) )
       => ( ( ide_Product_prod_a_a @ Resid @ A4 )
         => ( ( con_Product_prod_a_a @ Resid @ A @ A4 )
           => ( member1426531477525435216od_a_a @ A4 @ ( paths_2488790558265101933od_a_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Srcs_con_closed
thf(fact_281_paths__in__rts_OSrcs__con__closed,axiom,
    ! [Resid: list_a > list_a > list_a,A: list_a,T4: list_list_a,A4: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( member_list_a @ A @ ( paths_in_Srcs_list_a @ Resid @ T4 ) )
       => ( ( ide_list_a @ Resid @ A4 )
         => ( ( con_list_a @ Resid @ A @ A4 )
           => ( member_list_a @ A4 @ ( paths_in_Srcs_list_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Srcs_con_closed
thf(fact_282_paths__in__rts_OSrcs__con__closed,axiom,
    ! [Resid: nat > nat > nat,A: nat,T4: list_nat,A4: nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( member_nat @ A @ ( paths_in_Srcs_nat @ Resid @ T4 ) )
       => ( ( ide_nat @ Resid @ A4 )
         => ( ( con_nat @ Resid @ A @ A4 )
           => ( member_nat @ A4 @ ( paths_in_Srcs_nat @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Srcs_con_closed
thf(fact_283_paths__in__rts_OSrcs__con__closed,axiom,
    ! [Resid: a > a > a,A: a,T4: list_a,A4: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( member_a @ A @ ( paths_in_Srcs_a @ Resid @ T4 ) )
       => ( ( ide_a @ Resid @ A4 )
         => ( ( con_a @ Resid @ A @ A4 )
           => ( member_a @ A4 @ ( paths_in_Srcs_a @ Resid @ T4 ) ) ) ) ) ) ).

% paths_in_rts.Srcs_con_closed
thf(fact_284_paths__in__rts_OResid_Osimps_I3_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( con_set_a @ Resid @ T @ U )
         => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ ( cons_set_a @ U @ nil_set_a ) )
            = ( cons_set_a @ ( Resid @ T @ U ) @ nil_set_a ) ) )
        & ( ~ ( con_set_a @ Resid @ T @ U )
         => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ ( cons_set_a @ U @ nil_set_a ) )
            = nil_set_a ) ) ) ) ).

% paths_in_rts.Resid.simps(3)
thf(fact_285_paths__in__rts_OResid_Osimps_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( con_list_a @ Resid @ T @ U )
         => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ ( cons_list_a @ U @ nil_list_a ) )
            = ( cons_list_a @ ( Resid @ T @ U ) @ nil_list_a ) ) )
        & ( ~ ( con_list_a @ Resid @ T @ U )
         => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ ( cons_list_a @ U @ nil_list_a ) )
            = nil_list_a ) ) ) ) ).

% paths_in_rts.Resid.simps(3)
thf(fact_286_paths__in__rts_OResid_Osimps_I3_J,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( con_a @ Resid @ T @ U )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
            = ( cons_a @ ( Resid @ T @ U ) @ nil_a ) ) )
        & ( ~ ( con_a @ Resid @ T @ U )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
            = nil_a ) ) ) ) ).

% paths_in_rts.Resid.simps(3)
thf(fact_287_paths__in__rts_OCon__rec_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ ( cons_set_a @ U @ nil_set_a ) )
         != nil_set_a )
        = ( con_set_a @ Resid @ T @ U ) ) ) ).

% paths_in_rts.Con_rec(1)
thf(fact_288_paths__in__rts_OCon__rec_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ ( cons_list_a @ U @ nil_list_a ) )
         != nil_list_a )
        = ( con_list_a @ Resid @ T @ U ) ) ) ).

% paths_in_rts.Con_rec(1)
thf(fact_289_paths__in__rts_OCon__rec_I1_J,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
         != nil_a )
        = ( con_a @ Resid @ T @ U ) ) ) ).

% paths_in_rts.Con_rec(1)
thf(fact_290_paths__in__rts_OCon__rec_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( T4 != nil_set_a )
       => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ ( cons_set_a @ U @ nil_set_a ) )
           != nil_set_a )
          = ( ( con_set_a @ Resid @ T @ U )
            & ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ ( Resid @ U @ T ) @ nil_set_a ) )
             != nil_set_a ) ) ) ) ) ).

% paths_in_rts.Con_rec(2)
thf(fact_291_paths__in__rts_OCon__rec_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( T4 != nil_list_a )
       => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ ( cons_list_a @ U @ nil_list_a ) )
           != nil_list_a )
          = ( ( con_list_a @ Resid @ T @ U )
            & ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ ( Resid @ U @ T ) @ nil_list_a ) )
             != nil_list_a ) ) ) ) ) ).

% paths_in_rts.Con_rec(2)
thf(fact_292_paths__in__rts_OCon__rec_I2_J,axiom,
    ! [Resid: a > a > a,T4: list_a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ nil_a ) )
           != nil_a )
          = ( ( con_a @ Resid @ T @ U )
            & ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ ( Resid @ U @ T ) @ nil_a ) )
             != nil_a ) ) ) ) ) ).

% paths_in_rts.Con_rec(2)
thf(fact_293_paths__in__rts_OCon__rec_I3_J,axiom,
    ! [Resid: set_a > set_a > set_a,U2: list_set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( U2 != nil_set_a )
       => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ ( cons_set_a @ U @ U2 ) )
           != nil_set_a )
          = ( ( con_set_a @ Resid @ T @ U )
            & ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ ( Resid @ T @ U ) @ nil_set_a ) @ U2 )
             != nil_set_a ) ) ) ) ) ).

% paths_in_rts.Con_rec(3)
thf(fact_294_paths__in__rts_OCon__rec_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,U2: list_list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( U2 != nil_list_a )
       => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ ( cons_list_a @ U @ U2 ) )
           != nil_list_a )
          = ( ( con_list_a @ Resid @ T @ U )
            & ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ ( Resid @ T @ U ) @ nil_list_a ) @ U2 )
             != nil_list_a ) ) ) ) ) ).

% paths_in_rts.Con_rec(3)
thf(fact_295_paths__in__rts_OCon__rec_I3_J,axiom,
    ! [Resid: a > a > a,U2: list_a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ U2 ) )
           != nil_a )
          = ( ( con_a @ Resid @ T @ U )
            & ( ( paths_in_Resid_a @ Resid @ ( cons_a @ ( Resid @ T @ U ) @ nil_a ) @ U2 )
             != nil_a ) ) ) ) ) ).

% paths_in_rts.Con_rec(3)
thf(fact_296_paths__in__rts_OCon__rec_I4_J,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,U2: list_set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( T4 != nil_set_a )
       => ( ( U2 != nil_set_a )
         => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ ( cons_set_a @ U @ U2 ) )
             != nil_set_a )
            = ( ( con_set_a @ Resid @ T @ U )
              & ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ ( Resid @ U @ T ) @ nil_set_a ) )
               != nil_set_a )
              & ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ ( Resid @ T @ U ) @ nil_set_a ) @ U2 )
               != nil_set_a )
              & ( ( paths_in_Resid_set_a @ Resid @ ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ ( Resid @ U @ T ) @ nil_set_a ) ) @ ( paths_in_Resid_set_a @ Resid @ U2 @ ( cons_set_a @ ( Resid @ T @ U ) @ nil_set_a ) ) )
               != nil_set_a ) ) ) ) ) ) ).

% paths_in_rts.Con_rec(4)
thf(fact_297_paths__in__rts_OCon__rec_I4_J,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,U2: list_list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( T4 != nil_list_a )
       => ( ( U2 != nil_list_a )
         => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ ( cons_list_a @ U @ U2 ) )
             != nil_list_a )
            = ( ( con_list_a @ Resid @ T @ U )
              & ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ ( Resid @ U @ T ) @ nil_list_a ) )
               != nil_list_a )
              & ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ ( Resid @ T @ U ) @ nil_list_a ) @ U2 )
               != nil_list_a )
              & ( ( paths_8620460302779588466list_a @ Resid @ ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ ( Resid @ U @ T ) @ nil_list_a ) ) @ ( paths_8620460302779588466list_a @ Resid @ U2 @ ( cons_list_a @ ( Resid @ T @ U ) @ nil_list_a ) ) )
               != nil_list_a ) ) ) ) ) ) ).

% paths_in_rts.Con_rec(4)
thf(fact_298_paths__in__rts_OCon__rec_I4_J,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( U2 != nil_a )
         => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ U2 ) )
             != nil_a )
            = ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ ( Resid @ U @ T ) @ nil_a ) )
               != nil_a )
              & ( ( paths_in_Resid_a @ Resid @ ( cons_a @ ( Resid @ T @ U ) @ nil_a ) @ U2 )
               != nil_a )
              & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ ( Resid @ U @ T ) @ nil_a ) ) @ ( paths_in_Resid_a @ Resid @ U2 @ ( cons_a @ ( Resid @ T @ U ) @ nil_a ) ) )
               != nil_a ) ) ) ) ) ) ).

% paths_in_rts.Con_rec(4)
thf(fact_299_paths__in__rts_OArr_Osimps_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Arr_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) )
        = ( arr_set_a @ Resid @ T ) ) ) ).

% paths_in_rts.Arr.simps(2)
thf(fact_300_paths__in__rts_OArr_Osimps_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Arr_list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) )
        = ( arr_list_a @ Resid @ T ) ) ) ).

% paths_in_rts.Arr.simps(2)
thf(fact_301_paths__in__rts_OArr_Osimps_I2_J,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ ( cons_a @ T @ nil_a ) )
        = ( arr_a @ Resid @ T ) ) ) ).

% paths_in_rts.Arr.simps(2)
thf(fact_302_paths__in__rts_OResid__Arr__Src,axiom,
    ! [Resid: produc2579390645249093025st_a_a > produc2579390645249093025st_a_a > produc2579390645249093025st_a_a,T4: list_P2210424090985720871st_a_a,A: produc2579390645249093025st_a_a] :
      ( ( paths_4232552623637367430st_a_a @ Resid )
     => ( ( paths_424260355915577769st_a_a @ Resid @ T4 )
       => ( ( member8006451231845903178st_a_a @ A @ ( paths_332773396847195111st_a_a @ Resid @ T4 ) )
         => ( ( paths_8255835059299053455st_a_a @ Resid @ T4 @ ( cons_P2018802349718741079st_a_a @ A @ nil_Pr523822031547952295st_a_a ) )
            = T4 ) ) ) ) ).

% paths_in_rts.Resid_Arr_Src
thf(fact_303_paths__in__rts_OResid__Arr__Src,axiom,
    ! [Resid: produc8685980395799941037list_a > produc8685980395799941037list_a > produc8685980395799941037list_a,T4: list_P4541805568828049459list_a,A: produc8685980395799941037list_a] :
      ( ( paths_1115770337333439634list_a @ Resid )
     => ( ( paths_6530850106466425781list_a @ Resid @ T4 )
       => ( ( member4889668945541975382list_a @ A @ ( paths_6439363147398043123list_a @ Resid @ T4 ) )
         => ( ( paths_5139052772995125659list_a @ Resid @ T4 @ ( cons_P8125392100269589091list_a @ A @ nil_Pr6630411782098800307list_a ) )
            = T4 ) ) ) ) ).

% paths_in_rts.Resid_Arr_Src
thf(fact_304_paths__in__rts_OResid__Arr__Src,axiom,
    ! [Resid: product_prod_a_a > product_prod_a_a > product_prod_a_a,T4: list_P1396940483166286381od_a_a,A: product_prod_a_a] :
      ( ( paths_2703364527051407500od_a_a @ Resid )
     => ( ( paths_2884821253938355503od_a_a @ Resid @ T4 )
       => ( ( member1426531477525435216od_a_a @ A @ ( paths_2488790558265101933od_a_a @ Resid @ T4 ) )
         => ( ( paths_4544677030372982293od_a_a @ Resid @ T4 @ ( cons_P7316939126706565853od_a_a @ A @ nil_Product_prod_a_a ) )
            = T4 ) ) ) ) ).

% paths_in_rts.Resid_Arr_Src
thf(fact_305_paths__in__rts_OResid__Arr__Src,axiom,
    ! [Resid: nat > nat > nat,T4: list_nat,A: nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( paths_in_Arr_nat @ Resid @ T4 )
       => ( ( member_nat @ A @ ( paths_in_Srcs_nat @ Resid @ T4 ) )
         => ( ( paths_in_Resid_nat @ Resid @ T4 @ ( cons_nat @ A @ nil_nat ) )
            = T4 ) ) ) ) ).

% paths_in_rts.Resid_Arr_Src
thf(fact_306_paths__in__rts_OResid__Arr__Src,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,A: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Arr_set_a @ Resid @ T4 )
       => ( ( member_set_a @ A @ ( paths_in_Srcs_set_a @ Resid @ T4 ) )
         => ( ( paths_in_Resid_set_a @ Resid @ T4 @ ( cons_set_a @ A @ nil_set_a ) )
            = T4 ) ) ) ) ).

% paths_in_rts.Resid_Arr_Src
thf(fact_307_paths__in__rts_OResid__Arr__Src,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,A: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Arr_list_a @ Resid @ T4 )
       => ( ( member_list_a @ A @ ( paths_in_Srcs_list_a @ Resid @ T4 ) )
         => ( ( paths_8620460302779588466list_a @ Resid @ T4 @ ( cons_list_a @ A @ nil_list_a ) )
            = T4 ) ) ) ) ).

% paths_in_rts.Resid_Arr_Src
thf(fact_308_paths__in__rts_OResid__Arr__Src,axiom,
    ! [Resid: a > a > a,T4: list_a,A: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( ( member_a @ A @ ( paths_in_Srcs_a @ Resid @ T4 ) )
         => ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ A @ nil_a ) )
            = T4 ) ) ) ) ).

% paths_in_rts.Resid_Arr_Src
thf(fact_309_Trgs_Oelims,axiom,
    ! [X2: list_a,Y2: set_a] :
      ( ( ( paths_in_Trgs_a @ resid @ X2 )
        = Y2 )
     => ( ( ( X2 = nil_a )
         => ( Y2 != bot_bot_set_a ) )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ( Y2
               != ( targets_a @ resid @ T3 ) ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ( Y2
                 != ( paths_in_Trgs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ).

% Trgs.elims
thf(fact_310_Trgs__simp_092_060_094sub_062P,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( ( paths_in_Trgs_a @ resid @ T4 )
        = ( targets_a @ resid @ ( last_a @ T4 ) ) ) ) ).

% Trgs_simp\<^sub>P
thf(fact_311_R_Ojoinable__implies__coinitial,axiom,
    ! [T: a,U: a] :
      ( ( joinable_a @ resid @ T @ U )
     => ( coinitial_a @ resid @ T @ U ) ) ).

% R.joinable_implies_coinitial
thf(fact_312_Arr__imp__arr__last,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( arr_a @ resid @ ( last_a @ T4 ) ) ) ).

% Arr_imp_arr_last
thf(fact_313_Ide__imp__Ide__last,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Ide_a @ resid @ T4 )
     => ( ide_a @ resid @ ( last_a @ T4 ) ) ) ).

% Ide_imp_Ide_last
thf(fact_314_Arr__has__Trg,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( ( paths_in_Trgs_a @ resid @ T4 )
       != bot_bot_set_a ) ) ).

% Arr_has_Trg
thf(fact_315_Arr__has__Src,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( ( paths_in_Srcs_a @ resid @ T4 )
       != bot_bot_set_a ) ) ).

% Arr_has_Src
thf(fact_316_R_OcomposableD_I1_J,axiom,
    ! [T: a,U: a] :
      ( ( composable_a @ resid @ T @ U )
     => ( arr_a @ resid @ T ) ) ).

% R.composableD(1)
thf(fact_317_R_OcomposableD_I2_J,axiom,
    ! [T: a,U: a] :
      ( ( composable_a @ resid @ T @ U )
     => ( arr_a @ resid @ U ) ) ).

% R.composableD(2)
thf(fact_318_Resid__cons_H,axiom,
    ! [T4: list_a,T: a,U2: list_a] :
      ( ( T4 != nil_a )
     => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ U2 )
         != nil_a )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ U2 )
          = ( cons_a @ ( paths_in_Resid1x_a @ resid @ T @ U2 ) @ ( paths_in_Resid_a @ resid @ T4 @ ( paths_in_Resid_a @ resid @ U2 @ ( cons_a @ T @ nil_a ) ) ) ) ) ) ) ).

% Resid_cons'
thf(fact_319_Resid1x_Osimps_I3_J,axiom,
    ! [T: a,U: a,V: a,Va2: list_a] :
      ( ( paths_in_Resid1x_a @ resid @ T @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
      = ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) ) ).

% Resid1x.simps(3)
thf(fact_320_R_Ocoinitial__ide__are__cong,axiom,
    ! [A: a,A4: a] :
      ( ( ide_a @ resid @ A )
     => ( ( ide_a @ resid @ A4 )
       => ( ( coinitial_a @ resid @ A @ A4 )
         => ( ( ide_a @ resid @ ( resid @ A @ A4 ) )
            & ( ide_a @ resid @ ( resid @ A4 @ A ) ) ) ) ) ) ).

% R.coinitial_ide_are_cong
thf(fact_321_R_Ocong__implies__coinitial,axiom,
    ! [U: a,U3: a] :
      ( ( ( ide_a @ resid @ ( resid @ U @ U3 ) )
        & ( ide_a @ resid @ ( resid @ U3 @ U ) ) )
     => ( coinitial_a @ resid @ U @ U3 ) ) ).

% R.cong_implies_coinitial
thf(fact_322_R_Ocon__imp__coinitial,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( coinitial_a @ resid @ T @ U ) ) ).

% R.con_imp_coinitial
thf(fact_323_Resid1x_Osimps_I2_J,axiom,
    ! [T: a,U: a] :
      ( ( paths_in_Resid1x_a @ resid @ T @ ( cons_a @ U @ nil_a ) )
      = ( resid @ T @ U ) ) ).

% Resid1x.simps(2)
thf(fact_324_Srcs_Osimps_I1_J,axiom,
    ( ( paths_in_Srcs_a @ resid @ nil_a )
    = bot_bot_set_a ) ).

% Srcs.simps(1)
thf(fact_325_Trgs_Osimps_I1_J,axiom,
    ( ( paths_in_Trgs_a @ resid @ nil_a )
    = bot_bot_set_a ) ).

% Trgs.simps(1)
thf(fact_326_R_Oarr__iff__has__target,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
      = ( ( targets_a @ resid @ T )
       != bot_bot_set_a ) ) ).

% R.arr_iff_has_target
thf(fact_327_Resid1x__as__Resid,axiom,
    ! [T: a,U2: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 )
       != nil_a )
     => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 )
        = ( cons_a @ ( paths_in_Resid1x_a @ resid @ T @ U2 ) @ nil_a ) ) ) ).

% Resid1x_as_Resid
thf(fact_328_paths__in__rts_OResid1x_Ocong,axiom,
    paths_in_Resid1x_a = paths_in_Resid1x_a ).

% paths_in_rts.Resid1x.cong
thf(fact_329_rts_Ocomposable_Ocong,axiom,
    composable_a = composable_a ).

% rts.composable.cong
thf(fact_330_rts_Ocoinitial_Ocong,axiom,
    coinitial_a = coinitial_a ).

% rts.coinitial.cong
thf(fact_331_paths__in__rts_OResid1x_Osimps_I3_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U: list_a,V: list_a,Va2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_1777230443808135851list_a @ Resid @ T @ ( cons_list_a @ U @ ( cons_list_a @ V @ Va2 ) ) )
        = ( paths_1777230443808135851list_a @ Resid @ ( Resid @ T @ U ) @ ( cons_list_a @ V @ Va2 ) ) ) ) ).

% paths_in_rts.Resid1x.simps(3)
thf(fact_332_paths__in__rts_OResid1x_Osimps_I3_J,axiom,
    ! [Resid: a > a > a,T: a,U: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Resid1x_a @ Resid @ T @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
        = ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) ) ) ).

% paths_in_rts.Resid1x.simps(3)
thf(fact_333_paths__in__rts_OSrcs_Osimps_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Srcs_set_a @ Resid @ nil_set_a )
        = bot_bot_set_set_a ) ) ).

% paths_in_rts.Srcs.simps(1)
thf(fact_334_paths__in__rts_OSrcs_Osimps_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Srcs_list_a @ Resid @ nil_list_a )
        = bot_bot_set_list_a ) ) ).

% paths_in_rts.Srcs.simps(1)
thf(fact_335_paths__in__rts_OSrcs_Osimps_I1_J,axiom,
    ! [Resid: nat > nat > nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( paths_in_Srcs_nat @ Resid @ nil_nat )
        = bot_bot_set_nat ) ) ).

% paths_in_rts.Srcs.simps(1)
thf(fact_336_paths__in__rts_OSrcs_Osimps_I1_J,axiom,
    ! [Resid: a > a > a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Srcs_a @ Resid @ nil_a )
        = bot_bot_set_a ) ) ).

% paths_in_rts.Srcs.simps(1)
thf(fact_337_paths__in__rts_OTrgs_Osimps_I1_J,axiom,
    ! [Resid: set_a > set_a > set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_in_Trgs_set_a @ Resid @ nil_set_a )
        = bot_bot_set_set_a ) ) ).

% paths_in_rts.Trgs.simps(1)
thf(fact_338_paths__in__rts_OTrgs_Osimps_I1_J,axiom,
    ! [Resid: list_a > list_a > list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Trgs_list_a @ Resid @ nil_list_a )
        = bot_bot_set_list_a ) ) ).

% paths_in_rts.Trgs.simps(1)
thf(fact_339_paths__in__rts_OTrgs_Osimps_I1_J,axiom,
    ! [Resid: nat > nat > nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( paths_in_Trgs_nat @ Resid @ nil_nat )
        = bot_bot_set_nat ) ) ).

% paths_in_rts.Trgs.simps(1)
thf(fact_340_paths__in__rts_OTrgs_Osimps_I1_J,axiom,
    ! [Resid: a > a > a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Trgs_a @ Resid @ nil_a )
        = bot_bot_set_a ) ) ).

% paths_in_rts.Trgs.simps(1)
thf(fact_341_paths__in__rts_OArr__has__Src,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Arr_list_a @ Resid @ T4 )
       => ( ( paths_in_Srcs_list_a @ Resid @ T4 )
         != bot_bot_set_list_a ) ) ) ).

% paths_in_rts.Arr_has_Src
thf(fact_342_paths__in__rts_OArr__has__Src,axiom,
    ! [Resid: nat > nat > nat,T4: list_nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( paths_in_Arr_nat @ Resid @ T4 )
       => ( ( paths_in_Srcs_nat @ Resid @ T4 )
         != bot_bot_set_nat ) ) ) ).

% paths_in_rts.Arr_has_Src
thf(fact_343_paths__in__rts_OArr__has__Src,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( ( paths_in_Srcs_a @ Resid @ T4 )
         != bot_bot_set_a ) ) ) ).

% paths_in_rts.Arr_has_Src
thf(fact_344_paths__in__rts_OArr__has__Trg,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_in_Arr_list_a @ Resid @ T4 )
       => ( ( paths_in_Trgs_list_a @ Resid @ T4 )
         != bot_bot_set_list_a ) ) ) ).

% paths_in_rts.Arr_has_Trg
thf(fact_345_paths__in__rts_OArr__has__Trg,axiom,
    ! [Resid: nat > nat > nat,T4: list_nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( paths_in_Arr_nat @ Resid @ T4 )
       => ( ( paths_in_Trgs_nat @ Resid @ T4 )
         != bot_bot_set_nat ) ) ) ).

% paths_in_rts.Arr_has_Trg
thf(fact_346_paths__in__rts_OArr__has__Trg,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( ( paths_in_Trgs_a @ Resid @ T4 )
         != bot_bot_set_a ) ) ) ).

% paths_in_rts.Arr_has_Trg
thf(fact_347_paths__in__rts_OIde__imp__Ide__last,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ T4 )
       => ( ide_a @ Resid @ ( last_a @ T4 ) ) ) ) ).

% paths_in_rts.Ide_imp_Ide_last
thf(fact_348_paths__in__rts_OArr__imp__arr__last,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( arr_a @ Resid @ ( last_a @ T4 ) ) ) ) ).

% paths_in_rts.Arr_imp_arr_last
thf(fact_349_paths__in__rts_OResid1x_Osimps_I2_J,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,U: set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( paths_9113339907585739525_set_a @ Resid @ T @ ( cons_set_a @ U @ nil_set_a ) )
        = ( Resid @ T @ U ) ) ) ).

% paths_in_rts.Resid1x.simps(2)
thf(fact_350_paths__in__rts_OResid1x_Osimps_I2_J,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U: list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( paths_1777230443808135851list_a @ Resid @ T @ ( cons_list_a @ U @ nil_list_a ) )
        = ( Resid @ T @ U ) ) ) ).

% paths_in_rts.Resid1x.simps(2)
thf(fact_351_paths__in__rts_OResid1x_Osimps_I2_J,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Resid1x_a @ Resid @ T @ ( cons_a @ U @ nil_a ) )
        = ( Resid @ T @ U ) ) ) ).

% paths_in_rts.Resid1x.simps(2)
thf(fact_352_paths__in__rts_OTrgs__simp_092_060_094sub_062P,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( ( paths_in_Trgs_a @ Resid @ T4 )
          = ( targets_a @ Resid @ ( last_a @ T4 ) ) ) ) ) ).

% paths_in_rts.Trgs_simp\<^sub>P
thf(fact_353_paths__in__rts_OResid__cons_H,axiom,
    ! [Resid: set_a > set_a > set_a,T4: list_set_a,T: set_a,U2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( T4 != nil_set_a )
       => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ U2 )
           != nil_set_a )
         => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ T4 ) @ U2 )
            = ( cons_set_a @ ( paths_9113339907585739525_set_a @ Resid @ T @ U2 ) @ ( paths_in_Resid_set_a @ Resid @ T4 @ ( paths_in_Resid_set_a @ Resid @ U2 @ ( cons_set_a @ T @ nil_set_a ) ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_cons'
thf(fact_354_paths__in__rts_OResid__cons_H,axiom,
    ! [Resid: list_a > list_a > list_a,T4: list_list_a,T: list_a,U2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( T4 != nil_list_a )
       => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ U2 )
           != nil_list_a )
         => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ T4 ) @ U2 )
            = ( cons_list_a @ ( paths_1777230443808135851list_a @ Resid @ T @ U2 ) @ ( paths_8620460302779588466list_a @ Resid @ T4 @ ( paths_8620460302779588466list_a @ Resid @ U2 @ ( cons_list_a @ T @ nil_list_a ) ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_cons'
thf(fact_355_paths__in__rts_OResid__cons_H,axiom,
    ! [Resid: a > a > a,T4: list_a,T: a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ U2 )
           != nil_a )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ U2 )
            = ( cons_a @ ( paths_in_Resid1x_a @ Resid @ T @ U2 ) @ ( paths_in_Resid_a @ Resid @ T4 @ ( paths_in_Resid_a @ Resid @ U2 @ ( cons_a @ T @ nil_a ) ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_cons'
thf(fact_356_paths__in__rts_OResid1x__as__Resid,axiom,
    ! [Resid: set_a > set_a > set_a,T: set_a,U2: list_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ U2 )
         != nil_set_a )
       => ( ( paths_in_Resid_set_a @ Resid @ ( cons_set_a @ T @ nil_set_a ) @ U2 )
          = ( cons_set_a @ ( paths_9113339907585739525_set_a @ Resid @ T @ U2 ) @ nil_set_a ) ) ) ) ).

% paths_in_rts.Resid1x_as_Resid
thf(fact_357_paths__in__rts_OResid1x__as__Resid,axiom,
    ! [Resid: list_a > list_a > list_a,T: list_a,U2: list_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ U2 )
         != nil_list_a )
       => ( ( paths_8620460302779588466list_a @ Resid @ ( cons_list_a @ T @ nil_list_a ) @ U2 )
          = ( cons_list_a @ ( paths_1777230443808135851list_a @ Resid @ T @ U2 ) @ nil_list_a ) ) ) ) ).

% paths_in_rts.Resid1x_as_Resid
thf(fact_358_paths__in__rts_OResid1x__as__Resid,axiom,
    ! [Resid: a > a > a,T: a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 )
         != nil_a )
       => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 )
          = ( cons_a @ ( paths_in_Resid1x_a @ Resid @ T @ U2 ) @ nil_a ) ) ) ) ).

% paths_in_rts.Resid1x_as_Resid
thf(fact_359_paths__in__rts_OTrgs_Oelims,axiom,
    ! [Resid: set_a > set_a > set_a,X2: list_set_a,Y2: set_set_a] :
      ( ( paths_in_rts_set_a @ Resid )
     => ( ( ( paths_in_Trgs_set_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_set_a )
           => ( Y2 != bot_bot_set_set_a ) )
         => ( ! [T3: set_a] :
                ( ( X2
                  = ( cons_set_a @ T3 @ nil_set_a ) )
               => ( Y2
                 != ( targets_set_a @ Resid @ T3 ) ) )
           => ~ ! [T3: set_a,V2: set_a,Va: list_set_a] :
                  ( ( X2
                    = ( cons_set_a @ T3 @ ( cons_set_a @ V2 @ Va ) ) )
                 => ( Y2
                   != ( paths_in_Trgs_set_a @ Resid @ ( cons_set_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Trgs.elims
thf(fact_360_paths__in__rts_OTrgs_Oelims,axiom,
    ! [Resid: list_a > list_a > list_a,X2: list_list_a,Y2: set_list_a] :
      ( ( paths_in_rts_list_a @ Resid )
     => ( ( ( paths_in_Trgs_list_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_list_a )
           => ( Y2 != bot_bot_set_list_a ) )
         => ( ! [T3: list_a] :
                ( ( X2
                  = ( cons_list_a @ T3 @ nil_list_a ) )
               => ( Y2
                 != ( targets_list_a @ Resid @ T3 ) ) )
           => ~ ! [T3: list_a,V2: list_a,Va: list_list_a] :
                  ( ( X2
                    = ( cons_list_a @ T3 @ ( cons_list_a @ V2 @ Va ) ) )
                 => ( Y2
                   != ( paths_in_Trgs_list_a @ Resid @ ( cons_list_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Trgs.elims
thf(fact_361_paths__in__rts_OTrgs_Oelims,axiom,
    ! [Resid: nat > nat > nat,X2: list_nat,Y2: set_nat] :
      ( ( paths_in_rts_nat @ Resid )
     => ( ( ( paths_in_Trgs_nat @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_nat )
           => ( Y2 != bot_bot_set_nat ) )
         => ( ! [T3: nat] :
                ( ( X2
                  = ( cons_nat @ T3 @ nil_nat ) )
               => ( Y2
                 != ( targets_nat @ Resid @ T3 ) ) )
           => ~ ! [T3: nat,V2: nat,Va: list_nat] :
                  ( ( X2
                    = ( cons_nat @ T3 @ ( cons_nat @ V2 @ Va ) ) )
                 => ( Y2
                   != ( paths_in_Trgs_nat @ Resid @ ( cons_nat @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Trgs.elims
thf(fact_362_paths__in__rts_OTrgs_Oelims,axiom,
    ! [Resid: a > a > a,X2: list_a,Y2: set_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Trgs_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_a )
           => ( Y2 != bot_bot_set_a ) )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( Y2
                 != ( targets_a @ Resid @ T3 ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( Y2
                   != ( paths_in_Trgs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Trgs.elims
thf(fact_363_set__empty2,axiom,
    ! [Xs: list_set_a] :
      ( ( bot_bot_set_set_a
        = ( set_set_a2 @ Xs ) )
      = ( Xs = nil_set_a ) ) ).

% set_empty2
thf(fact_364_set__empty2,axiom,
    ! [Xs: list_list_a] :
      ( ( bot_bot_set_list_a
        = ( set_list_a2 @ Xs ) )
      = ( Xs = nil_list_a ) ) ).

% set_empty2
thf(fact_365_set__empty2,axiom,
    ! [Xs: list_nat] :
      ( ( bot_bot_set_nat
        = ( set_nat2 @ Xs ) )
      = ( Xs = nil_nat ) ) ).

% set_empty2
thf(fact_366_set__empty2,axiom,
    ! [Xs: list_a] :
      ( ( bot_bot_set_a
        = ( set_a2 @ Xs ) )
      = ( Xs = nil_a ) ) ).

% set_empty2
thf(fact_367_set__empty,axiom,
    ! [Xs: list_set_a] :
      ( ( ( set_set_a2 @ Xs )
        = bot_bot_set_set_a )
      = ( Xs = nil_set_a ) ) ).

% set_empty
thf(fact_368_set__empty,axiom,
    ! [Xs: list_list_a] :
      ( ( ( set_list_a2 @ Xs )
        = bot_bot_set_list_a )
      = ( Xs = nil_list_a ) ) ).

% set_empty
thf(fact_369_set__empty,axiom,
    ! [Xs: list_nat] :
      ( ( ( set_nat2 @ Xs )
        = bot_bot_set_nat )
      = ( Xs = nil_nat ) ) ).

% set_empty
thf(fact_370_set__empty,axiom,
    ! [Xs: list_a] :
      ( ( ( set_a2 @ Xs )
        = bot_bot_set_a )
      = ( Xs = nil_a ) ) ).

% set_empty
thf(fact_371_subset__empty,axiom,
    ! [A3: set_nat] :
      ( ( ord_less_eq_set_nat @ A3 @ bot_bot_set_nat )
      = ( A3 = bot_bot_set_nat ) ) ).

% subset_empty
thf(fact_372_subset__empty,axiom,
    ! [A3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ bot_bot_set_list_a )
      = ( A3 = bot_bot_set_list_a ) ) ).

% subset_empty
thf(fact_373_subset__empty,axiom,
    ! [A3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ bot_bot_set_a )
      = ( A3 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_374_empty__subsetI,axiom,
    ! [A3: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A3 ) ).

% empty_subsetI
thf(fact_375_empty__subsetI,axiom,
    ! [A3: set_list_a] : ( ord_le8861187494160871172list_a @ bot_bot_set_list_a @ A3 ) ).

% empty_subsetI
thf(fact_376_empty__subsetI,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A3 ) ).

% empty_subsetI
thf(fact_377_Resid_Osimps_I7_J,axiom,
    ! [T: a,U: a,V: a,Va2: list_a,Vb: a,Vc: list_a] :
      ( ( ( ( con_a @ resid @ T @ U )
          & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
           != ( partial_null_a @ resid ) )
          & ( ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ T @ U ) ) )
           != nil_a ) )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
          = ( cons_a @ ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) @ ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ T @ U ) ) ) ) ) )
      & ( ~ ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
             != ( partial_null_a @ resid ) )
            & ( ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ T @ U ) ) )
             != nil_a ) )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
          = nil_a ) ) ) ).

% Resid.simps(7)
thf(fact_378_Resid_Osimps_I6_J,axiom,
    ! [T: a,U: a,Vb: a,Vc: list_a,V: a,Va2: list_a] :
      ( ( ( ( con_a @ resid @ T @ U )
          & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) )
           != ( partial_null_a @ resid ) )
          & ( ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ T @ U ) ) )
           != nil_a ) )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) )
          = ( cons_a @ ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) ) @ ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ T @ U ) ) ) ) ) )
      & ( ~ ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) )
             != ( partial_null_a @ resid ) )
            & ( ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ T @ U ) ) )
             != nil_a ) )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) )
          = nil_a ) ) ) ).

% Resid.simps(6)
thf(fact_379_R_Ocoterminal__def,axiom,
    ! [T: a,U: a] :
      ( ( coterminal_a @ resid @ T @ U )
      = ( ( inf_inf_set_a @ ( targets_a @ resid @ T ) @ ( targets_a @ resid @ U ) )
       != bot_bot_set_a ) ) ).

% R.coterminal_def
thf(fact_380_Resid_Osimps_I4_J,axiom,
    ! [T: a,U: a,V: a,Va2: list_a] :
      ( ( ( ( con_a @ resid @ T @ U )
          & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
           != ( partial_null_a @ resid ) ) )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
          = ( cons_a @ ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) @ nil_a ) ) )
      & ( ~ ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
             != ( partial_null_a @ resid ) ) )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
          = nil_a ) ) ) ).

% Resid.simps(4)
thf(fact_381_R_Onull__eqI,axiom,
    ! [N: a] :
      ( ! [T3: a] :
          ( ( ( resid @ N @ T3 )
            = N )
          & ( ( resid @ T3 @ N )
            = N ) )
     => ( N
        = ( partial_null_a @ resid ) ) ) ).

% R.null_eqI
thf(fact_382_R_Ocube__ax,axiom,
    ! [V: a,T: a,U: a] :
      ( ( ( resid @ ( resid @ V @ T ) @ ( resid @ U @ T ) )
       != ( partial_null_a @ resid ) )
     => ( ( resid @ ( resid @ V @ T ) @ ( resid @ U @ T ) )
        = ( resid @ ( resid @ V @ U ) @ ( resid @ T @ U ) ) ) ) ).

% R.cube_ax
thf(fact_383_R_Ocon__sym__ax,axiom,
    ! [T: a,U: a] :
      ( ( ( resid @ T @ U )
       != ( partial_null_a @ resid ) )
     => ( ( resid @ U @ T )
       != ( partial_null_a @ resid ) ) ) ).

% R.con_sym_ax
thf(fact_384_R_Ocon__imp__arr__resid,axiom,
    ! [T: a,U: a] :
      ( ( ( resid @ T @ U )
       != ( partial_null_a @ resid ) )
     => ( ( resid @ ( resid @ T @ U ) @ ( resid @ T @ U ) )
       != ( partial_null_a @ resid ) ) ) ).

% R.con_imp_arr_resid
thf(fact_385_R_Ocon__def,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
      = ( ( resid @ T @ U )
       != ( partial_null_a @ resid ) ) ) ).

% R.con_def
thf(fact_386_R_OconE,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( ( resid @ T @ U )
       != ( partial_null_a @ resid ) ) ) ).

% R.conE
thf(fact_387_R_Onot__arr__null,axiom,
    ~ ( arr_a @ resid @ ( partial_null_a @ resid ) ) ).

% R.not_arr_null
thf(fact_388_Resid1x__null,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Resid1x_a @ resid @ ( partial_null_a @ resid ) @ T4 )
      = ( partial_null_a @ resid ) ) ).

% Resid1x_null
thf(fact_389_list_Oinject,axiom,
    ! [X21: list_a,X22: list_list_a,Y21: list_a,Y22: list_list_a] :
      ( ( ( cons_list_a @ X21 @ X22 )
        = ( cons_list_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_390_list_Oinject,axiom,
    ! [X21: a,X22: list_a,Y21: a,Y22: list_a] :
      ( ( ( cons_a @ X21 @ X22 )
        = ( cons_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_391_empty__iff,axiom,
    ! [C: produc2579390645249093025st_a_a] :
      ~ ( member8006451231845903178st_a_a @ C @ bot_bo6692430193118440045st_a_a ) ).

% empty_iff
thf(fact_392_empty__iff,axiom,
    ! [C: produc8685980395799941037list_a] :
      ~ ( member4889668945541975382list_a @ C @ bot_bo9023811670960768633list_a ) ).

% empty_iff
thf(fact_393_empty__iff,axiom,
    ! [C: product_prod_a_a] :
      ~ ( member1426531477525435216od_a_a @ C @ bot_bo3357376287454694259od_a_a ) ).

% empty_iff
thf(fact_394_empty__iff,axiom,
    ! [C: list_a] :
      ~ ( member_list_a @ C @ bot_bot_set_list_a ) ).

% empty_iff
thf(fact_395_empty__iff,axiom,
    ! [C: nat] :
      ~ ( member_nat @ C @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_396_empty__iff,axiom,
    ! [C: a] :
      ~ ( member_a @ C @ bot_bot_set_a ) ).

% empty_iff
thf(fact_397_all__not__in__conv,axiom,
    ! [A3: set_Pr8962057229576493569st_a_a] :
      ( ( ! [X3: produc2579390645249093025st_a_a] :
            ~ ( member8006451231845903178st_a_a @ X3 @ A3 ) )
      = ( A3 = bot_bo6692430193118440045st_a_a ) ) ).

% all_not_in_conv
thf(fact_398_all__not__in__conv,axiom,
    ! [A3: set_Pr2070066670564046349list_a] :
      ( ( ! [X3: produc8685980395799941037list_a] :
            ~ ( member4889668945541975382list_a @ X3 @ A3 ) )
      = ( A3 = bot_bo9023811670960768633list_a ) ) ).

% all_not_in_conv
thf(fact_399_all__not__in__conv,axiom,
    ! [A3: set_Product_prod_a_a] :
      ( ( ! [X3: product_prod_a_a] :
            ~ ( member1426531477525435216od_a_a @ X3 @ A3 ) )
      = ( A3 = bot_bo3357376287454694259od_a_a ) ) ).

% all_not_in_conv
thf(fact_400_all__not__in__conv,axiom,
    ! [A3: set_list_a] :
      ( ( ! [X3: list_a] :
            ~ ( member_list_a @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_list_a ) ) ).

% all_not_in_conv
thf(fact_401_all__not__in__conv,axiom,
    ! [A3: set_nat] :
      ( ( ! [X3: nat] :
            ~ ( member_nat @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_402_all__not__in__conv,axiom,
    ! [A3: set_a] :
      ( ( ! [X3: a] :
            ~ ( member_a @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_403_Collect__empty__eq,axiom,
    ! [P: list_a > $o] :
      ( ( ( collect_list_a @ P )
        = bot_bot_set_list_a )
      = ( ! [X3: list_a] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_404_Collect__empty__eq,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_405_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_406_empty__Collect__eq,axiom,
    ! [P: list_a > $o] :
      ( ( bot_bot_set_list_a
        = ( collect_list_a @ P ) )
      = ( ! [X3: list_a] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_407_empty__Collect__eq,axiom,
    ! [P: nat > $o] :
      ( ( bot_bot_set_nat
        = ( collect_nat @ P ) )
      = ( ! [X3: nat] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_408_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X3: a] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_409_subset__antisym,axiom,
    ! [A3: set_list_a,B3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B3 )
     => ( ( ord_le8861187494160871172list_a @ B3 @ A3 )
       => ( A3 = B3 ) ) ) ).

% subset_antisym
thf(fact_410_subset__antisym,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ A3 )
       => ( A3 = B3 ) ) ) ).

% subset_antisym
thf(fact_411_subsetI,axiom,
    ! [A3: set_Pr8962057229576493569st_a_a,B3: set_Pr8962057229576493569st_a_a] :
      ( ! [X: produc2579390645249093025st_a_a] :
          ( ( member8006451231845903178st_a_a @ X @ A3 )
         => ( member8006451231845903178st_a_a @ X @ B3 ) )
     => ( ord_le2808437291371905441st_a_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_412_subsetI,axiom,
    ! [A3: set_Pr2070066670564046349list_a,B3: set_Pr2070066670564046349list_a] :
      ( ! [X: produc8685980395799941037list_a] :
          ( ( member4889668945541975382list_a @ X @ A3 )
         => ( member4889668945541975382list_a @ X @ B3 ) )
     => ( ord_le5139818769214234029list_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_413_subsetI,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ! [X: product_prod_a_a] :
          ( ( member1426531477525435216od_a_a @ X @ A3 )
         => ( member1426531477525435216od_a_a @ X @ B3 ) )
     => ( ord_le746702958409616551od_a_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_414_subsetI,axiom,
    ! [A3: set_nat,B3: set_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A3 )
         => ( member_nat @ X @ B3 ) )
     => ( ord_less_eq_set_nat @ A3 @ B3 ) ) ).

% subsetI
thf(fact_415_subsetI,axiom,
    ! [A3: set_list_a,B3: set_list_a] :
      ( ! [X: list_a] :
          ( ( member_list_a @ X @ A3 )
         => ( member_list_a @ X @ B3 ) )
     => ( ord_le8861187494160871172list_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_416_subsetI,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ! [X: a] :
          ( ( member_a @ X @ A3 )
         => ( member_a @ X @ B3 ) )
     => ( ord_less_eq_set_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_417_IntI,axiom,
    ! [C: produc2579390645249093025st_a_a,A3: set_Pr8962057229576493569st_a_a,B3: set_Pr8962057229576493569st_a_a] :
      ( ( member8006451231845903178st_a_a @ C @ A3 )
     => ( ( member8006451231845903178st_a_a @ C @ B3 )
       => ( member8006451231845903178st_a_a @ C @ ( inf_in7504020401910655727st_a_a @ A3 @ B3 ) ) ) ) ).

% IntI
thf(fact_418_IntI,axiom,
    ! [C: produc8685980395799941037list_a,A3: set_Pr2070066670564046349list_a,B3: set_Pr2070066670564046349list_a] :
      ( ( member4889668945541975382list_a @ C @ A3 )
     => ( ( member4889668945541975382list_a @ C @ B3 )
       => ( member4889668945541975382list_a @ C @ ( inf_in612029842898208507list_a @ A3 @ B3 ) ) ) ) ).

% IntI
thf(fact_419_IntI,axiom,
    ! [C: product_prod_a_a,A3: set_Product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ( member1426531477525435216od_a_a @ C @ A3 )
     => ( ( member1426531477525435216od_a_a @ C @ B3 )
       => ( member1426531477525435216od_a_a @ C @ ( inf_in8905007599844390133od_a_a @ A3 @ B3 ) ) ) ) ).

% IntI
thf(fact_420_IntI,axiom,
    ! [C: nat,A3: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ A3 )
     => ( ( member_nat @ C @ B3 )
       => ( member_nat @ C @ ( inf_inf_set_nat @ A3 @ B3 ) ) ) ) ).

% IntI
thf(fact_421_IntI,axiom,
    ! [C: list_a,A3: set_list_a,B3: set_list_a] :
      ( ( member_list_a @ C @ A3 )
     => ( ( member_list_a @ C @ B3 )
       => ( member_list_a @ C @ ( inf_inf_set_list_a @ A3 @ B3 ) ) ) ) ).

% IntI
thf(fact_422_IntI,axiom,
    ! [C: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C @ A3 )
     => ( ( member_a @ C @ B3 )
       => ( member_a @ C @ ( inf_inf_set_a @ A3 @ B3 ) ) ) ) ).

% IntI
thf(fact_423_Int__iff,axiom,
    ! [C: produc2579390645249093025st_a_a,A3: set_Pr8962057229576493569st_a_a,B3: set_Pr8962057229576493569st_a_a] :
      ( ( member8006451231845903178st_a_a @ C @ ( inf_in7504020401910655727st_a_a @ A3 @ B3 ) )
      = ( ( member8006451231845903178st_a_a @ C @ A3 )
        & ( member8006451231845903178st_a_a @ C @ B3 ) ) ) ).

% Int_iff
thf(fact_424_Int__iff,axiom,
    ! [C: produc8685980395799941037list_a,A3: set_Pr2070066670564046349list_a,B3: set_Pr2070066670564046349list_a] :
      ( ( member4889668945541975382list_a @ C @ ( inf_in612029842898208507list_a @ A3 @ B3 ) )
      = ( ( member4889668945541975382list_a @ C @ A3 )
        & ( member4889668945541975382list_a @ C @ B3 ) ) ) ).

% Int_iff
thf(fact_425_Int__iff,axiom,
    ! [C: product_prod_a_a,A3: set_Product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ( member1426531477525435216od_a_a @ C @ ( inf_in8905007599844390133od_a_a @ A3 @ B3 ) )
      = ( ( member1426531477525435216od_a_a @ C @ A3 )
        & ( member1426531477525435216od_a_a @ C @ B3 ) ) ) ).

% Int_iff
thf(fact_426_Int__iff,axiom,
    ! [C: nat,A3: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A3 @ B3 ) )
      = ( ( member_nat @ C @ A3 )
        & ( member_nat @ C @ B3 ) ) ) ).

% Int_iff
thf(fact_427_Int__iff,axiom,
    ! [C: list_a,A3: set_list_a,B3: set_list_a] :
      ( ( member_list_a @ C @ ( inf_inf_set_list_a @ A3 @ B3 ) )
      = ( ( member_list_a @ C @ A3 )
        & ( member_list_a @ C @ B3 ) ) ) ).

% Int_iff
thf(fact_428_Int__iff,axiom,
    ! [C: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A3 @ B3 ) )
      = ( ( member_a @ C @ A3 )
        & ( member_a @ C @ B3 ) ) ) ).

% Int_iff
thf(fact_429_Resid1x_Osimps_I1_J,axiom,
    ! [T: a] :
      ( ( paths_in_Resid1x_a @ resid @ T @ nil_a )
      = ( partial_null_a @ resid ) ) ).

% Resid1x.simps(1)
thf(fact_430_Resid1x__ide,axiom,
    ! [A: a,T4: list_a] :
      ( ( ide_a @ resid @ A )
     => ( ( ( paths_in_Resid1x_a @ resid @ A @ T4 )
         != ( partial_null_a @ resid ) )
       => ( ide_a @ resid @ ( paths_in_Resid1x_a @ resid @ A @ T4 ) ) ) ) ).

% Resid1x_ide
thf(fact_431_R_Otargets__eqI,axiom,
    ! [T: a,T5: a] :
      ( ( ( inf_inf_set_a @ ( targets_a @ resid @ T ) @ ( targets_a @ resid @ T5 ) )
       != bot_bot_set_a )
     => ( ( targets_a @ resid @ T )
        = ( targets_a @ resid @ T5 ) ) ) ).

% R.targets_eqI
thf(fact_432_Srcs__eqI,axiom,
    ! [T4: list_a,T7: list_a] :
      ( ( ( inf_inf_set_a @ ( paths_in_Srcs_a @ resid @ T4 ) @ ( paths_in_Srcs_a @ resid @ T7 ) )
       != bot_bot_set_a )
     => ( ( paths_in_Srcs_a @ resid @ T4 )
        = ( paths_in_Srcs_a @ resid @ T7 ) ) ) ).

% Srcs_eqI
thf(fact_433_Trgs__eqI,axiom,
    ! [T4: list_a,T7: list_a] :
      ( ( ( inf_inf_set_a @ ( paths_in_Trgs_a @ resid @ T4 ) @ ( paths_in_Trgs_a @ resid @ T7 ) )
       != bot_bot_set_a )
     => ( ( paths_in_Trgs_a @ resid @ T4 )
        = ( paths_in_Trgs_a @ resid @ T7 ) ) ) ).

% Trgs_eqI
thf(fact_434_Resid1x_Oelims,axiom,
    ! [X2: a,Xa: list_a,Y2: a] :
      ( ( ( paths_in_Resid1x_a @ resid @ X2 @ Xa )
        = Y2 )
     => ( ( ( Xa = nil_a )
         => ( Y2
           != ( partial_null_a @ resid ) ) )
       => ( ! [U4: a] :
              ( ( Xa
                = ( cons_a @ U4 @ nil_a ) )
             => ( Y2
               != ( resid @ X2 @ U4 ) ) )
         => ~ ! [U4: a,V2: a,Va: list_a] :
                ( ( Xa
                  = ( cons_a @ U4 @ ( cons_a @ V2 @ Va ) ) )
               => ( Y2
                 != ( paths_in_Resid1x_a @ resid @ ( resid @ X2 @ U4 ) @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ).

% Resid1x.elims
thf(fact_435_Con__sym1,axiom,
    ! [T4: list_a,U: a] :
      ( ( ( paths_in_Residx1_a @ resid @ T4 @ U )
       != nil_a )
      = ( ( paths_in_Resid1x_a @ resid @ U @ T4 )
       != ( partial_null_a @ resid ) ) ) ).

% Con_sym1
thf(fact_436_Int__subset__iff,axiom,
    ! [C2: set_list_a,A3: set_list_a,B3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ C2 @ ( inf_inf_set_list_a @ A3 @ B3 ) )
      = ( ( ord_le8861187494160871172list_a @ C2 @ A3 )
        & ( ord_le8861187494160871172list_a @ C2 @ B3 ) ) ) ).

% Int_subset_iff
thf(fact_437_Int__subset__iff,axiom,
    ! [C2: set_a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A3 @ B3 ) )
      = ( ( ord_less_eq_set_a @ C2 @ A3 )
        & ( ord_less_eq_set_a @ C2 @ B3 ) ) ) ).

% Int_subset_iff
thf(fact_438_R_Onull__is__zero_I1_J,axiom,
    ! [T: a] :
      ( ( resid @ ( partial_null_a @ resid ) @ T )
      = ( partial_null_a @ resid ) ) ).

% R.null_is_zero(1)
thf(fact_439_R_Onull__is__zero_I2_J,axiom,
    ! [T: a] :
      ( ( resid @ T @ ( partial_null_a @ resid ) )
      = ( partial_null_a @ resid ) ) ).

% R.null_is_zero(2)
thf(fact_440_R_OconI,axiom,
    ! [T: a,U: a] :
      ( ( ( resid @ T @ U )
       != ( partial_null_a @ resid ) )
     => ( con_a @ resid @ T @ U ) ) ).

% R.conI
thf(fact_441_disjoint__iff__not__equal,axiom,
    ! [A3: set_list_a,B3: set_list_a] :
      ( ( ( inf_inf_set_list_a @ A3 @ B3 )
        = bot_bot_set_list_a )
      = ( ! [X3: list_a] :
            ( ( member_list_a @ X3 @ A3 )
           => ! [Y3: list_a] :
                ( ( member_list_a @ Y3 @ B3 )
               => ( X3 != Y3 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_442_disjoint__iff__not__equal,axiom,
    ! [A3: set_nat,B3: set_nat] :
      ( ( ( inf_inf_set_nat @ A3 @ B3 )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A3 )
           => ! [Y3: nat] :
                ( ( member_nat @ Y3 @ B3 )
               => ( X3 != Y3 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_443_disjoint__iff__not__equal,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ( inf_inf_set_a @ A3 @ B3 )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A3 )
           => ! [Y3: a] :
                ( ( member_a @ Y3 @ B3 )
               => ( X3 != Y3 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_444_Int__empty__right,axiom,
    ! [A3: set_list_a] :
      ( ( inf_inf_set_list_a @ A3 @ bot_bot_set_list_a )
      = bot_bot_set_list_a ) ).

% Int_empty_right
thf(fact_445_Int__empty__right,axiom,
    ! [A3: set_nat] :
      ( ( inf_inf_set_nat @ A3 @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% Int_empty_right
thf(fact_446_Int__empty__right,axiom,
    ! [A3: set_a] :
      ( ( inf_inf_set_a @ A3 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% Int_empty_right
thf(fact_447_Int__empty__left,axiom,
    ! [B3: set_list_a] :
      ( ( inf_inf_set_list_a @ bot_bot_set_list_a @ B3 )
      = bot_bot_set_list_a ) ).

% Int_empty_left
thf(fact_448_Int__empty__left,axiom,
    ! [B3: set_nat] :
      ( ( inf_inf_set_nat @ bot_bot_set_nat @ B3 )
      = bot_bot_set_nat ) ).

% Int_empty_left
thf(fact_449_Int__empty__left,axiom,
    ! [B3: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ B3 )
      = bot_bot_set_a ) ).

% Int_empty_left
thf(fact_450_disjoint__iff,axiom,
    ! [A3: set_Pr8962057229576493569st_a_a,B3: set_Pr8962057229576493569st_a_a] :
      ( ( ( inf_in7504020401910655727st_a_a @ A3 @ B3 )
        = bot_bo6692430193118440045st_a_a )
      = ( ! [X3: produc2579390645249093025st_a_a] :
            ( ( member8006451231845903178st_a_a @ X3 @ A3 )
           => ~ ( member8006451231845903178st_a_a @ X3 @ B3 ) ) ) ) ).

% disjoint_iff
thf(fact_451_disjoint__iff,axiom,
    ! [A3: set_Pr2070066670564046349list_a,B3: set_Pr2070066670564046349list_a] :
      ( ( ( inf_in612029842898208507list_a @ A3 @ B3 )
        = bot_bo9023811670960768633list_a )
      = ( ! [X3: produc8685980395799941037list_a] :
            ( ( member4889668945541975382list_a @ X3 @ A3 )
           => ~ ( member4889668945541975382list_a @ X3 @ B3 ) ) ) ) ).

% disjoint_iff
thf(fact_452_disjoint__iff,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ( ( inf_in8905007599844390133od_a_a @ A3 @ B3 )
        = bot_bo3357376287454694259od_a_a )
      = ( ! [X3: product_prod_a_a] :
            ( ( member1426531477525435216od_a_a @ X3 @ A3 )
           => ~ ( member1426531477525435216od_a_a @ X3 @ B3 ) ) ) ) ).

% disjoint_iff
thf(fact_453_disjoint__iff,axiom,
    ! [A3: set_list_a,B3: set_list_a] :
      ( ( ( inf_inf_set_list_a @ A3 @ B3 )
        = bot_bot_set_list_a )
      = ( ! [X3: list_a] :
            ( ( member_list_a @ X3 @ A3 )
           => ~ ( member_list_a @ X3 @ B3 ) ) ) ) ).

% disjoint_iff
thf(fact_454_disjoint__iff,axiom,
    ! [A3: set_nat,B3: set_nat] :
      ( ( ( inf_inf_set_nat @ A3 @ B3 )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A3 )
           => ~ ( member_nat @ X3 @ B3 ) ) ) ) ).

% disjoint_iff
thf(fact_455_disjoint__iff,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ( inf_inf_set_a @ A3 @ B3 )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A3 )
           => ~ ( member_a @ X3 @ B3 ) ) ) ) ).

% disjoint_iff
thf(fact_456_Int__emptyI,axiom,
    ! [A3: set_Pr8962057229576493569st_a_a,B3: set_Pr8962057229576493569st_a_a] :
      ( ! [X: produc2579390645249093025st_a_a] :
          ( ( member8006451231845903178st_a_a @ X @ A3 )
         => ~ ( member8006451231845903178st_a_a @ X @ B3 ) )
     => ( ( inf_in7504020401910655727st_a_a @ A3 @ B3 )
        = bot_bo6692430193118440045st_a_a ) ) ).

% Int_emptyI
thf(fact_457_Int__emptyI,axiom,
    ! [A3: set_Pr2070066670564046349list_a,B3: set_Pr2070066670564046349list_a] :
      ( ! [X: produc8685980395799941037list_a] :
          ( ( member4889668945541975382list_a @ X @ A3 )
         => ~ ( member4889668945541975382list_a @ X @ B3 ) )
     => ( ( inf_in612029842898208507list_a @ A3 @ B3 )
        = bot_bo9023811670960768633list_a ) ) ).

% Int_emptyI
thf(fact_458_Int__emptyI,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ! [X: product_prod_a_a] :
          ( ( member1426531477525435216od_a_a @ X @ A3 )
         => ~ ( member1426531477525435216od_a_a @ X @ B3 ) )
     => ( ( inf_in8905007599844390133od_a_a @ A3 @ B3 )
        = bot_bo3357376287454694259od_a_a ) ) ).

% Int_emptyI
thf(fact_459_Int__emptyI,axiom,
    ! [A3: set_list_a,B3: set_list_a] :
      ( ! [X: list_a] :
          ( ( member_list_a @ X @ A3 )
         => ~ ( member_list_a @ X @ B3 ) )
     => ( ( inf_inf_set_list_a @ A3 @ B3 )
        = bot_bot_set_list_a ) ) ).

% Int_emptyI
thf(fact_460_Int__emptyI,axiom,
    ! [A3: set_nat,B3: set_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A3 )
         => ~ ( member_nat @ X @ B3 ) )
     => ( ( inf_inf_set_nat @ A3 @ B3 )
        = bot_bot_set_nat ) ) ).

% Int_emptyI
thf(fact_461_Int__emptyI,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ! [X: a] :
          ( ( member_a @ X @ A3 )
         => ~ ( member_a @ X @ B3 ) )
     => ( ( inf_inf_set_a @ A3 @ B3 )
        = bot_bot_set_a ) ) ).

% Int_emptyI
thf(fact_462_Int__mono,axiom,
    ! [A3: set_list_a,C2: set_list_a,B3: set_list_a,D: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ C2 )
     => ( ( ord_le8861187494160871172list_a @ B3 @ D )
       => ( ord_le8861187494160871172list_a @ ( inf_inf_set_list_a @ A3 @ B3 ) @ ( inf_inf_set_list_a @ C2 @ D ) ) ) ) ).

% Int_mono
thf(fact_463_Int__mono,axiom,
    ! [A3: set_a,C2: set_a,B3: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C2 )
     => ( ( ord_less_eq_set_a @ B3 @ D )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B3 ) @ ( inf_inf_set_a @ C2 @ D ) ) ) ) ).

% Int_mono
thf(fact_464_Int__lower1,axiom,
    ! [A3: set_list_a,B3: set_list_a] : ( ord_le8861187494160871172list_a @ ( inf_inf_set_list_a @ A3 @ B3 ) @ A3 ) ).

% Int_lower1
thf(fact_465_Int__lower1,axiom,
    ! [A3: set_a,B3: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B3 ) @ A3 ) ).

% Int_lower1
thf(fact_466_Int__lower2,axiom,
    ! [A3: set_list_a,B3: set_list_a] : ( ord_le8861187494160871172list_a @ ( inf_inf_set_list_a @ A3 @ B3 ) @ B3 ) ).

% Int_lower2
thf(fact_467_Int__lower2,axiom,
    ! [A3: set_a,B3: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B3 ) @ B3 ) ).

% Int_lower2
thf(fact_468_Int__absorb1,axiom,
    ! [B3: set_list_a,A3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ B3 @ A3 )
     => ( ( inf_inf_set_list_a @ A3 @ B3 )
        = B3 ) ) ).

% Int_absorb1
thf(fact_469_Int__absorb1,axiom,
    ! [B3: set_a,A3: set_a] :
      ( ( ord_less_eq_set_a @ B3 @ A3 )
     => ( ( inf_inf_set_a @ A3 @ B3 )
        = B3 ) ) ).

% Int_absorb1
thf(fact_470_Int__absorb2,axiom,
    ! [A3: set_list_a,B3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B3 )
     => ( ( inf_inf_set_list_a @ A3 @ B3 )
        = A3 ) ) ).

% Int_absorb2
thf(fact_471_Int__absorb2,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( inf_inf_set_a @ A3 @ B3 )
        = A3 ) ) ).

% Int_absorb2
thf(fact_472_Int__greatest,axiom,
    ! [C2: set_list_a,A3: set_list_a,B3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ C2 @ A3 )
     => ( ( ord_le8861187494160871172list_a @ C2 @ B3 )
       => ( ord_le8861187494160871172list_a @ C2 @ ( inf_inf_set_list_a @ A3 @ B3 ) ) ) ) ).

% Int_greatest
thf(fact_473_Int__greatest,axiom,
    ! [C2: set_a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ A3 )
     => ( ( ord_less_eq_set_a @ C2 @ B3 )
       => ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A3 @ B3 ) ) ) ) ).

% Int_greatest
thf(fact_474_Int__Collect__mono,axiom,
    ! [A3: set_Pr8962057229576493569st_a_a,B3: set_Pr8962057229576493569st_a_a,P: produc2579390645249093025st_a_a > $o,Q: produc2579390645249093025st_a_a > $o] :
      ( ( ord_le2808437291371905441st_a_a @ A3 @ B3 )
     => ( ! [X: produc2579390645249093025st_a_a] :
            ( ( member8006451231845903178st_a_a @ X @ A3 )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le2808437291371905441st_a_a @ ( inf_in7504020401910655727st_a_a @ A3 @ ( collec3957028472668211340st_a_a @ P ) ) @ ( inf_in7504020401910655727st_a_a @ B3 @ ( collec3957028472668211340st_a_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_475_Int__Collect__mono,axiom,
    ! [A3: set_Pr2070066670564046349list_a,B3: set_Pr2070066670564046349list_a,P: produc8685980395799941037list_a > $o,Q: produc8685980395799941037list_a > $o] :
      ( ( ord_le5139818769214234029list_a @ A3 @ B3 )
     => ( ! [X: produc8685980395799941037list_a] :
            ( ( member4889668945541975382list_a @ X @ A3 )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le5139818769214234029list_a @ ( inf_in612029842898208507list_a @ A3 @ ( collec840246186364283544list_a @ P ) ) @ ( inf_in612029842898208507list_a @ B3 @ ( collec840246186364283544list_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_476_Int__Collect__mono,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a,P: product_prod_a_a > $o,Q: product_prod_a_a > $o] :
      ( ( ord_le746702958409616551od_a_a @ A3 @ B3 )
     => ( ! [X: product_prod_a_a] :
            ( ( member1426531477525435216od_a_a @ X @ A3 )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le746702958409616551od_a_a @ ( inf_in8905007599844390133od_a_a @ A3 @ ( collec3336397797384452498od_a_a @ P ) ) @ ( inf_in8905007599844390133od_a_a @ B3 @ ( collec3336397797384452498od_a_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_477_Int__Collect__mono,axiom,
    ! [A3: set_nat,B3: set_nat,P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ A3 @ B3 )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ A3 )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_less_eq_set_nat @ ( inf_inf_set_nat @ A3 @ ( collect_nat @ P ) ) @ ( inf_inf_set_nat @ B3 @ ( collect_nat @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_478_Int__Collect__mono,axiom,
    ! [A3: set_list_a,B3: set_list_a,P: list_a > $o,Q: list_a > $o] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B3 )
     => ( ! [X: list_a] :
            ( ( member_list_a @ X @ A3 )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le8861187494160871172list_a @ ( inf_inf_set_list_a @ A3 @ ( collect_list_a @ P ) ) @ ( inf_inf_set_list_a @ B3 @ ( collect_list_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_479_Int__Collect__mono,axiom,
    ! [A3: set_a,B3: set_a,P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ! [X: a] :
            ( ( member_a @ X @ A3 )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B3 @ ( collect_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_480_partial__magma_Onull_Ocong,axiom,
    partial_null_a = partial_null_a ).

% partial_magma.null.cong
thf(fact_481_IntE,axiom,
    ! [C: nat,A3: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A3 @ B3 ) )
     => ~ ( ( member_nat @ C @ A3 )
         => ~ ( member_nat @ C @ B3 ) ) ) ).

% IntE
thf(fact_482_IntE,axiom,
    ! [C: list_a,A3: set_list_a,B3: set_list_a] :
      ( ( member_list_a @ C @ ( inf_inf_set_list_a @ A3 @ B3 ) )
     => ~ ( ( member_list_a @ C @ A3 )
         => ~ ( member_list_a @ C @ B3 ) ) ) ).

% IntE
thf(fact_483_IntE,axiom,
    ! [C: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A3 @ B3 ) )
     => ~ ( ( member_a @ C @ A3 )
         => ~ ( member_a @ C @ B3 ) ) ) ).

% IntE
thf(fact_484_IntD1,axiom,
    ! [C: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A3 @ B3 ) )
     => ( member_a @ C @ A3 ) ) ).

% IntD1
thf(fact_485_IntD2,axiom,
    ! [C: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A3 @ B3 ) )
     => ( member_a @ C @ B3 ) ) ).

% IntD2
thf(fact_486_Int__assoc,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A3 @ B3 ) @ C2 )
      = ( inf_inf_set_a @ A3 @ ( inf_inf_set_a @ B3 @ C2 ) ) ) ).

% Int_assoc
thf(fact_487_Int__absorb,axiom,
    ! [A3: set_a] :
      ( ( inf_inf_set_a @ A3 @ A3 )
      = A3 ) ).

% Int_absorb
thf(fact_488_Int__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [A5: set_a,B4: set_a] : ( inf_inf_set_a @ B4 @ A5 ) ) ) ).

% Int_commute
thf(fact_489_Int__left__absorb,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( inf_inf_set_a @ A3 @ ( inf_inf_set_a @ A3 @ B3 ) )
      = ( inf_inf_set_a @ A3 @ B3 ) ) ).

% Int_left_absorb
thf(fact_490_Int__left__commute,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ A3 @ ( inf_inf_set_a @ B3 @ C2 ) )
      = ( inf_inf_set_a @ B3 @ ( inf_inf_set_a @ A3 @ C2 ) ) ) ).

% Int_left_commute
thf(fact_491_partial__magma_Onull__is__zero_I2_J,axiom,
    ! [OP2: a > a > a,T: a] :
      ( ( partial_magma_a @ OP2 )
     => ( ( OP2 @ T @ ( partial_null_a @ OP2 ) )
        = ( partial_null_a @ OP2 ) ) ) ).

% partial_magma.null_is_zero(2)
thf(fact_492_partial__magma_Onull__is__zero_I1_J,axiom,
    ! [OP2: a > a > a,T: a] :
      ( ( partial_magma_a @ OP2 )
     => ( ( OP2 @ ( partial_null_a @ OP2 ) @ T )
        = ( partial_null_a @ OP2 ) ) ) ).

% partial_magma.null_is_zero(1)
thf(fact_493_partial__magma_Onull__eqI,axiom,
    ! [OP2: a > a > a,N: a] :
      ( ( partial_magma_a @ OP2 )
     => ( ! [T3: a] :
            ( ( ( OP2 @ N @ T3 )
              = N )
            & ( ( OP2 @ T3 @ N )
              = N ) )
       => ( N
          = ( partial_null_a @ OP2 ) ) ) ) ).

% partial_magma.null_eqI
thf(fact_494_paths__in__rts_OResid1x__null,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Resid1x_a @ Resid @ ( partial_null_a @ Resid ) @ T4 )
        = ( partial_null_a @ Resid ) ) ) ).

% paths_in_rts.Resid1x_null
thf(fact_495_not__Cons__self2,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( cons_a @ X2 @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_496_paths__in__rts_OSrcs__eqI,axiom,
    ! [Resid: a > a > a,T4: list_a,T7: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( inf_inf_set_a @ ( paths_in_Srcs_a @ Resid @ T4 ) @ ( paths_in_Srcs_a @ Resid @ T7 ) )
         != bot_bot_set_a )
       => ( ( paths_in_Srcs_a @ Resid @ T4 )
          = ( paths_in_Srcs_a @ Resid @ T7 ) ) ) ) ).

% paths_in_rts.Srcs_eqI
thf(fact_497_paths__in__rts_OResid1x_Osimps_I1_J,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Resid1x_a @ Resid @ T @ nil_a )
        = ( partial_null_a @ Resid ) ) ) ).

% paths_in_rts.Resid1x.simps(1)
thf(fact_498_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_499_equals0D,axiom,
    ! [A3: set_a,A: a] :
      ( ( A3 = bot_bot_set_a )
     => ~ ( member_a @ A @ A3 ) ) ).

% equals0D
thf(fact_500_equals0I,axiom,
    ! [A3: set_a] :
      ( ! [Y4: a] :
          ~ ( member_a @ Y4 @ A3 )
     => ( A3 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_501_ex__in__conv,axiom,
    ! [A3: set_a] :
      ( ( ? [X3: a] : ( member_a @ X3 @ A3 ) )
      = ( A3 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_502_paths__in__rts_OTrgs__eqI,axiom,
    ! [Resid: a > a > a,T4: list_a,T7: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( inf_inf_set_a @ ( paths_in_Trgs_a @ Resid @ T4 ) @ ( paths_in_Trgs_a @ Resid @ T7 ) )
         != bot_bot_set_a )
       => ( ( paths_in_Trgs_a @ Resid @ T4 )
          = ( paths_in_Trgs_a @ Resid @ T7 ) ) ) ) ).

% paths_in_rts.Trgs_eqI
thf(fact_503_paths__in__rts_OResid1x__ide,axiom,
    ! [Resid: a > a > a,A: a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ide_a @ Resid @ A )
       => ( ( ( paths_in_Resid1x_a @ Resid @ A @ T4 )
           != ( partial_null_a @ Resid ) )
         => ( ide_a @ Resid @ ( paths_in_Resid1x_a @ Resid @ A @ T4 ) ) ) ) ) ).

% paths_in_rts.Resid1x_ide
thf(fact_504_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X3: a] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_505_set__eq__subset,axiom,
    ( ( ^ [Y5: set_a,Z: set_a] : ( Y5 = Z ) )
    = ( ^ [A5: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A5 @ B4 )
          & ( ord_less_eq_set_a @ B4 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_506_subset__trans,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ C2 )
       => ( ord_less_eq_set_a @ A3 @ C2 ) ) ) ).

% subset_trans
thf(fact_507_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X: a] :
          ( ( P @ X )
         => ( Q @ X ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_508_subset__refl,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ A3 @ A3 ) ).

% subset_refl
thf(fact_509_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B4: set_a] :
        ! [T6: a] :
          ( ( member_a @ T6 @ A5 )
         => ( member_a @ T6 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_510_equalityD2,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ( ord_less_eq_set_a @ B3 @ A3 ) ) ).

% equalityD2
thf(fact_511_equalityD1,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ( ord_less_eq_set_a @ A3 @ B3 ) ) ).

% equalityD1
thf(fact_512_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B4: set_a] :
        ! [X3: a] :
          ( ( member_a @ X3 @ A5 )
         => ( member_a @ X3 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_513_equalityE,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ~ ( ( ord_less_eq_set_a @ A3 @ B3 )
         => ~ ( ord_less_eq_set_a @ B3 @ A3 ) ) ) ).

% equalityE
thf(fact_514_subsetD,axiom,
    ! [A3: set_a,B3: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( member_a @ C @ A3 )
       => ( member_a @ C @ B3 ) ) ) ).

% subsetD
thf(fact_515_in__mono,axiom,
    ! [A3: set_a,B3: set_a,X2: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( member_a @ X2 @ A3 )
       => ( member_a @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_516_paths__in__rts_OResid1x_Oelims,axiom,
    ! [Resid: a > a > a,X2: a,Xa: list_a,Y2: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid1x_a @ Resid @ X2 @ Xa )
          = Y2 )
       => ( ( ( Xa = nil_a )
           => ( Y2
             != ( partial_null_a @ Resid ) ) )
         => ( ! [U4: a] :
                ( ( Xa
                  = ( cons_a @ U4 @ nil_a ) )
               => ( Y2
                 != ( Resid @ X2 @ U4 ) ) )
           => ~ ! [U4: a,V2: a,Va: list_a] :
                  ( ( Xa
                    = ( cons_a @ U4 @ ( cons_a @ V2 @ Va ) ) )
                 => ( Y2
                   != ( paths_in_Resid1x_a @ Resid @ ( Resid @ X2 @ U4 ) @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ).

% paths_in_rts.Resid1x.elims
thf(fact_517_paths__in__rts_OCon__sym1,axiom,
    ! [Resid: a > a > a,T4: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Residx1_a @ Resid @ T4 @ U )
         != nil_a )
        = ( ( paths_in_Resid1x_a @ Resid @ U @ T4 )
         != ( partial_null_a @ Resid ) ) ) ) ).

% paths_in_rts.Con_sym1
thf(fact_518_paths__in__rts_OResid_Osimps_I4_J,axiom,
    ! [Resid: a > a > a,T: a,U: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( ( con_a @ Resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
             != ( partial_null_a @ Resid ) ) )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
            = ( cons_a @ ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) @ nil_a ) ) )
        & ( ~ ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
               != ( partial_null_a @ Resid ) ) )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
            = nil_a ) ) ) ) ).

% paths_in_rts.Resid.simps(4)
thf(fact_519_list__nonempty__induct,axiom,
    ! [Xs: list_a,P: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X: a] : ( P @ ( cons_a @ X @ nil_a ) )
       => ( ! [X: a,Xs2: list_a] :
              ( ( Xs2 != nil_a )
             => ( ( P @ Xs2 )
               => ( P @ ( cons_a @ X @ Xs2 ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_520_list__induct2_H,axiom,
    ! [P: list_a > list_a > $o,Xs: list_a,Ys: list_a] :
      ( ( P @ nil_a @ nil_a )
     => ( ! [X: a,Xs2: list_a] : ( P @ ( cons_a @ X @ Xs2 ) @ nil_a )
       => ( ! [Y4: a,Ys2: list_a] : ( P @ nil_a @ ( cons_a @ Y4 @ Ys2 ) )
         => ( ! [X: a,Xs2: list_a,Y4: a,Ys2: list_a] :
                ( ( P @ Xs2 @ Ys2 )
               => ( P @ ( cons_a @ X @ Xs2 ) @ ( cons_a @ Y4 @ Ys2 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_521_neq__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
      = ( ? [Y3: a,Ys3: list_a] :
            ( Xs
            = ( cons_a @ Y3 @ Ys3 ) ) ) ) ).

% neq_Nil_conv
thf(fact_522_remdups__adj_Ocases,axiom,
    ! [X2: list_a] :
      ( ( X2 != nil_a )
     => ( ! [X: a] :
            ( X2
           != ( cons_a @ X @ nil_a ) )
       => ~ ! [X: a,Y4: a,Xs2: list_a] :
              ( X2
             != ( cons_a @ X @ ( cons_a @ Y4 @ Xs2 ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_523_transpose_Ocases,axiom,
    ! [X2: list_list_a] :
      ( ( X2 != nil_list_a )
     => ( ! [Xss: list_list_a] :
            ( X2
           != ( cons_list_a @ nil_a @ Xss ) )
       => ~ ! [X: a,Xs2: list_a,Xss: list_list_a] :
              ( X2
             != ( cons_list_a @ ( cons_a @ X @ Xs2 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_524_list_Oexhaust,axiom,
    ! [Y2: list_a] :
      ( ( Y2 != nil_a )
     => ~ ! [X212: a,X222: list_a] :
            ( Y2
           != ( cons_a @ X212 @ X222 ) ) ) ).

% list.exhaust
thf(fact_525_list_OdiscI,axiom,
    ! [List: list_a,X21: a,X22: list_a] :
      ( ( List
        = ( cons_a @ X21 @ X22 ) )
     => ( List != nil_a ) ) ).

% list.discI
thf(fact_526_list_Odistinct_I1_J,axiom,
    ! [X21: a,X22: list_a] :
      ( nil_a
     != ( cons_a @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_527_set__ConsD,axiom,
    ! [Y2: a,X2: a,Xs: list_a] :
      ( ( member_a @ Y2 @ ( set_a2 @ ( cons_a @ X2 @ Xs ) ) )
     => ( ( Y2 = X2 )
        | ( member_a @ Y2 @ ( set_a2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_528_list_Oset__cases,axiom,
    ! [E: a,A: list_a] :
      ( ( member_a @ E @ ( set_a2 @ A ) )
     => ( ! [Z2: list_a] :
            ( A
           != ( cons_a @ E @ Z2 ) )
       => ~ ! [Z1: a,Z2: list_a] :
              ( ( A
                = ( cons_a @ Z1 @ Z2 ) )
             => ~ ( member_a @ E @ ( set_a2 @ Z2 ) ) ) ) ) ).

% list.set_cases
thf(fact_529_list_Oset__intros_I1_J,axiom,
    ! [X21: a,X22: list_a] : ( member_a @ X21 @ ( set_a2 @ ( cons_a @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_530_list_Oset__intros_I2_J,axiom,
    ! [Y2: a,X22: list_a,X21: a] :
      ( ( member_a @ Y2 @ ( set_a2 @ X22 ) )
     => ( member_a @ Y2 @ ( set_a2 @ ( cons_a @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_531_subset__code_I1_J,axiom,
    ! [Xs: list_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ B3 )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ ( set_a2 @ Xs ) )
           => ( member_a @ X3 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_532_paths__in__rts_OResid_Osimps_I6_J,axiom,
    ! [Resid: a > a > a,T: a,U: a,Vb: a,Vc: list_a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( ( con_a @ Resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) )
             != ( partial_null_a @ Resid ) )
            & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ T @ U ) ) )
             != nil_a ) )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) )
            = ( cons_a @ ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) ) @ ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ T @ U ) ) ) ) ) )
        & ( ~ ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) )
               != ( partial_null_a @ Resid ) )
              & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ T @ U ) ) )
               != nil_a ) )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) )
            = nil_a ) ) ) ) ).

% paths_in_rts.Resid.simps(6)
thf(fact_533_paths__in__rts_OResid_Osimps_I7_J,axiom,
    ! [Resid: a > a > a,T: a,U: a,V: a,Va2: list_a,Vb: a,Vc: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( ( con_a @ Resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
             != ( partial_null_a @ Resid ) )
            & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ T @ U ) ) )
             != nil_a ) )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
            = ( cons_a @ ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) @ ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ T @ U ) ) ) ) ) )
        & ( ~ ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
               != ( partial_null_a @ Resid ) )
              & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ T @ U ) ) )
               != nil_a ) )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
            = nil_a ) ) ) ) ).

% paths_in_rts.Resid.simps(7)
thf(fact_534_empty__set,axiom,
    ( bot_bot_set_a
    = ( set_a2 @ nil_a ) ) ).

% empty_set
thf(fact_535_set__subset__Cons,axiom,
    ! [Xs: list_a,X2: a] : ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ ( cons_a @ X2 @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_536_last__ConsR,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( Xs != nil_a )
     => ( ( last_a @ ( cons_a @ X2 @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_ConsR
thf(fact_537_last__ConsL,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( Xs = nil_a )
     => ( ( last_a @ ( cons_a @ X2 @ Xs ) )
        = X2 ) ) ).

% last_ConsL
thf(fact_538_last_Osimps,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( ( Xs = nil_a )
       => ( ( last_a @ ( cons_a @ X2 @ Xs ) )
          = X2 ) )
      & ( ( Xs != nil_a )
       => ( ( last_a @ ( cons_a @ X2 @ Xs ) )
          = ( last_a @ Xs ) ) ) ) ).

% last.simps
thf(fact_539_last__in__set,axiom,
    ! [As: list_a] :
      ( ( As != nil_a )
     => ( member_a @ ( last_a @ As ) @ ( set_a2 @ As ) ) ) ).

% last_in_set
thf(fact_540_boolean__algebra_Oconj__zero__right,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ X2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_right
thf(fact_541_boolean__algebra_Oconj__zero__left,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X2 )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_left
thf(fact_542_inf__bot__right,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ X2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% inf_bot_right
thf(fact_543_inf__bot__left,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X2 )
      = bot_bot_set_a ) ).

% inf_bot_left
thf(fact_544_Resid1x__as__Resid_H,axiom,
    ! [T: a,U2: list_a] :
      ( ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 )
         != nil_a )
       => ( ( paths_in_Resid1x_a @ resid @ T @ U2 )
          = ( hd_a @ ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 ) ) ) )
      & ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 )
          = nil_a )
       => ( ( paths_in_Resid1x_a @ resid @ T @ U2 )
          = ( partial_null_a @ resid ) ) ) ) ).

% Resid1x_as_Resid'
thf(fact_545_le__inf__iff,axiom,
    ! [X2: set_a,Y2: set_a,Z3: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ ( inf_inf_set_a @ Y2 @ Z3 ) )
      = ( ( ord_less_eq_set_a @ X2 @ Y2 )
        & ( ord_less_eq_set_a @ X2 @ Z3 ) ) ) ).

% le_inf_iff
thf(fact_546_le__inf__iff,axiom,
    ! [X2: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X2 @ ( inf_inf_nat @ Y2 @ Z3 ) )
      = ( ( ord_less_eq_nat @ X2 @ Y2 )
        & ( ord_less_eq_nat @ X2 @ Z3 ) ) ) ).

% le_inf_iff
thf(fact_547_inf_Obounded__iff,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
      = ( ( ord_less_eq_set_a @ A @ B )
        & ( ord_less_eq_set_a @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_548_inf_Obounded__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
      = ( ( ord_less_eq_nat @ A @ B )
        & ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_549_inf__right__idem,axiom,
    ! [X2: set_a,Y2: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X2 @ Y2 ) @ Y2 )
      = ( inf_inf_set_a @ X2 @ Y2 ) ) ).

% inf_right_idem
thf(fact_550_inf_Oright__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ B )
      = ( inf_inf_set_a @ A @ B ) ) ).

% inf.right_idem
thf(fact_551_inf__left__idem,axiom,
    ! [X2: set_a,Y2: set_a] :
      ( ( inf_inf_set_a @ X2 @ ( inf_inf_set_a @ X2 @ Y2 ) )
      = ( inf_inf_set_a @ X2 @ Y2 ) ) ).

% inf_left_idem
thf(fact_552_inf_Oleft__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B ) )
      = ( inf_inf_set_a @ A @ B ) ) ).

% inf.left_idem
thf(fact_553_inf__idem,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ X2 @ X2 )
      = X2 ) ).

% inf_idem
thf(fact_554_inf_Oidem,axiom,
    ! [A: set_a] :
      ( ( inf_inf_set_a @ A @ A )
      = A ) ).

% inf.idem
thf(fact_555_Ide__imp__Ide__hd,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Ide_a @ resid @ T4 )
     => ( ide_a @ resid @ ( hd_a @ T4 ) ) ) ).

% Ide_imp_Ide_hd
thf(fact_556_Arr__imp__arr__hd,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( arr_a @ resid @ ( hd_a @ T4 ) ) ) ).

% Arr_imp_arr_hd
thf(fact_557_bot__set__def,axiom,
    ( bot_bot_set_a
    = ( collect_a @ bot_bot_a_o ) ) ).

% bot_set_def
thf(fact_558_list_Osel_I1_J,axiom,
    ! [X21: a,X22: list_a] :
      ( ( hd_a @ ( cons_a @ X21 @ X22 ) )
      = X21 ) ).

% list.sel(1)
thf(fact_559_hd__in__set,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( member_a @ ( hd_a @ Xs ) @ ( set_a2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_560_list_Oset__sel_I1_J,axiom,
    ! [A: list_a] :
      ( ( A != nil_a )
     => ( member_a @ ( hd_a @ A ) @ ( set_a2 @ A ) ) ) ).

% list.set_sel(1)
thf(fact_561_hd__Nil__eq__last,axiom,
    ( ( hd_a @ nil_a )
    = ( last_a @ nil_a ) ) ).

% hd_Nil_eq_last
thf(fact_562_inf__left__commute,axiom,
    ! [X2: set_a,Y2: set_a,Z3: set_a] :
      ( ( inf_inf_set_a @ X2 @ ( inf_inf_set_a @ Y2 @ Z3 ) )
      = ( inf_inf_set_a @ Y2 @ ( inf_inf_set_a @ X2 @ Z3 ) ) ) ).

% inf_left_commute
thf(fact_563_inf_Oleft__commute,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( inf_inf_set_a @ B @ ( inf_inf_set_a @ A @ C ) )
      = ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ).

% inf.left_commute
thf(fact_564_boolean__algebra__cancel_Oinf2,axiom,
    ! [B3: set_a,K: set_a,B: set_a,A: set_a] :
      ( ( B3
        = ( inf_inf_set_a @ K @ B ) )
     => ( ( inf_inf_set_a @ A @ B3 )
        = ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.inf2
thf(fact_565_boolean__algebra__cancel_Oinf1,axiom,
    ! [A3: set_a,K: set_a,A: set_a,B: set_a] :
      ( ( A3
        = ( inf_inf_set_a @ K @ A ) )
     => ( ( inf_inf_set_a @ A3 @ B )
        = ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.inf1
thf(fact_566_inf__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( inf_inf_set_a @ Y3 @ X3 ) ) ) ).

% inf_commute
thf(fact_567_inf_Ocommute,axiom,
    ( inf_inf_set_a
    = ( ^ [A6: set_a,B5: set_a] : ( inf_inf_set_a @ B5 @ A6 ) ) ) ).

% inf.commute
thf(fact_568_inf__assoc,axiom,
    ! [X2: set_a,Y2: set_a,Z3: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X2 @ Y2 ) @ Z3 )
      = ( inf_inf_set_a @ X2 @ ( inf_inf_set_a @ Y2 @ Z3 ) ) ) ).

% inf_assoc
thf(fact_569_inf_Oassoc,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ C )
      = ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ).

% inf.assoc
thf(fact_570_inf__sup__aci_I1_J,axiom,
    ( inf_inf_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( inf_inf_set_a @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(1)
thf(fact_571_inf__sup__aci_I2_J,axiom,
    ! [X2: set_a,Y2: set_a,Z3: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X2 @ Y2 ) @ Z3 )
      = ( inf_inf_set_a @ X2 @ ( inf_inf_set_a @ Y2 @ Z3 ) ) ) ).

% inf_sup_aci(2)
thf(fact_572_inf__sup__aci_I3_J,axiom,
    ! [X2: set_a,Y2: set_a,Z3: set_a] :
      ( ( inf_inf_set_a @ X2 @ ( inf_inf_set_a @ Y2 @ Z3 ) )
      = ( inf_inf_set_a @ Y2 @ ( inf_inf_set_a @ X2 @ Z3 ) ) ) ).

% inf_sup_aci(3)
thf(fact_573_inf__sup__aci_I4_J,axiom,
    ! [X2: set_a,Y2: set_a] :
      ( ( inf_inf_set_a @ X2 @ ( inf_inf_set_a @ X2 @ Y2 ) )
      = ( inf_inf_set_a @ X2 @ Y2 ) ) ).

% inf_sup_aci(4)
thf(fact_574_paths__in__rts_OIde__imp__Ide__hd,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ T4 )
       => ( ide_a @ Resid @ ( hd_a @ T4 ) ) ) ) ).

% paths_in_rts.Ide_imp_Ide_hd
thf(fact_575_paths__in__rts_OArr__imp__arr__hd,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( arr_a @ Resid @ ( hd_a @ T4 ) ) ) ) ).

% paths_in_rts.Arr_imp_arr_hd
thf(fact_576_paths__in__rts_OResid1x__as__Resid_H,axiom,
    ! [Resid: a > a > a,T: a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 )
           != nil_a )
         => ( ( paths_in_Resid1x_a @ Resid @ T @ U2 )
            = ( hd_a @ ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 ) ) ) )
        & ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 )
            = nil_a )
         => ( ( paths_in_Resid1x_a @ Resid @ T @ U2 )
            = ( partial_null_a @ Resid ) ) ) ) ) ).

% paths_in_rts.Resid1x_as_Resid'
thf(fact_577_inf__sup__ord_I2_J,axiom,
    ! [X2: set_a,Y2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X2 @ Y2 ) @ Y2 ) ).

% inf_sup_ord(2)
thf(fact_578_inf__sup__ord_I2_J,axiom,
    ! [X2: nat,Y2: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X2 @ Y2 ) @ Y2 ) ).

% inf_sup_ord(2)
thf(fact_579_inf__sup__ord_I1_J,axiom,
    ! [X2: set_a,Y2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X2 @ Y2 ) @ X2 ) ).

% inf_sup_ord(1)
thf(fact_580_inf__sup__ord_I1_J,axiom,
    ! [X2: nat,Y2: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X2 @ Y2 ) @ X2 ) ).

% inf_sup_ord(1)
thf(fact_581_inf__le1,axiom,
    ! [X2: set_a,Y2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X2 @ Y2 ) @ X2 ) ).

% inf_le1
thf(fact_582_inf__le1,axiom,
    ! [X2: nat,Y2: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X2 @ Y2 ) @ X2 ) ).

% inf_le1
thf(fact_583_inf__le2,axiom,
    ! [X2: set_a,Y2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X2 @ Y2 ) @ Y2 ) ).

% inf_le2
thf(fact_584_inf__le2,axiom,
    ! [X2: nat,Y2: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X2 @ Y2 ) @ Y2 ) ).

% inf_le2
thf(fact_585_le__infE,axiom,
    ! [X2: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ ( inf_inf_set_a @ A @ B ) )
     => ~ ( ( ord_less_eq_set_a @ X2 @ A )
         => ~ ( ord_less_eq_set_a @ X2 @ B ) ) ) ).

% le_infE
thf(fact_586_le__infE,axiom,
    ! [X2: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X2 @ ( inf_inf_nat @ A @ B ) )
     => ~ ( ( ord_less_eq_nat @ X2 @ A )
         => ~ ( ord_less_eq_nat @ X2 @ B ) ) ) ).

% le_infE
thf(fact_587_le__infI,axiom,
    ! [X2: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ A )
     => ( ( ord_less_eq_set_a @ X2 @ B )
       => ( ord_less_eq_set_a @ X2 @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% le_infI
thf(fact_588_le__infI,axiom,
    ! [X2: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X2 @ A )
     => ( ( ord_less_eq_nat @ X2 @ B )
       => ( ord_less_eq_nat @ X2 @ ( inf_inf_nat @ A @ B ) ) ) ) ).

% le_infI
thf(fact_589_inf__mono,axiom,
    ! [A: set_a,C: set_a,B: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ( ord_less_eq_set_a @ B @ D2 )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ ( inf_inf_set_a @ C @ D2 ) ) ) ) ).

% inf_mono
thf(fact_590_inf__mono,axiom,
    ! [A: nat,C: nat,B: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ D2 )
       => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ ( inf_inf_nat @ C @ D2 ) ) ) ) ).

% inf_mono
thf(fact_591_le__infI1,axiom,
    ! [A: set_a,X2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ X2 )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X2 ) ) ).

% le_infI1
thf(fact_592_le__infI1,axiom,
    ! [A: nat,X2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ X2 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X2 ) ) ).

% le_infI1
thf(fact_593_le__infI2,axiom,
    ! [B: set_a,X2: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ X2 )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X2 ) ) ).

% le_infI2
thf(fact_594_le__infI2,axiom,
    ! [B: nat,X2: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ X2 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X2 ) ) ).

% le_infI2
thf(fact_595_inf_OorderE,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( A
        = ( inf_inf_set_a @ A @ B ) ) ) ).

% inf.orderE
thf(fact_596_inf_OorderE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( A
        = ( inf_inf_nat @ A @ B ) ) ) ).

% inf.orderE
thf(fact_597_inf_OorderI,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A
        = ( inf_inf_set_a @ A @ B ) )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% inf.orderI
thf(fact_598_inf_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( inf_inf_nat @ A @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% inf.orderI
thf(fact_599_inf__unique,axiom,
    ! [F: set_a > set_a > set_a,X2: set_a,Y2: set_a] :
      ( ! [X: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( F @ X @ Y4 ) @ X )
     => ( ! [X: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( F @ X @ Y4 ) @ Y4 )
       => ( ! [X: set_a,Y4: set_a,Z4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ( ord_less_eq_set_a @ X @ Z4 )
               => ( ord_less_eq_set_a @ X @ ( F @ Y4 @ Z4 ) ) ) )
         => ( ( inf_inf_set_a @ X2 @ Y2 )
            = ( F @ X2 @ Y2 ) ) ) ) ) ).

% inf_unique
thf(fact_600_inf__unique,axiom,
    ! [F: nat > nat > nat,X2: nat,Y2: nat] :
      ( ! [X: nat,Y4: nat] : ( ord_less_eq_nat @ ( F @ X @ Y4 ) @ X )
     => ( ! [X: nat,Y4: nat] : ( ord_less_eq_nat @ ( F @ X @ Y4 ) @ Y4 )
       => ( ! [X: nat,Y4: nat,Z4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ( ord_less_eq_nat @ X @ Z4 )
               => ( ord_less_eq_nat @ X @ ( F @ Y4 @ Z4 ) ) ) )
         => ( ( inf_inf_nat @ X2 @ Y2 )
            = ( F @ X2 @ Y2 ) ) ) ) ) ).

% inf_unique
thf(fact_601_le__iff__inf,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( inf_inf_set_a @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_602_le__iff__inf,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( inf_inf_nat @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_603_inf_Oabsorb1,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( inf_inf_set_a @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_604_inf_Oabsorb1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( inf_inf_nat @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_605_inf_Oabsorb2,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( inf_inf_set_a @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_606_inf_Oabsorb2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( inf_inf_nat @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_607_inf__absorb1,axiom,
    ! [X2: set_a,Y2: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y2 )
     => ( ( inf_inf_set_a @ X2 @ Y2 )
        = X2 ) ) ).

% inf_absorb1
thf(fact_608_inf__absorb1,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( inf_inf_nat @ X2 @ Y2 )
        = X2 ) ) ).

% inf_absorb1
thf(fact_609_inf__absorb2,axiom,
    ! [Y2: set_a,X2: set_a] :
      ( ( ord_less_eq_set_a @ Y2 @ X2 )
     => ( ( inf_inf_set_a @ X2 @ Y2 )
        = Y2 ) ) ).

% inf_absorb2
thf(fact_610_inf__absorb2,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( inf_inf_nat @ X2 @ Y2 )
        = Y2 ) ) ).

% inf_absorb2
thf(fact_611_inf_OboundedE,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
     => ~ ( ( ord_less_eq_set_a @ A @ B )
         => ~ ( ord_less_eq_set_a @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_612_inf_OboundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
     => ~ ( ( ord_less_eq_nat @ A @ B )
         => ~ ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_613_inf_OboundedI,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ A @ C )
       => ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_614_inf_OboundedI,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ C )
       => ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_615_inf__greatest,axiom,
    ! [X2: set_a,Y2: set_a,Z3: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y2 )
     => ( ( ord_less_eq_set_a @ X2 @ Z3 )
       => ( ord_less_eq_set_a @ X2 @ ( inf_inf_set_a @ Y2 @ Z3 ) ) ) ) ).

% inf_greatest
thf(fact_616_inf__greatest,axiom,
    ! [X2: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ X2 @ Z3 )
       => ( ord_less_eq_nat @ X2 @ ( inf_inf_nat @ Y2 @ Z3 ) ) ) ) ).

% inf_greatest
thf(fact_617_inf_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B5: set_a] :
          ( A6
          = ( inf_inf_set_a @ A6 @ B5 ) ) ) ) ).

% inf.order_iff
thf(fact_618_inf_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [A6: nat,B5: nat] :
          ( A6
          = ( inf_inf_nat @ A6 @ B5 ) ) ) ) ).

% inf.order_iff
thf(fact_619_inf_Ocobounded1,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_620_inf_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_621_inf_Ocobounded2,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_622_inf_Ocobounded2,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_623_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B5: set_a] :
          ( ( inf_inf_set_a @ A6 @ B5 )
          = A6 ) ) ) ).

% inf.absorb_iff1
thf(fact_624_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [A6: nat,B5: nat] :
          ( ( inf_inf_nat @ A6 @ B5 )
          = A6 ) ) ) ).

% inf.absorb_iff1
thf(fact_625_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B5: set_a,A6: set_a] :
          ( ( inf_inf_set_a @ A6 @ B5 )
          = B5 ) ) ) ).

% inf.absorb_iff2
thf(fact_626_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [B5: nat,A6: nat] :
          ( ( inf_inf_nat @ A6 @ B5 )
          = B5 ) ) ) ).

% inf.absorb_iff2
thf(fact_627_inf_OcoboundedI1,axiom,
    ! [A: set_a,C: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_628_inf_OcoboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_629_inf_OcoboundedI2,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_630_inf_OcoboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_631_const__ide__is__Ide,axiom,
    ! [T4: list_a] :
      ( ( T4 != nil_a )
     => ( ( ide_a @ resid @ ( hd_a @ T4 ) )
       => ( ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( insert_a2 @ ( hd_a @ T4 ) @ bot_bot_set_a ) )
         => ( paths_in_Ide_a @ resid @ T4 ) ) ) ) ).

% const_ide_is_Ide
thf(fact_632_Srcs_Oelims,axiom,
    ! [X2: list_a,Y2: set_a] :
      ( ( ( paths_in_Srcs_a @ resid @ X2 )
        = Y2 )
     => ( ( ( X2 = nil_a )
         => ( Y2 != bot_bot_set_a ) )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ( Y2
               != ( sources_a @ resid @ T3 ) ) )
         => ~ ! [T3: a] :
                ( ? [V2: a,Va: list_a] :
                    ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ( Y2
                 != ( sources_a @ resid @ T3 ) ) ) ) ) ) ).

% Srcs.elims
thf(fact_633_R_Ocoinitial__def,axiom,
    ! [T: a,U: a] :
      ( ( coinitial_a @ resid @ T @ U )
      = ( ( inf_inf_set_a @ ( sources_a @ resid @ T ) @ ( sources_a @ resid @ U ) )
       != bot_bot_set_a ) ) ).

% R.coinitial_def
thf(fact_634_Resid__cons_I1_J,axiom,
    ! [U2: list_a,T: a,T4: list_a] :
      ( ( U2 != nil_a )
     => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ U2 )
         != nil_a )
       => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ U2 )
          = ( append_a @ ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ U2 ) @ ( paths_in_Resid_a @ resid @ T4 @ ( paths_in_Resid_a @ resid @ U2 @ ( cons_a @ T @ nil_a ) ) ) ) ) ) ) ).

% Resid_cons(1)
thf(fact_635_Resid__rec_I4_J,axiom,
    ! [T4: list_a,U2: list_a,T: a,U: a] :
      ( ( T4 != nil_a )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ U2 ) )
           != nil_a )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ U2 ) )
            = ( append_a @ ( paths_in_Resid_a @ resid @ ( cons_a @ ( resid @ T @ U ) @ nil_a ) @ U2 ) @ ( paths_in_Resid_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ ( resid @ U @ T ) @ nil_a ) ) @ ( paths_in_Resid_a @ resid @ U2 @ ( cons_a @ ( resid @ T @ U ) @ nil_a ) ) ) ) ) ) ) ) ).

% Resid_rec(4)
thf(fact_636_R_Ocomposable__imp__seq,axiom,
    ! [T: a,U: a] :
      ( ( composable_a @ resid @ T @ U )
     => ( seq_a @ resid @ T @ U ) ) ).

% R.composable_imp_seq
thf(fact_637_R_Osources__cong__closed,axiom,
    ! [A: a,T: a,A4: a] :
      ( ( member_a @ A @ ( sources_a @ resid @ T ) )
     => ( ( ( ide_a @ resid @ ( resid @ A @ A4 ) )
          & ( ide_a @ resid @ ( resid @ A4 @ A ) ) )
       => ( member_a @ A4 @ ( sources_a @ resid @ T ) ) ) ) ).

% R.sources_cong_closed
thf(fact_638_R_Osources__are__cong,axiom,
    ! [A: a,T: a,A4: a] :
      ( ( member_a @ A @ ( sources_a @ resid @ T ) )
     => ( ( member_a @ A4 @ ( sources_a @ resid @ T ) )
       => ( ( ide_a @ resid @ ( resid @ A @ A4 ) )
          & ( ide_a @ resid @ ( resid @ A4 @ A ) ) ) ) ) ).

% R.sources_are_cong
thf(fact_639_R_Osource__is__ide,axiom,
    ! [A: a,T: a] :
      ( ( member_a @ A @ ( sources_a @ resid @ T ) )
     => ( ide_a @ resid @ A ) ) ).

% R.source_is_ide
thf(fact_640_R_Osources__are__con,axiom,
    ! [A: a,T: a,A4: a] :
      ( ( member_a @ A @ ( sources_a @ resid @ T ) )
     => ( ( member_a @ A4 @ ( sources_a @ resid @ T ) )
       => ( con_a @ resid @ A @ A4 ) ) ) ).

% R.sources_are_con
thf(fact_641_R_Oresid__source__in__targets,axiom,
    ! [A: a,T: a] :
      ( ( member_a @ A @ ( sources_a @ resid @ T ) )
     => ( member_a @ ( resid @ A @ T ) @ ( targets_a @ resid @ T ) ) ) ).

% R.resid_source_in_targets
thf(fact_642_R_Ocong__respects__seq,axiom,
    ! [T: a,U: a,T5: a,U3: a] :
      ( ( seq_a @ resid @ T @ U )
     => ( ( ( ide_a @ resid @ ( resid @ T @ T5 ) )
          & ( ide_a @ resid @ ( resid @ T5 @ T ) ) )
       => ( ( ( ide_a @ resid @ ( resid @ U @ U3 ) )
            & ( ide_a @ resid @ ( resid @ U3 @ U ) ) )
         => ( seq_a @ resid @ T5 @ U3 ) ) ) ) ).

% R.cong_respects_seq
thf(fact_643_insert__absorb2,axiom,
    ! [X2: a,A3: set_a] :
      ( ( insert_a2 @ X2 @ ( insert_a2 @ X2 @ A3 ) )
      = ( insert_a2 @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_644_insert__iff,axiom,
    ! [A: a,B: a,A3: set_a] :
      ( ( member_a @ A @ ( insert_a2 @ B @ A3 ) )
      = ( ( A = B )
        | ( member_a @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_645_insertCI,axiom,
    ! [A: a,B3: set_a,B: a] :
      ( ( ~ ( member_a @ A @ B3 )
       => ( A = B ) )
     => ( member_a @ A @ ( insert_a2 @ B @ B3 ) ) ) ).

% insertCI
thf(fact_646_same__append__eq,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_647_append__same__eq,axiom,
    ! [Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( append_a @ Ys @ Xs )
        = ( append_a @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_648_append__assoc,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( append_a @ ( append_a @ Xs @ Ys ) @ Zs )
      = ( append_a @ Xs @ ( append_a @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_649_append_Oassoc,axiom,
    ! [A: list_a,B: list_a,C: list_a] :
      ( ( append_a @ ( append_a @ A @ B ) @ C )
      = ( append_a @ A @ ( append_a @ B @ C ) ) ) ).

% append.assoc
thf(fact_650_R_Osources__con__closed,axiom,
    ! [A: a,T: a,A4: a] :
      ( ( member_a @ A @ ( sources_a @ resid @ T ) )
     => ( ( ide_a @ resid @ A4 )
       => ( ( con_a @ resid @ A @ A4 )
         => ( member_a @ A4 @ ( sources_a @ resid @ T ) ) ) ) ) ).

% R.sources_con_closed
thf(fact_651_R_Oin__sourcesE,axiom,
    ! [A: a,T: a] :
      ( ( member_a @ A @ ( sources_a @ resid @ T ) )
     => ~ ( ( ide_a @ resid @ A )
         => ~ ( con_a @ resid @ T @ A ) ) ) ).

% R.in_sourcesE
thf(fact_652_Srcs_Osimps_I3_J,axiom,
    ! [T: a,V: a,Va2: list_a] :
      ( ( paths_in_Srcs_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) )
      = ( sources_a @ resid @ T ) ) ).

% Srcs.simps(3)
thf(fact_653_R_Oarr__iff__has__source,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
      = ( ( sources_a @ resid @ T )
       != bot_bot_set_a ) ) ).

% R.arr_iff_has_source
thf(fact_654_R_Ocoinitial__iff,axiom,
    ! [T: a,T5: a] :
      ( ( coinitial_a @ resid @ T @ T5 )
      = ( ( arr_a @ resid @ T )
        & ( arr_a @ resid @ T5 )
        & ( ( sources_a @ resid @ T )
          = ( sources_a @ resid @ T5 ) ) ) ) ).

% R.coinitial_iff
thf(fact_655_R_OcoinitialE,axiom,
    ! [T: a,U: a] :
      ( ( coinitial_a @ resid @ T @ U )
     => ~ ( ( arr_a @ resid @ T )
         => ( ( arr_a @ resid @ U )
           => ( ( sources_a @ resid @ T )
             != ( sources_a @ resid @ U ) ) ) ) ) ).

% R.coinitialE
thf(fact_656_R_OcomposableD_I3_J,axiom,
    ! [T: a,U: a] :
      ( ( composable_a @ resid @ T @ U )
     => ( ( targets_a @ resid @ T )
        = ( sources_a @ resid @ U ) ) ) ).

% R.composableD(3)
thf(fact_657_R_Osources__eqI,axiom,
    ! [T: a,T5: a] :
      ( ( ( inf_inf_set_a @ ( sources_a @ resid @ T ) @ ( sources_a @ resid @ T5 ) )
       != bot_bot_set_a )
     => ( ( sources_a @ resid @ T )
        = ( sources_a @ resid @ T5 ) ) ) ).

% R.sources_eqI
thf(fact_658_Srcs_Osimps_I2_J,axiom,
    ! [T: a] :
      ( ( paths_in_Srcs_a @ resid @ ( cons_a @ T @ nil_a ) )
      = ( sources_a @ resid @ T ) ) ).

% Srcs.simps(2)
thf(fact_659_R_Oseq__def,axiom,
    ! [T: a,U: a] :
      ( ( seq_a @ resid @ T @ U )
      = ( ( arr_a @ resid @ T )
        & ( arr_a @ resid @ U )
        & ( ( targets_a @ resid @ T )
          = ( sources_a @ resid @ U ) ) ) ) ).

% R.seq_def
thf(fact_660_R_OseqE,axiom,
    ! [T: a,U: a] :
      ( ( seq_a @ resid @ T @ U )
     => ~ ( ( arr_a @ resid @ T )
         => ( ( arr_a @ resid @ U )
           => ( ( targets_a @ resid @ T )
             != ( sources_a @ resid @ U ) ) ) ) ) ).

% R.seqE
thf(fact_661_R_Ocon__imp__common__source,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( ( inf_inf_set_a @ ( sources_a @ resid @ T ) @ ( sources_a @ resid @ U ) )
       != bot_bot_set_a ) ) ).

% R.con_imp_common_source
thf(fact_662_Srcs__simp_092_060_094sub_062P,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( ( paths_in_Srcs_a @ resid @ T4 )
        = ( sources_a @ resid @ ( hd_a @ T4 ) ) ) ) ).

% Srcs_simp\<^sub>P
thf(fact_663_singletonI,axiom,
    ! [A: a] : ( member_a @ A @ ( insert_a2 @ A @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_664_insert__subset,axiom,
    ! [X2: a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a2 @ X2 @ A3 ) @ B3 )
      = ( ( member_a @ X2 @ B3 )
        & ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_665_append_Oright__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ A @ nil_a )
      = A ) ).

% append.right_neutral
thf(fact_666_append__Nil2,axiom,
    ! [Xs: list_a] :
      ( ( append_a @ Xs @ nil_a )
      = Xs ) ).

% append_Nil2
thf(fact_667_append__self__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_a ) ) ).

% append_self_conv
thf(fact_668_self__append__conv,axiom,
    ! [Y2: list_a,Ys: list_a] :
      ( ( Y2
        = ( append_a @ Y2 @ Ys ) )
      = ( Ys = nil_a ) ) ).

% self_append_conv
thf(fact_669_append__self__conv2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_a ) ) ).

% append_self_conv2
thf(fact_670_self__append__conv2,axiom,
    ! [Y2: list_a,Xs: list_a] :
      ( ( Y2
        = ( append_a @ Xs @ Y2 ) )
      = ( Xs = nil_a ) ) ).

% self_append_conv2
thf(fact_671_Nil__is__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( nil_a
        = ( append_a @ Xs @ Ys ) )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% Nil_is_append_conv
thf(fact_672_append__is__Nil__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = nil_a )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% append_is_Nil_conv
thf(fact_673_Int__insert__left__if0,axiom,
    ! [A: a,C2: set_a,B3: set_a] :
      ( ~ ( member_a @ A @ C2 )
     => ( ( inf_inf_set_a @ ( insert_a2 @ A @ B3 ) @ C2 )
        = ( inf_inf_set_a @ B3 @ C2 ) ) ) ).

% Int_insert_left_if0
thf(fact_674_Int__insert__left__if1,axiom,
    ! [A: a,C2: set_a,B3: set_a] :
      ( ( member_a @ A @ C2 )
     => ( ( inf_inf_set_a @ ( insert_a2 @ A @ B3 ) @ C2 )
        = ( insert_a2 @ A @ ( inf_inf_set_a @ B3 @ C2 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_675_insert__inter__insert,axiom,
    ! [A: a,A3: set_a,B3: set_a] :
      ( ( inf_inf_set_a @ ( insert_a2 @ A @ A3 ) @ ( insert_a2 @ A @ B3 ) )
      = ( insert_a2 @ A @ ( inf_inf_set_a @ A3 @ B3 ) ) ) ).

% insert_inter_insert
thf(fact_676_Int__insert__right__if0,axiom,
    ! [A: a,A3: set_a,B3: set_a] :
      ( ~ ( member_a @ A @ A3 )
     => ( ( inf_inf_set_a @ A3 @ ( insert_a2 @ A @ B3 ) )
        = ( inf_inf_set_a @ A3 @ B3 ) ) ) ).

% Int_insert_right_if0
thf(fact_677_Int__insert__right__if1,axiom,
    ! [A: a,A3: set_a,B3: set_a] :
      ( ( member_a @ A @ A3 )
     => ( ( inf_inf_set_a @ A3 @ ( insert_a2 @ A @ B3 ) )
        = ( insert_a2 @ A @ ( inf_inf_set_a @ A3 @ B3 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_678_singleton__insert__inj__eq,axiom,
    ! [B: a,A: a,A3: set_a] :
      ( ( ( insert_a2 @ B @ bot_bot_set_a )
        = ( insert_a2 @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a2 @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_679_singleton__insert__inj__eq_H,axiom,
    ! [A: a,A3: set_a,B: a] :
      ( ( ( insert_a2 @ A @ A3 )
        = ( insert_a2 @ B @ bot_bot_set_a ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a2 @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_680_list_Osimps_I15_J,axiom,
    ! [X21: a,X22: list_a] :
      ( ( set_a2 @ ( cons_a @ X21 @ X22 ) )
      = ( insert_a2 @ X21 @ ( set_a2 @ X22 ) ) ) ).

% list.simps(15)
thf(fact_681_append1__eq__conv,axiom,
    ! [Xs: list_a,X2: a,Ys: list_a,Y2: a] :
      ( ( ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) )
        = ( append_a @ Ys @ ( cons_a @ Y2 @ nil_a ) ) )
      = ( ( Xs = Ys )
        & ( X2 = Y2 ) ) ) ).

% append1_eq_conv
thf(fact_682_insert__disjoint_I1_J,axiom,
    ! [A: a,A3: set_a,B3: set_a] :
      ( ( ( inf_inf_set_a @ ( insert_a2 @ A @ A3 ) @ B3 )
        = bot_bot_set_a )
      = ( ~ ( member_a @ A @ B3 )
        & ( ( inf_inf_set_a @ A3 @ B3 )
          = bot_bot_set_a ) ) ) ).

% insert_disjoint(1)
thf(fact_683_insert__disjoint_I2_J,axiom,
    ! [A: a,A3: set_a,B3: set_a] :
      ( ( bot_bot_set_a
        = ( inf_inf_set_a @ ( insert_a2 @ A @ A3 ) @ B3 ) )
      = ( ~ ( member_a @ A @ B3 )
        & ( bot_bot_set_a
          = ( inf_inf_set_a @ A3 @ B3 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_684_disjoint__insert_I1_J,axiom,
    ! [B3: set_a,A: a,A3: set_a] :
      ( ( ( inf_inf_set_a @ B3 @ ( insert_a2 @ A @ A3 ) )
        = bot_bot_set_a )
      = ( ~ ( member_a @ A @ B3 )
        & ( ( inf_inf_set_a @ B3 @ A3 )
          = bot_bot_set_a ) ) ) ).

% disjoint_insert(1)
thf(fact_685_disjoint__insert_I2_J,axiom,
    ! [A3: set_a,B: a,B3: set_a] :
      ( ( bot_bot_set_a
        = ( inf_inf_set_a @ A3 @ ( insert_a2 @ B @ B3 ) ) )
      = ( ~ ( member_a @ B @ A3 )
        & ( bot_bot_set_a
          = ( inf_inf_set_a @ A3 @ B3 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_686_hd__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
        = ( hd_a @ Xs ) ) ) ).

% hd_append2
thf(fact_687_last__appendL,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys = nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Xs ) ) ) ).

% last_appendL
thf(fact_688_last__appendR,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys != nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Ys ) ) ) ).

% last_appendR
thf(fact_689_last__snoc,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( last_a @ ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) )
      = X2 ) ).

% last_snoc
thf(fact_690_R_Oin__sourcesI,axiom,
    ! [A: a,T: a] :
      ( ( ide_a @ resid @ A )
     => ( ( con_a @ resid @ T @ A )
       => ( member_a @ A @ ( sources_a @ resid @ T ) ) ) ) ).

% R.in_sourcesI
thf(fact_691_R_Osources__resid,axiom,
    ! [T: a,U: a] :
      ( ( con_a @ resid @ T @ U )
     => ( ( sources_a @ resid @ ( resid @ T @ U ) )
        = ( targets_a @ resid @ U ) ) ) ).

% R.sources_resid
thf(fact_692_R_OcoinitialI,axiom,
    ! [T: a,U: a] :
      ( ( arr_a @ resid @ T )
     => ( ( ( sources_a @ resid @ T )
          = ( sources_a @ resid @ U ) )
       => ( coinitial_a @ resid @ T @ U ) ) ) ).

% R.coinitialI
thf(fact_693_R_OseqI,axiom,
    ! [T: a,U: a] :
      ( ( arr_a @ resid @ T )
     => ( ( arr_a @ resid @ U )
       => ( ( ( targets_a @ resid @ T )
            = ( sources_a @ resid @ U ) )
         => ( seq_a @ resid @ T @ U ) ) ) ) ).

% R.seqI
thf(fact_694_rts_Oseq_Ocong,axiom,
    seq_a = seq_a ).

% rts.seq.cong
thf(fact_695_rts_Osources_Ocong,axiom,
    sources_a = sources_a ).

% rts.sources.cong
thf(fact_696_append__eq__append__conv2,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,Ts: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Zs @ Ts ) )
      = ( ? [Us: list_a] :
            ( ( ( Xs
                = ( append_a @ Zs @ Us ) )
              & ( ( append_a @ Us @ Ys )
                = Ts ) )
            | ( ( ( append_a @ Xs @ Us )
                = Zs )
              & ( Ys
                = ( append_a @ Us @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_697_mk__disjoint__insert,axiom,
    ! [A: a,A3: set_a] :
      ( ( member_a @ A @ A3 )
     => ? [B6: set_a] :
          ( ( A3
            = ( insert_a2 @ A @ B6 ) )
          & ~ ( member_a @ A @ B6 ) ) ) ).

% mk_disjoint_insert
thf(fact_698_append__eq__appendI,axiom,
    ! [Xs: list_a,Xs1: list_a,Zs: list_a,Ys: list_a,Us2: list_a] :
      ( ( ( append_a @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_a @ Xs1 @ Us2 ) )
       => ( ( append_a @ Xs @ Ys )
          = ( append_a @ Zs @ Us2 ) ) ) ) ).

% append_eq_appendI
thf(fact_699_insert__commute,axiom,
    ! [X2: a,Y2: a,A3: set_a] :
      ( ( insert_a2 @ X2 @ ( insert_a2 @ Y2 @ A3 ) )
      = ( insert_a2 @ Y2 @ ( insert_a2 @ X2 @ A3 ) ) ) ).

% insert_commute
thf(fact_700_insert__eq__iff,axiom,
    ! [A: a,A3: set_a,B: a,B3: set_a] :
      ( ~ ( member_a @ A @ A3 )
     => ( ~ ( member_a @ B @ B3 )
       => ( ( ( insert_a2 @ A @ A3 )
            = ( insert_a2 @ B @ B3 ) )
          = ( ( ( A = B )
             => ( A3 = B3 ) )
            & ( ( A != B )
             => ? [C3: set_a] :
                  ( ( A3
                    = ( insert_a2 @ B @ C3 ) )
                  & ~ ( member_a @ B @ C3 )
                  & ( B3
                    = ( insert_a2 @ A @ C3 ) )
                  & ~ ( member_a @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_701_insert__absorb,axiom,
    ! [A: a,A3: set_a] :
      ( ( member_a @ A @ A3 )
     => ( ( insert_a2 @ A @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_702_insert__ident,axiom,
    ! [X2: a,A3: set_a,B3: set_a] :
      ( ~ ( member_a @ X2 @ A3 )
     => ( ~ ( member_a @ X2 @ B3 )
       => ( ( ( insert_a2 @ X2 @ A3 )
            = ( insert_a2 @ X2 @ B3 ) )
          = ( A3 = B3 ) ) ) ) ).

% insert_ident
thf(fact_703_Set_Oset__insert,axiom,
    ! [X2: a,A3: set_a] :
      ( ( member_a @ X2 @ A3 )
     => ~ ! [B6: set_a] :
            ( ( A3
              = ( insert_a2 @ X2 @ B6 ) )
           => ( member_a @ X2 @ B6 ) ) ) ).

% Set.set_insert
thf(fact_704_insertI2,axiom,
    ! [A: a,B3: set_a,B: a] :
      ( ( member_a @ A @ B3 )
     => ( member_a @ A @ ( insert_a2 @ B @ B3 ) ) ) ).

% insertI2
thf(fact_705_insertI1,axiom,
    ! [A: a,B3: set_a] : ( member_a @ A @ ( insert_a2 @ A @ B3 ) ) ).

% insertI1
thf(fact_706_insertE,axiom,
    ! [A: a,B: a,A3: set_a] :
      ( ( member_a @ A @ ( insert_a2 @ B @ A3 ) )
     => ( ( A != B )
       => ( member_a @ A @ A3 ) ) ) ).

% insertE
thf(fact_707_append__Cons,axiom,
    ! [X2: a,Xs: list_a,Ys: list_a] :
      ( ( append_a @ ( cons_a @ X2 @ Xs ) @ Ys )
      = ( cons_a @ X2 @ ( append_a @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_708_Cons__eq__appendI,axiom,
    ! [X2: a,Xs1: list_a,Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( cons_a @ X2 @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_a @ Xs1 @ Zs ) )
       => ( ( cons_a @ X2 @ Xs )
          = ( append_a @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_709_append__Nil,axiom,
    ! [Ys: list_a] :
      ( ( append_a @ nil_a @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_710_append_Oleft__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ nil_a @ A )
      = A ) ).

% append.left_neutral
thf(fact_711_eq__Nil__appendI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_a @ nil_a @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_712_singleton__inject,axiom,
    ! [A: a,B: a] :
      ( ( ( insert_a2 @ A @ bot_bot_set_a )
        = ( insert_a2 @ B @ bot_bot_set_a ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_713_insert__not__empty,axiom,
    ! [A: a,A3: set_a] :
      ( ( insert_a2 @ A @ A3 )
     != bot_bot_set_a ) ).

% insert_not_empty
thf(fact_714_doubleton__eq__iff,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ( insert_a2 @ A @ ( insert_a2 @ B @ bot_bot_set_a ) )
        = ( insert_a2 @ C @ ( insert_a2 @ D2 @ bot_bot_set_a ) ) )
      = ( ( ( A = C )
          & ( B = D2 ) )
        | ( ( A = D2 )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_715_singleton__iff,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a2 @ A @ bot_bot_set_a ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_716_singletonD,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a2 @ A @ bot_bot_set_a ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_717_insert__mono,axiom,
    ! [C2: set_a,D: set_a,A: a] :
      ( ( ord_less_eq_set_a @ C2 @ D )
     => ( ord_less_eq_set_a @ ( insert_a2 @ A @ C2 ) @ ( insert_a2 @ A @ D ) ) ) ).

% insert_mono
thf(fact_718_subset__insert,axiom,
    ! [X2: a,A3: set_a,B3: set_a] :
      ( ~ ( member_a @ X2 @ A3 )
     => ( ( ord_less_eq_set_a @ A3 @ ( insert_a2 @ X2 @ B3 ) )
        = ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_719_subset__insertI,axiom,
    ! [B3: set_a,A: a] : ( ord_less_eq_set_a @ B3 @ ( insert_a2 @ A @ B3 ) ) ).

% subset_insertI
thf(fact_720_subset__insertI2,axiom,
    ! [A3: set_a,B3: set_a,B: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ord_less_eq_set_a @ A3 @ ( insert_a2 @ B @ B3 ) ) ) ).

% subset_insertI2
thf(fact_721_Int__insert__left,axiom,
    ! [A: a,C2: set_a,B3: set_a] :
      ( ( ( member_a @ A @ C2 )
       => ( ( inf_inf_set_a @ ( insert_a2 @ A @ B3 ) @ C2 )
          = ( insert_a2 @ A @ ( inf_inf_set_a @ B3 @ C2 ) ) ) )
      & ( ~ ( member_a @ A @ C2 )
       => ( ( inf_inf_set_a @ ( insert_a2 @ A @ B3 ) @ C2 )
          = ( inf_inf_set_a @ B3 @ C2 ) ) ) ) ).

% Int_insert_left
thf(fact_722_Int__insert__right,axiom,
    ! [A: a,A3: set_a,B3: set_a] :
      ( ( ( member_a @ A @ A3 )
       => ( ( inf_inf_set_a @ A3 @ ( insert_a2 @ A @ B3 ) )
          = ( insert_a2 @ A @ ( inf_inf_set_a @ A3 @ B3 ) ) ) )
      & ( ~ ( member_a @ A @ A3 )
       => ( ( inf_inf_set_a @ A3 @ ( insert_a2 @ A @ B3 ) )
          = ( inf_inf_set_a @ A3 @ B3 ) ) ) ) ).

% Int_insert_right
thf(fact_723_rev__nonempty__induct,axiom,
    ! [Xs: list_a,P: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X: a] : ( P @ ( cons_a @ X @ nil_a ) )
       => ( ! [X: a,Xs2: list_a] :
              ( ( Xs2 != nil_a )
             => ( ( P @ Xs2 )
               => ( P @ ( append_a @ Xs2 @ ( cons_a @ X @ nil_a ) ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_724_append__eq__Cons__conv,axiom,
    ! [Ys: list_a,Zs: list_a,X2: a,Xs: list_a] :
      ( ( ( append_a @ Ys @ Zs )
        = ( cons_a @ X2 @ Xs ) )
      = ( ( ( Ys = nil_a )
          & ( Zs
            = ( cons_a @ X2 @ Xs ) ) )
        | ? [Ys4: list_a] :
            ( ( Ys
              = ( cons_a @ X2 @ Ys4 ) )
            & ( ( append_a @ Ys4 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_725_Cons__eq__append__conv,axiom,
    ! [X2: a,Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( cons_a @ X2 @ Xs )
        = ( append_a @ Ys @ Zs ) )
      = ( ( ( Ys = nil_a )
          & ( ( cons_a @ X2 @ Xs )
            = Zs ) )
        | ? [Ys4: list_a] :
            ( ( ( cons_a @ X2 @ Ys4 )
              = Ys )
            & ( Xs
              = ( append_a @ Ys4 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_726_rev__exhaust,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ~ ! [Ys2: list_a,Y4: a] :
            ( Xs
           != ( append_a @ Ys2 @ ( cons_a @ Y4 @ nil_a ) ) ) ) ).

% rev_exhaust
thf(fact_727_rev__induct,axiom,
    ! [P: list_a > $o,Xs: list_a] :
      ( ( P @ nil_a )
     => ( ! [X: a,Xs2: list_a] :
            ( ( P @ Xs2 )
           => ( P @ ( append_a @ Xs2 @ ( cons_a @ X @ nil_a ) ) ) )
       => ( P @ Xs ) ) ) ).

% rev_induct
thf(fact_728_split__list,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
     => ? [Ys2: list_a,Zs2: list_a] :
          ( Xs
          = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs2 ) ) ) ) ).

% split_list
thf(fact_729_split__list__last,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
     => ? [Ys2: list_a,Zs2: list_a] :
          ( ( Xs
            = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs2 ) ) )
          & ~ ( member_a @ X2 @ ( set_a2 @ Zs2 ) ) ) ) ).

% split_list_last
thf(fact_730_split__list__prop,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X4: a] :
          ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
          & ( P @ X4 ) )
     => ? [Ys2: list_a,X: a] :
          ( ? [Zs2: list_a] :
              ( Xs
              = ( append_a @ Ys2 @ ( cons_a @ X @ Zs2 ) ) )
          & ( P @ X ) ) ) ).

% split_list_prop
thf(fact_731_split__list__first,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
     => ? [Ys2: list_a,Zs2: list_a] :
          ( ( Xs
            = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs2 ) ) )
          & ~ ( member_a @ X2 @ ( set_a2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_732_split__list__propE,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X4: a] :
          ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
          & ( P @ X4 ) )
     => ~ ! [Ys2: list_a,X: a] :
            ( ? [Zs2: list_a] :
                ( Xs
                = ( append_a @ Ys2 @ ( cons_a @ X @ Zs2 ) ) )
           => ~ ( P @ X ) ) ) ).

% split_list_propE
thf(fact_733_append__Cons__eq__iff,axiom,
    ! [X2: a,Xs: list_a,Ys: list_a,Xs3: list_a,Ys5: list_a] :
      ( ~ ( member_a @ X2 @ ( set_a2 @ Xs ) )
     => ( ~ ( member_a @ X2 @ ( set_a2 @ Ys ) )
       => ( ( ( append_a @ Xs @ ( cons_a @ X2 @ Ys ) )
            = ( append_a @ Xs3 @ ( cons_a @ X2 @ Ys5 ) ) )
          = ( ( Xs = Xs3 )
            & ( Ys = Ys5 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_734_in__set__conv__decomp,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
      = ( ? [Ys3: list_a,Zs3: list_a] :
            ( Xs
            = ( append_a @ Ys3 @ ( cons_a @ X2 @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_735_split__list__last__prop,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X4: a] :
          ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
          & ( P @ X4 ) )
     => ? [Ys2: list_a,X: a,Zs2: list_a] :
          ( ( Xs
            = ( append_a @ Ys2 @ ( cons_a @ X @ Zs2 ) ) )
          & ( P @ X )
          & ! [Xa2: a] :
              ( ( member_a @ Xa2 @ ( set_a2 @ Zs2 ) )
             => ~ ( P @ Xa2 ) ) ) ) ).

% split_list_last_prop
thf(fact_736_split__list__first__prop,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X4: a] :
          ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
          & ( P @ X4 ) )
     => ? [Ys2: list_a,X: a] :
          ( ? [Zs2: list_a] :
              ( Xs
              = ( append_a @ Ys2 @ ( cons_a @ X @ Zs2 ) ) )
          & ( P @ X )
          & ! [Xa2: a] :
              ( ( member_a @ Xa2 @ ( set_a2 @ Ys2 ) )
             => ~ ( P @ Xa2 ) ) ) ) ).

% split_list_first_prop
thf(fact_737_split__list__last__propE,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X4: a] :
          ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
          & ( P @ X4 ) )
     => ~ ! [Ys2: list_a,X: a,Zs2: list_a] :
            ( ( Xs
              = ( append_a @ Ys2 @ ( cons_a @ X @ Zs2 ) ) )
           => ( ( P @ X )
             => ~ ! [Xa2: a] :
                    ( ( member_a @ Xa2 @ ( set_a2 @ Zs2 ) )
                   => ~ ( P @ Xa2 ) ) ) ) ) ).

% split_list_last_propE
thf(fact_738_split__list__first__propE,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X4: a] :
          ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
          & ( P @ X4 ) )
     => ~ ! [Ys2: list_a,X: a] :
            ( ? [Zs2: list_a] :
                ( Xs
                = ( append_a @ Ys2 @ ( cons_a @ X @ Zs2 ) ) )
           => ( ( P @ X )
             => ~ ! [Xa2: a] :
                    ( ( member_a @ Xa2 @ ( set_a2 @ Ys2 ) )
                   => ~ ( P @ Xa2 ) ) ) ) ) ).

% split_list_first_propE
thf(fact_739_in__set__conv__decomp__last,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
      = ( ? [Ys3: list_a,Zs3: list_a] :
            ( ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X2 @ Zs3 ) ) )
            & ~ ( member_a @ X2 @ ( set_a2 @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_740_in__set__conv__decomp__first,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
      = ( ? [Ys3: list_a,Zs3: list_a] :
            ( ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X2 @ Zs3 ) ) )
            & ~ ( member_a @ X2 @ ( set_a2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_741_split__list__last__prop__iff,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ( ? [X3: a] :
            ( ( member_a @ X3 @ ( set_a2 @ Xs ) )
            & ( P @ X3 ) ) )
      = ( ? [Ys3: list_a,X3: a,Zs3: list_a] :
            ( ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X3 @ Zs3 ) ) )
            & ( P @ X3 )
            & ! [Y3: a] :
                ( ( member_a @ Y3 @ ( set_a2 @ Zs3 ) )
               => ~ ( P @ Y3 ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_742_split__list__first__prop__iff,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ( ? [X3: a] :
            ( ( member_a @ X3 @ ( set_a2 @ Xs ) )
            & ( P @ X3 ) ) )
      = ( ? [Ys3: list_a,X3: a] :
            ( ? [Zs3: list_a] :
                ( Xs
                = ( append_a @ Ys3 @ ( cons_a @ X3 @ Zs3 ) ) )
            & ( P @ X3 )
            & ! [Y3: a] :
                ( ( member_a @ Y3 @ ( set_a2 @ Ys3 ) )
               => ~ ( P @ Y3 ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_743_subset__singletonD,axiom,
    ! [A3: set_a,X2: a] :
      ( ( ord_less_eq_set_a @ A3 @ ( insert_a2 @ X2 @ bot_bot_set_a ) )
     => ( ( A3 = bot_bot_set_a )
        | ( A3
          = ( insert_a2 @ X2 @ bot_bot_set_a ) ) ) ) ).

% subset_singletonD
thf(fact_744_subset__singleton__iff,axiom,
    ! [X5: set_a,A: a] :
      ( ( ord_less_eq_set_a @ X5 @ ( insert_a2 @ A @ bot_bot_set_a ) )
      = ( ( X5 = bot_bot_set_a )
        | ( X5
          = ( insert_a2 @ A @ bot_bot_set_a ) ) ) ) ).

% subset_singleton_iff
thf(fact_745_coherent__normal__sub__rts_Ocoherent_H,axiom,
    ! [Resid: a > a > a,NN: set_a,V: a,V3: a,W: a,W2: a,T: a,T5: a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( ( member_a @ V @ NN )
       => ( ( member_a @ V3 @ NN )
         => ( ( member_a @ W @ NN )
           => ( ( member_a @ W2 @ NN )
             => ( ( ( sources_a @ Resid @ V )
                  = ( sources_a @ Resid @ W ) )
               => ( ( ( sources_a @ Resid @ V3 )
                    = ( sources_a @ Resid @ W2 ) )
                 => ( ( ( targets_a @ Resid @ W )
                      = ( targets_a @ Resid @ W2 ) )
                   => ( ( ( member_a @ ( Resid @ ( Resid @ T @ V ) @ ( Resid @ T5 @ V3 ) ) @ NN )
                        & ( member_a @ ( Resid @ ( Resid @ T5 @ V3 ) @ ( Resid @ T @ V ) ) @ NN ) )
                     => ( ( member_a @ ( Resid @ ( Resid @ T @ W ) @ ( Resid @ T5 @ W2 ) ) @ NN )
                        & ( member_a @ ( Resid @ ( Resid @ T5 @ W2 ) @ ( Resid @ T @ W ) ) @ NN ) ) ) ) ) ) ) ) ) ) ) ).

% coherent_normal_sub_rts.coherent'
thf(fact_746_hd__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Xs ) ) ) ) ).

% hd_append
thf(fact_747_longest__common__prefix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ps: list_a,Xs4: list_a,Ys6: list_a] :
      ( ( Xs
        = ( append_a @ Ps @ Xs4 ) )
      & ( Ys
        = ( append_a @ Ps @ Ys6 ) )
      & ( ( Xs4 = nil_a )
        | ( Ys6 = nil_a )
        | ( ( hd_a @ Xs4 )
         != ( hd_a @ Ys6 ) ) ) ) ).

% longest_common_prefix
thf(fact_748_last__append,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( ( Ys = nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Xs ) ) )
      & ( ( Ys != nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Ys ) ) ) ) ).

% last_append
thf(fact_749_longest__common__suffix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ss: list_a,Xs4: list_a,Ys6: list_a] :
      ( ( Xs
        = ( append_a @ Xs4 @ Ss ) )
      & ( Ys
        = ( append_a @ Ys6 @ Ss ) )
      & ( ( Xs4 = nil_a )
        | ( Ys6 = nil_a )
        | ( ( last_a @ Xs4 )
         != ( last_a @ Ys6 ) ) ) ) ).

% longest_common_suffix
thf(fact_750_paths__in__rts_OSrcs_Osimps_I3_J,axiom,
    ! [Resid: a > a > a,T: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Srcs_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) )
        = ( sources_a @ Resid @ T ) ) ) ).

% paths_in_rts.Srcs.simps(3)
thf(fact_751_coherent__normal__sub__rts_Ocoherent,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,U3: a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( ( arr_a @ Resid @ T )
       => ( ( member_a @ U @ NN )
         => ( ( member_a @ U3 @ NN )
           => ( ( ( sources_a @ Resid @ U )
                = ( sources_a @ Resid @ U3 ) )
             => ( ( ( targets_a @ Resid @ U )
                  = ( targets_a @ Resid @ U3 ) )
               => ( ( ( sources_a @ Resid @ T )
                    = ( sources_a @ Resid @ U ) )
                 => ( ( member_a @ ( Resid @ ( Resid @ T @ U ) @ ( Resid @ T @ U3 ) ) @ NN )
                    & ( member_a @ ( Resid @ ( Resid @ T @ U3 ) @ ( Resid @ T @ U ) ) @ NN ) ) ) ) ) ) ) ) ) ).

% coherent_normal_sub_rts.coherent
thf(fact_752_paths__in__rts_OSrcs_Osimps_I2_J,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Srcs_a @ Resid @ ( cons_a @ T @ nil_a ) )
        = ( sources_a @ Resid @ T ) ) ) ).

% paths_in_rts.Srcs.simps(2)
thf(fact_753_paths__in__rts_OSrcs__simp_092_060_094sub_062P,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( ( paths_in_Srcs_a @ Resid @ T4 )
          = ( sources_a @ Resid @ ( hd_a @ T4 ) ) ) ) ) ).

% paths_in_rts.Srcs_simp\<^sub>P
thf(fact_754_paths__in__rts_OResid__cons_I1_J,axiom,
    ! [Resid: a > a > a,U2: list_a,T: a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( U2 != nil_a )
       => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ U2 )
           != nil_a )
         => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ U2 )
            = ( append_a @ ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ U2 ) @ ( paths_in_Resid_a @ Resid @ T4 @ ( paths_in_Resid_a @ Resid @ U2 @ ( cons_a @ T @ nil_a ) ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_cons(1)
thf(fact_755_paths__in__rts_OResid__rec_I4_J,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( U2 != nil_a )
         => ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ U2 ) )
             != nil_a )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ T4 ) @ ( cons_a @ U @ U2 ) )
              = ( append_a @ ( paths_in_Resid_a @ Resid @ ( cons_a @ ( Resid @ T @ U ) @ nil_a ) @ U2 ) @ ( paths_in_Resid_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ ( Resid @ U @ T ) @ nil_a ) ) @ ( paths_in_Resid_a @ Resid @ U2 @ ( cons_a @ ( Resid @ T @ U ) @ nil_a ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_rec(4)
thf(fact_756_paths__in__rts_OSrcs_Oelims,axiom,
    ! [Resid: a > a > a,X2: list_a,Y2: set_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Srcs_a @ Resid @ X2 )
          = Y2 )
       => ( ( ( X2 = nil_a )
           => ( Y2 != bot_bot_set_a ) )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( Y2
                 != ( sources_a @ Resid @ T3 ) ) )
           => ~ ! [T3: a] :
                  ( ? [V2: a,Va: list_a] :
                      ( X2
                      = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( Y2
                   != ( sources_a @ Resid @ T3 ) ) ) ) ) ) ) ).

% paths_in_rts.Srcs.elims
thf(fact_757_paths__in__rts_Oconst__ide__is__Ide,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( ide_a @ Resid @ ( hd_a @ T4 ) )
         => ( ( ord_less_eq_set_a @ ( set_a2 @ T4 ) @ ( insert_a2 @ ( hd_a @ T4 ) @ bot_bot_set_a ) )
           => ( paths_in_Ide_a @ Resid @ T4 ) ) ) ) ) ).

% paths_in_rts.const_ide_is_Ide
thf(fact_758_R_Oin__targetsE,axiom,
    ! [B: a,T: a] :
      ( ( member_a @ B @ ( targets_a @ resid @ T ) )
     => ~ ( ( ide_a @ resid @ B )
         => ~ ( con_a @ resid @ ( trg_a @ resid @ T ) @ B ) ) ) ).

% R.in_targetsE
thf(fact_759_R_Ojoin__of__arr__src_I1_J,axiom,
    ! [T: a,A: a] :
      ( ( arr_a @ resid @ T )
     => ( ( member_a @ A @ ( sources_a @ resid @ T ) )
       => ( join_of_a @ resid @ A @ T @ T ) ) ) ).

% R.join_of_arr_src(1)
thf(fact_760_R_Ojoin__of__arr__src_I2_J,axiom,
    ! [T: a,A: a] :
      ( ( arr_a @ resid @ T )
     => ( ( member_a @ A @ ( sources_a @ resid @ T ) )
       => ( join_of_a @ resid @ T @ A @ T ) ) ) ).

% R.join_of_arr_src(2)
thf(fact_761_Ide__imp__Ide__tl,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Ide_a @ resid @ T4 )
     => ( ( ( tl_a @ T4 )
         != nil_a )
       => ( paths_in_Ide_a @ resid @ ( tl_a @ T4 ) ) ) ) ).

% Ide_imp_Ide_tl
thf(fact_762_R_Ojoin__of__symmetric,axiom,
    ! [T: a,U: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ V )
     => ( join_of_a @ resid @ U @ T @ V ) ) ).

% R.join_of_symmetric
thf(fact_763_R_Otrg__def,axiom,
    ! [T: a] :
      ( ( trg_a @ resid @ T )
      = ( resid @ T @ T ) ) ).

% R.trg_def
thf(fact_764_R_Ojoin__of__un__upto__cong,axiom,
    ! [T: a,U: a,V: a,V3: a] :
      ( ( join_of_a @ resid @ T @ U @ V )
     => ( ( join_of_a @ resid @ T @ U @ V3 )
       => ( ( ide_a @ resid @ ( resid @ V @ V3 ) )
          & ( ide_a @ resid @ ( resid @ V3 @ V ) ) ) ) ) ).

% R.join_of_un_upto_cong
thf(fact_765_R_Ocon__with__join__of__iff_I2_J,axiom,
    ! [T: a,U: a,W: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ W )
     => ( ( con_a @ resid @ W @ V )
       => ( ( con_a @ resid @ T @ V )
          & ( con_a @ resid @ ( resid @ V @ T ) @ ( resid @ U @ T ) ) ) ) ) ).

% R.con_with_join_of_iff(2)
thf(fact_766_R_Ocon__with__join__of__iff_I1_J,axiom,
    ! [T: a,U: a,W: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ W )
     => ( ( ( con_a @ resid @ U @ V )
          & ( con_a @ resid @ ( resid @ V @ U ) @ ( resid @ T @ U ) ) )
       => ( con_a @ resid @ W @ V ) ) ) ).

% R.con_with_join_of_iff(1)
thf(fact_767_R_Ojoin__of__resid,axiom,
    ! [T: a,U: a,W: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ W )
     => ( ( con_a @ resid @ V @ W )
       => ( join_of_a @ resid @ ( resid @ T @ V ) @ ( resid @ U @ V ) @ ( resid @ W @ V ) ) ) ) ).

% R.join_of_resid
thf(fact_768_R_Otargets__join__of_I2_J,axiom,
    ! [T: a,U: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ V )
     => ( ( targets_a @ resid @ ( resid @ U @ T ) )
        = ( targets_a @ resid @ V ) ) ) ).

% R.targets_join_of(2)
thf(fact_769_R_Otargets__join__of_I1_J,axiom,
    ! [T: a,U: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ V )
     => ( ( targets_a @ resid @ ( resid @ T @ U ) )
        = ( targets_a @ resid @ V ) ) ) ).

% R.targets_join_of(1)
thf(fact_770_R_Ojoin__of__arr__self,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
     => ( join_of_a @ resid @ T @ T @ T ) ) ).

% R.join_of_arr_self
thf(fact_771_R_Osources__join__of_I1_J,axiom,
    ! [T: a,U: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ V )
     => ( ( sources_a @ resid @ T )
        = ( sources_a @ resid @ V ) ) ) ).

% R.sources_join_of(1)
thf(fact_772_R_Osources__join__of_I2_J,axiom,
    ! [T: a,U: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ V )
     => ( ( sources_a @ resid @ U )
        = ( sources_a @ resid @ V ) ) ) ).

% R.sources_join_of(2)
thf(fact_773_order__refl,axiom,
    ! [X2: set_a] : ( ord_less_eq_set_a @ X2 @ X2 ) ).

% order_refl
thf(fact_774_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_775_dual__order_Orefl,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_776_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_777_R_Ojoinable__def,axiom,
    ! [T: a,U: a] :
      ( ( joinable_a @ resid @ T @ U )
      = ( ? [X6: a] : ( join_of_a @ resid @ T @ U @ X6 ) ) ) ).

% R.joinable_def
thf(fact_778_R_Oide__trg,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
     => ( ide_a @ resid @ ( trg_a @ resid @ T ) ) ) ).

% R.ide_trg
thf(fact_779_R_Otrg__in__targets,axiom,
    ! [T: a] :
      ( ( arr_a @ resid @ T )
     => ( member_a @ ( trg_a @ resid @ T ) @ ( targets_a @ resid @ T ) ) ) ).

% R.trg_in_targets
thf(fact_780_Arr__imp__Arr__tl,axiom,
    ! [T4: list_a] :
      ( ( paths_in_Arr_a @ resid @ T4 )
     => ( ( ( tl_a @ T4 )
         != nil_a )
       => ( paths_in_Arr_a @ resid @ ( tl_a @ T4 ) ) ) ) ).

% Arr_imp_Arr_tl
thf(fact_781_R_Ocoterminal__iff__con__trg,axiom,
    ! [T: a,U: a] :
      ( ( coterminal_a @ resid @ T @ U )
      = ( con_a @ resid @ ( trg_a @ resid @ T ) @ ( trg_a @ resid @ U ) ) ) ).

% R.coterminal_iff_con_trg
thf(fact_782_tl__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
        = ( append_a @ ( tl_a @ Xs ) @ Ys ) ) ) ).

% tl_append2
thf(fact_783_hd__Cons__tl,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( cons_a @ ( hd_a @ Xs ) @ ( tl_a @ Xs ) )
        = Xs ) ) ).

% hd_Cons_tl
thf(fact_784_list_Ocollapse,axiom,
    ! [List: list_a] :
      ( ( List != nil_a )
     => ( ( cons_a @ ( hd_a @ List ) @ ( tl_a @ List ) )
        = List ) ) ).

% list.collapse
thf(fact_785_R_Oin__targetsI,axiom,
    ! [B: a,T: a] :
      ( ( ide_a @ resid @ B )
     => ( ( con_a @ resid @ ( trg_a @ resid @ T ) @ B )
       => ( member_a @ B @ ( targets_a @ resid @ T ) ) ) ) ).

% R.in_targetsI
thf(fact_786_list_Osel_I3_J,axiom,
    ! [X21: a,X22: list_a] :
      ( ( tl_a @ ( cons_a @ X21 @ X22 ) )
      = X22 ) ).

% list.sel(3)
thf(fact_787_list_Osel_I2_J,axiom,
    ( ( tl_a @ nil_a )
    = nil_a ) ).

% list.sel(2)
thf(fact_788_residuation_Otrg_Ocong,axiom,
    trg_a = trg_a ).

% residuation.trg.cong
thf(fact_789_rts_Ojoin__of_Ocong,axiom,
    join_of_a = join_of_a ).

% rts.join_of.cong
thf(fact_790_Nil__tl,axiom,
    ! [Xs: list_a] :
      ( ( nil_a
        = ( tl_a @ Xs ) )
      = ( ( Xs = nil_a )
        | ? [X3: a] :
            ( Xs
            = ( cons_a @ X3 @ nil_a ) ) ) ) ).

% Nil_tl
thf(fact_791_tl__Nil,axiom,
    ! [Xs: list_a] :
      ( ( ( tl_a @ Xs )
        = nil_a )
      = ( ( Xs = nil_a )
        | ? [X3: a] :
            ( Xs
            = ( cons_a @ X3 @ nil_a ) ) ) ) ).

% tl_Nil
thf(fact_792_list_Oset__sel_I2_J,axiom,
    ! [A: list_a,X2: a] :
      ( ( A != nil_a )
     => ( ( member_a @ X2 @ ( set_a2 @ ( tl_a @ A ) ) )
       => ( member_a @ X2 @ ( set_a2 @ A ) ) ) ) ).

% list.set_sel(2)
thf(fact_793_tl__append__if,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
          = ( tl_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
          = ( append_a @ ( tl_a @ Xs ) @ Ys ) ) ) ) ).

% tl_append_if
thf(fact_794_list_Oexpand,axiom,
    ! [List: list_a,List2: list_a] :
      ( ( ( List = nil_a )
        = ( List2 = nil_a ) )
     => ( ( ( List != nil_a )
         => ( ( List2 != nil_a )
           => ( ( ( hd_a @ List )
                = ( hd_a @ List2 ) )
              & ( ( tl_a @ List )
                = ( tl_a @ List2 ) ) ) ) )
       => ( List = List2 ) ) ) ).

% list.expand
thf(fact_795_last__tl,axiom,
    ! [Xs: list_a] :
      ( ( ( Xs = nil_a )
        | ( ( tl_a @ Xs )
         != nil_a ) )
     => ( ( last_a @ ( tl_a @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_tl
thf(fact_796_list_Oexhaust__sel,axiom,
    ! [List: list_a] :
      ( ( List != nil_a )
     => ( List
        = ( cons_a @ ( hd_a @ List ) @ ( tl_a @ List ) ) ) ) ).

% list.exhaust_sel
thf(fact_797_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_798_le__cases3,axiom,
    ! [X2: nat,Y2: nat,Z3: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z3 ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z3 ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z3 )
           => ~ ( ord_less_eq_nat @ Z3 @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z3 @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z3 )
               => ~ ( ord_less_eq_nat @ Z3 @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z3 @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_799_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_a,Z: set_a] : ( Y5 = Z ) )
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( ord_less_eq_set_a @ X3 @ Y3 )
          & ( ord_less_eq_set_a @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_800_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z: nat] : ( Y5 = Z ) )
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_801_ord__eq__le__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( A = B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_802_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_803_ord__le__eq__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_804_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_805_order__antisym,axiom,
    ! [X2: set_a,Y2: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y2 )
     => ( ( ord_less_eq_set_a @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_806_order__antisym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_807_order_Otrans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% order.trans
thf(fact_808_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_809_order__trans,axiom,
    ! [X2: set_a,Y2: set_a,Z3: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y2 )
     => ( ( ord_less_eq_set_a @ Y2 @ Z3 )
       => ( ord_less_eq_set_a @ X2 @ Z3 ) ) ) ).

% order_trans
thf(fact_810_order__trans,axiom,
    ! [X2: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z3 )
       => ( ord_less_eq_nat @ X2 @ Z3 ) ) ) ).

% order_trans
thf(fact_811_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A2: nat,B7: nat] :
          ( ( ord_less_eq_nat @ A2 @ B7 )
         => ( P @ A2 @ B7 ) )
     => ( ! [A2: nat,B7: nat] :
            ( ( P @ B7 @ A2 )
           => ( P @ A2 @ B7 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_812_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_a,Z: set_a] : ( Y5 = Z ) )
    = ( ^ [A6: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ B5 @ A6 )
          & ( ord_less_eq_set_a @ A6 @ B5 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_813_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z: nat] : ( Y5 = Z ) )
    = ( ^ [A6: nat,B5: nat] :
          ( ( ord_less_eq_nat @ B5 @ A6 )
          & ( ord_less_eq_nat @ A6 @ B5 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_814_dual__order_Oantisym,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_815_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_816_dual__order_Otrans,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_eq_set_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_817_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_818_antisym,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_819_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_820_order__eq__iff,axiom,
    ( ( ^ [Y5: set_a,Z: set_a] : ( Y5 = Z ) )
    = ( ^ [A6: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ A6 @ B5 )
          & ( ord_less_eq_set_a @ B5 @ A6 ) ) ) ) ).

% order_eq_iff
thf(fact_821_order__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z: nat] : ( Y5 = Z ) )
    = ( ^ [A6: nat,B5: nat] :
          ( ( ord_less_eq_nat @ A6 @ B5 )
          & ( ord_less_eq_nat @ B5 @ A6 ) ) ) ) ).

% order_eq_iff
thf(fact_822_order__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_823_order__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_824_order__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_825_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_826_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_827_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_828_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_829_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_830_order__eq__refl,axiom,
    ! [X2: set_a,Y2: set_a] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_set_a @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_831_order__eq__refl,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_832_linorder__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_833_ord__eq__le__subst,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_834_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_835_ord__eq__le__subst,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_836_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_837_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_838_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_839_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_840_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_841_linorder__le__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_842_order__antisym__conv,axiom,
    ! [Y2: set_a,X2: set_a] :
      ( ( ord_less_eq_set_a @ Y2 @ X2 )
     => ( ( ord_less_eq_set_a @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_843_order__antisym__conv,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_844_paths__in__rts_OArr__imp__Arr__tl,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ T4 )
       => ( ( ( tl_a @ T4 )
           != nil_a )
         => ( paths_in_Arr_a @ Resid @ ( tl_a @ T4 ) ) ) ) ) ).

% paths_in_rts.Arr_imp_Arr_tl
thf(fact_845_paths__in__rts_OIde__imp__Ide__tl,axiom,
    ! [Resid: a > a > a,T4: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ T4 )
       => ( ( ( tl_a @ T4 )
           != nil_a )
         => ( paths_in_Ide_a @ Resid @ ( tl_a @ T4 ) ) ) ) ) ).

% paths_in_rts.Ide_imp_Ide_tl
thf(fact_846_bot_Oextremum__uniqueI,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
     => ( A = bot_bot_set_a ) ) ).

% bot.extremum_uniqueI
thf(fact_847_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_848_bot_Oextremum__unique,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
      = ( A = bot_bot_set_a ) ) ).

% bot.extremum_unique
thf(fact_849_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_850_bot_Oextremum,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A ) ).

% bot.extremum
thf(fact_851_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_852_rts__axioms_Ointro,axiom,
    ! [Resid: a > a > a] :
      ( ! [T3: a] :
          ( ( arr_a @ Resid @ T3 )
         => ( ide_a @ Resid @ ( trg_a @ Resid @ T3 ) ) )
     => ( ! [A2: a,T3: a] :
            ( ( ide_a @ Resid @ A2 )
           => ( ( con_a @ Resid @ T3 @ A2 )
             => ( ( Resid @ T3 @ A2 )
                = T3 ) ) )
       => ( ! [A2: a,T3: a] :
              ( ( ide_a @ Resid @ A2 )
             => ( ( con_a @ Resid @ A2 @ T3 )
               => ( ide_a @ Resid @ ( Resid @ A2 @ T3 ) ) ) )
         => ( ! [T3: a,U4: a] :
                ( ( con_a @ Resid @ T3 @ U4 )
               => ? [A7: a] :
                    ( ( ide_a @ Resid @ A7 )
                    & ( con_a @ Resid @ A7 @ T3 )
                    & ( con_a @ Resid @ A7 @ U4 ) ) )
           => ( ! [T3: a,U4: a,V2: a] :
                  ( ( ide_a @ Resid @ ( Resid @ T3 @ U4 ) )
                 => ( ( con_a @ Resid @ U4 @ V2 )
                   => ( con_a @ Resid @ ( Resid @ T3 @ U4 ) @ ( Resid @ V2 @ U4 ) ) ) )
             => ( rts_axioms_a @ Resid ) ) ) ) ) ) ).

% rts_axioms.intro
thf(fact_853_rts__axioms__def,axiom,
    ( rts_axioms_a
    = ( ^ [Resid2: a > a > a] :
          ( ! [T6: a] :
              ( ( arr_a @ Resid2 @ T6 )
             => ( ide_a @ Resid2 @ ( trg_a @ Resid2 @ T6 ) ) )
          & ! [A6: a,T6: a] :
              ( ( ide_a @ Resid2 @ A6 )
             => ( ( con_a @ Resid2 @ T6 @ A6 )
               => ( ( Resid2 @ T6 @ A6 )
                  = T6 ) ) )
          & ! [A6: a,T6: a] :
              ( ( ide_a @ Resid2 @ A6 )
             => ( ( con_a @ Resid2 @ A6 @ T6 )
               => ( ide_a @ Resid2 @ ( Resid2 @ A6 @ T6 ) ) ) )
          & ! [T6: a,U5: a] :
              ( ( con_a @ Resid2 @ T6 @ U5 )
             => ? [A6: a] :
                  ( ( ide_a @ Resid2 @ A6 )
                  & ( con_a @ Resid2 @ A6 @ T6 )
                  & ( con_a @ Resid2 @ A6 @ U5 ) ) )
          & ! [T6: a,U5: a,V4: a] :
              ( ( ide_a @ Resid2 @ ( Resid2 @ T6 @ U5 ) )
             => ( ( con_a @ Resid2 @ U5 @ V4 )
               => ( con_a @ Resid2 @ ( Resid2 @ T6 @ U5 ) @ ( Resid2 @ V4 @ U5 ) ) ) ) ) ) ) ).

% rts_axioms_def
thf(fact_854_length__Resid,axiom,
    ! [T4: list_a,U2: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ T4 @ U2 )
       != nil_a )
     => ( ( size_size_list_a @ ( paths_in_Resid_a @ resid @ T4 @ U2 ) )
        = ( size_size_list_a @ T4 ) ) ) ).

% length_Resid
thf(fact_855_the__elem__eq,axiom,
    ! [X2: a] :
      ( ( the_elem_a @ ( insert_a2 @ X2 @ bot_bot_set_a ) )
      = X2 ) ).

% the_elem_eq
thf(fact_856_length__Residx1,axiom,
    ! [T4: list_a,U: a] : ( ord_less_eq_nat @ ( size_size_list_a @ ( paths_in_Residx1_a @ resid @ T4 @ U ) ) @ ( size_size_list_a @ T4 ) ) ).

% length_Residx1
thf(fact_857_append__eq__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a,Us2: list_a,Vs: list_a] :
      ( ( ( ( size_size_list_a @ Xs )
          = ( size_size_list_a @ Ys ) )
        | ( ( size_size_list_a @ Us2 )
          = ( size_size_list_a @ Vs ) ) )
     => ( ( ( append_a @ Xs @ Us2 )
          = ( append_a @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us2 = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_858_neq__if__length__neq,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
       != ( size_size_list_a @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_859_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs2: list_a] :
      ( ( size_size_list_a @ Xs2 )
      = N ) ).

% Ex_list_of_length
thf(fact_860_impossible__Cons,axiom,
    ! [Xs: list_a,Ys: list_a,X2: a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) )
     => ( Xs
       != ( cons_a @ X2 @ Ys ) ) ) ).

% impossible_Cons
thf(fact_861_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,P: list_a > list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P @ nil_a @ nil_a @ nil_a )
         => ( ! [X: a,Xs2: list_a,Y4: a,Ys2: list_a,Z4: a,Zs2: list_a] :
                ( ( ( size_size_list_a @ Xs2 )
                  = ( size_size_list_a @ Ys2 ) )
               => ( ( ( size_size_list_a @ Ys2 )
                    = ( size_size_list_a @ Zs2 ) )
                 => ( ( P @ Xs2 @ Ys2 @ Zs2 )
                   => ( P @ ( cons_a @ X @ Xs2 ) @ ( cons_a @ Y4 @ Ys2 ) @ ( cons_a @ Z4 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_862_list__induct2,axiom,
    ! [Xs: list_a,Ys: list_a,P: list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( P @ nil_a @ nil_a )
       => ( ! [X: a,Xs2: list_a,Y4: a,Ys2: list_a] :
              ( ( ( size_size_list_a @ Xs2 )
                = ( size_size_list_a @ Ys2 ) )
             => ( ( P @ Xs2 @ Ys2 )
               => ( P @ ( cons_a @ X @ Xs2 ) @ ( cons_a @ Y4 @ Ys2 ) ) ) )
         => ( P @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_863_paths__in__rts_Olength__Residx1,axiom,
    ! [Resid: a > a > a,T4: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ord_less_eq_nat @ ( size_size_list_a @ ( paths_in_Residx1_a @ Resid @ T4 @ U ) ) @ ( size_size_list_a @ T4 ) ) ) ).

% paths_in_rts.length_Residx1
thf(fact_864_same__length__different,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != Ys )
     => ( ( ( size_size_list_a @ Xs )
          = ( size_size_list_a @ Ys ) )
       => ? [Pre: list_a,X: a,Xs4: list_a,Y4: a,Ys6: list_a] :
            ( ( X != Y4 )
            & ( Xs
              = ( append_a @ Pre @ ( append_a @ ( cons_a @ X @ nil_a ) @ Xs4 ) ) )
            & ( Ys
              = ( append_a @ Pre @ ( append_a @ ( cons_a @ Y4 @ nil_a ) @ Ys6 ) ) ) ) ) ) ).

% same_length_different
thf(fact_865_paths__in__rts_Olength__Resid,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Resid_a @ Resid @ T4 @ U2 )
         != nil_a )
       => ( ( size_size_list_a @ ( paths_in_Resid_a @ Resid @ T4 @ U2 ) )
          = ( size_size_list_a @ T4 ) ) ) ) ).

% paths_in_rts.length_Resid
thf(fact_866_the__elem__set,axiom,
    ! [X2: a] :
      ( ( the_elem_a @ ( set_a2 @ ( cons_a @ X2 @ nil_a ) ) )
      = X2 ) ).

% the_elem_set
thf(fact_867_Resid__cons__ind,axiom,
    ! [T4: list_a,U2: list_a,N: nat] :
      ( ( T4 != nil_a )
     => ( ( U2 != nil_a )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( size_size_list_a @ T4 ) @ ( size_size_list_a @ U2 ) ) @ N )
         => ( ! [T2: a] :
                ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T2 @ T4 ) @ U2 )
                 != nil_a )
                = ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T2 @ nil_a ) @ U2 )
                   != nil_a )
                  & ( ( paths_in_Resid_a @ resid @ T4 @ ( paths_in_Resid_a @ resid @ U2 @ ( cons_a @ T2 @ nil_a ) ) )
                   != nil_a ) ) )
            & ! [U6: a] :
                ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U6 @ U2 ) )
                 != nil_a )
                = ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U6 @ nil_a ) )
                   != nil_a )
                  & ( ( paths_in_Resid_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U6 @ nil_a ) ) @ U2 )
                   != nil_a ) ) )
            & ! [T2: a] :
                ( ( ( paths_in_Resid_a @ resid @ ( cons_a @ T2 @ T4 ) @ U2 )
                 != nil_a )
               => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T2 @ T4 ) @ U2 )
                  = ( append_a @ ( paths_in_Resid_a @ resid @ ( cons_a @ T2 @ nil_a ) @ U2 ) @ ( paths_in_Resid_a @ resid @ T4 @ ( paths_in_Resid_a @ resid @ U2 @ ( cons_a @ T2 @ nil_a ) ) ) ) ) )
            & ! [U6: a] :
                ( ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U6 @ U2 ) )
                 != nil_a )
               => ( ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U6 @ U2 ) )
                  = ( paths_in_Resid_a @ resid @ ( paths_in_Resid_a @ resid @ T4 @ ( cons_a @ U6 @ nil_a ) ) @ U2 ) ) ) ) ) ) ) ).

% Resid_cons_ind
thf(fact_868_length__Resid__ind,axiom,
    ! [T4: list_a,U2: list_a,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( size_size_list_a @ T4 ) @ ( size_size_list_a @ U2 ) ) @ N )
     => ( ( ( paths_in_Resid_a @ resid @ T4 @ U2 )
         != nil_a )
       => ( ( size_size_list_a @ ( paths_in_Resid_a @ resid @ T4 @ U2 ) )
          = ( size_size_list_a @ T4 ) ) ) ) ).

% length_Resid_ind
thf(fact_869_Con__sym__ind,axiom,
    ! [T4: list_a,U2: list_a,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( size_size_list_a @ T4 ) @ ( size_size_list_a @ U2 ) ) @ N )
     => ( ( ( paths_in_Resid_a @ resid @ T4 @ U2 )
         != nil_a )
        = ( ( paths_in_Resid_a @ resid @ U2 @ T4 )
         != nil_a ) ) ) ).

% Con_sym_ind
thf(fact_870_length__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( size_size_list_a @ ( append_a @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) ) ) ).

% length_append
thf(fact_871_paths__in__rts_Olength__Resid__ind,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,N: nat] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( size_size_list_a @ T4 ) @ ( size_size_list_a @ U2 ) ) @ N )
       => ( ( ( paths_in_Resid_a @ Resid @ T4 @ U2 )
           != nil_a )
         => ( ( size_size_list_a @ ( paths_in_Resid_a @ Resid @ T4 @ U2 ) )
            = ( size_size_list_a @ T4 ) ) ) ) ) ).

% paths_in_rts.length_Resid_ind
thf(fact_872_paths__in__rts_OCon__sym__ind,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,N: nat] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( size_size_list_a @ T4 ) @ ( size_size_list_a @ U2 ) ) @ N )
       => ( ( ( paths_in_Resid_a @ Resid @ T4 @ U2 )
           != nil_a )
          = ( ( paths_in_Resid_a @ Resid @ U2 @ T4 )
           != nil_a ) ) ) ) ).

% paths_in_rts.Con_sym_ind
thf(fact_873_paths__in__rts_OResid__cons__ind,axiom,
    ! [Resid: a > a > a,T4: list_a,U2: list_a,N: nat] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( T4 != nil_a )
       => ( ( U2 != nil_a )
         => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( size_size_list_a @ T4 ) @ ( size_size_list_a @ U2 ) ) @ N )
           => ( ! [T2: a] :
                  ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T2 @ T4 ) @ U2 )
                   != nil_a )
                  = ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T2 @ nil_a ) @ U2 )
                     != nil_a )
                    & ( ( paths_in_Resid_a @ Resid @ T4 @ ( paths_in_Resid_a @ Resid @ U2 @ ( cons_a @ T2 @ nil_a ) ) )
                     != nil_a ) ) )
              & ! [U6: a] :
                  ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U6 @ U2 ) )
                   != nil_a )
                  = ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U6 @ nil_a ) )
                     != nil_a )
                    & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U6 @ nil_a ) ) @ U2 )
                     != nil_a ) ) )
              & ! [T2: a] :
                  ( ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T2 @ T4 ) @ U2 )
                   != nil_a )
                 => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T2 @ T4 ) @ U2 )
                    = ( append_a @ ( paths_in_Resid_a @ Resid @ ( cons_a @ T2 @ nil_a ) @ U2 ) @ ( paths_in_Resid_a @ Resid @ T4 @ ( paths_in_Resid_a @ Resid @ U2 @ ( cons_a @ T2 @ nil_a ) ) ) ) ) )
              & ! [U6: a] :
                  ( ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U6 @ U2 ) )
                   != nil_a )
                 => ( ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U6 @ U2 ) )
                    = ( paths_in_Resid_a @ Resid @ ( paths_in_Resid_a @ Resid @ T4 @ ( cons_a @ U6 @ nil_a ) ) @ U2 ) ) ) ) ) ) ) ) ).

% paths_in_rts.Resid_cons_ind
thf(fact_874_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_875_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_876_Collect__empty__eq__bot,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( P = bot_bot_a_o ) ) ).

% Collect_empty_eq_bot
thf(fact_877_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_878_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_879_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_880_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_mono
thf(fact_881_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_882_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C4: nat] :
            ( B
           != ( plus_plus_nat @ A @ C4 ) ) ) ).

% less_eqE
thf(fact_883_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_884_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A6: nat,B5: nat] :
        ? [C5: nat] :
          ( B5
          = ( plus_plus_nat @ A6 @ C5 ) ) ) ) ).

% le_iff_add
thf(fact_885_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_886_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_887_bot__empty__eq,axiom,
    ( bot_bot_a_o
    = ( ^ [X3: a] : ( member_a @ X3 @ bot_bot_set_a ) ) ) ).

% bot_empty_eq
thf(fact_888_is__singleton__the__elem,axiom,
    ( is_singleton_a
    = ( ^ [A5: set_a] :
          ( A5
          = ( insert_a2 @ ( the_elem_a @ A5 ) @ bot_bot_set_a ) ) ) ) ).

% is_singleton_the_elem
thf(fact_889_Arr_Opelims_I1_J,axiom,
    ! [X2: list_a,Y2: $o] :
      ( ( ( paths_in_Arr_a @ resid @ X2 )
        = Y2 )
     => ( ( accp_list_a @ paths_in_Arr_rel_a @ X2 )
       => ( ( ( X2 = nil_a )
           => ( ~ Y2
             => ~ ( accp_list_a @ paths_in_Arr_rel_a @ nil_a ) ) )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ( Y2
                    = ( arr_a @ resid @ T3 ) )
                 => ~ ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ nil_a ) ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( Y2
                      = ( ( arr_a @ resid @ T3 )
                        & ( paths_in_Arr_a @ resid @ ( cons_a @ V2 @ Va ) )
                        & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) )
                   => ~ ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% Arr.pelims(1)
thf(fact_890_Arr_Opelims_I3_J,axiom,
    ! [X2: list_a] :
      ( ~ ( paths_in_Arr_a @ resid @ X2 )
     => ( ( accp_list_a @ paths_in_Arr_rel_a @ X2 )
       => ( ( ( X2 = nil_a )
           => ~ ( accp_list_a @ paths_in_Arr_rel_a @ nil_a ) )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ nil_a ) )
                 => ( arr_a @ resid @ T3 ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                   => ( ( arr_a @ resid @ T3 )
                      & ( paths_in_Arr_a @ resid @ ( cons_a @ V2 @ Va ) )
                      & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% Arr.pelims(3)
thf(fact_891_Arr_Opelims_I2_J,axiom,
    ! [X2: list_a] :
      ( ( paths_in_Arr_a @ resid @ X2 )
     => ( ( accp_list_a @ paths_in_Arr_rel_a @ X2 )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ( ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ nil_a ) )
               => ~ ( arr_a @ resid @ T3 ) ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ( ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ~ ( ( arr_a @ resid @ T3 )
                      & ( paths_in_Arr_a @ resid @ ( cons_a @ V2 @ Va ) )
                      & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% Arr.pelims(2)
thf(fact_892_is__singletonI,axiom,
    ! [X2: a] : ( is_singleton_a @ ( insert_a2 @ X2 @ bot_bot_set_a ) ) ).

% is_singletonI
thf(fact_893_Srcs_Opelims,axiom,
    ! [X2: list_a,Y2: set_a] :
      ( ( ( paths_in_Srcs_a @ resid @ X2 )
        = Y2 )
     => ( ( accp_list_a @ paths_in_Srcs_rel_a @ X2 )
       => ( ( ( X2 = nil_a )
           => ( ( Y2 = bot_bot_set_a )
             => ~ ( accp_list_a @ paths_in_Srcs_rel_a @ nil_a ) ) )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ( Y2
                    = ( sources_a @ resid @ T3 ) )
                 => ~ ( accp_list_a @ paths_in_Srcs_rel_a @ ( cons_a @ T3 @ nil_a ) ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( Y2
                      = ( sources_a @ resid @ T3 ) )
                   => ~ ( accp_list_a @ paths_in_Srcs_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% Srcs.pelims
thf(fact_894_Trgs_Opelims,axiom,
    ! [X2: list_a,Y2: set_a] :
      ( ( ( paths_in_Trgs_a @ resid @ X2 )
        = Y2 )
     => ( ( accp_list_a @ paths_in_Trgs_rel_a @ X2 )
       => ( ( ( X2 = nil_a )
           => ( ( Y2 = bot_bot_set_a )
             => ~ ( accp_list_a @ paths_in_Trgs_rel_a @ nil_a ) ) )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ( Y2
                    = ( targets_a @ resid @ T3 ) )
                 => ~ ( accp_list_a @ paths_in_Trgs_rel_a @ ( cons_a @ T3 @ nil_a ) ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( Y2
                      = ( paths_in_Trgs_a @ resid @ ( cons_a @ V2 @ Va ) ) )
                   => ~ ( accp_list_a @ paths_in_Trgs_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% Trgs.pelims
thf(fact_895_is__singletonI_H,axiom,
    ! [A3: set_a] :
      ( ( A3 != bot_bot_set_a )
     => ( ! [X: a,Y4: a] :
            ( ( member_a @ X @ A3 )
           => ( ( member_a @ Y4 @ A3 )
             => ( X = Y4 ) ) )
       => ( is_singleton_a @ A3 ) ) ) ).

% is_singletonI'
thf(fact_896_is__singletonE,axiom,
    ! [A3: set_a] :
      ( ( is_singleton_a @ A3 )
     => ~ ! [X: a] :
            ( A3
           != ( insert_a2 @ X @ bot_bot_set_a ) ) ) ).

% is_singletonE
thf(fact_897_is__singleton__def,axiom,
    ( is_singleton_a
    = ( ^ [A5: set_a] :
        ? [X3: a] :
          ( A5
          = ( insert_a2 @ X3 @ bot_bot_set_a ) ) ) ) ).

% is_singleton_def
thf(fact_898_paths__in__rts_OArr_Opelims_I2_J,axiom,
    ! [Resid: a > a > a,X2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Arr_a @ Resid @ X2 )
       => ( ( accp_list_a @ paths_in_Arr_rel_a @ X2 )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ nil_a ) )
                 => ~ ( arr_a @ Resid @ T3 ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                   => ~ ( ( arr_a @ Resid @ T3 )
                        & ( paths_in_Arr_a @ Resid @ ( cons_a @ V2 @ Va ) )
                        & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.pelims(2)
thf(fact_899_paths__in__rts_OArr_Opelims_I1_J,axiom,
    ! [Resid: a > a > a,X2: list_a,Y2: $o] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Arr_a @ Resid @ X2 )
          = Y2 )
       => ( ( accp_list_a @ paths_in_Arr_rel_a @ X2 )
         => ( ( ( X2 = nil_a )
             => ( ~ Y2
               => ~ ( accp_list_a @ paths_in_Arr_rel_a @ nil_a ) ) )
           => ( ! [T3: a] :
                  ( ( X2
                    = ( cons_a @ T3 @ nil_a ) )
                 => ( ( Y2
                      = ( arr_a @ Resid @ T3 ) )
                   => ~ ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ nil_a ) ) ) )
             => ~ ! [T3: a,V2: a,Va: list_a] :
                    ( ( X2
                      = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                   => ( ( Y2
                        = ( ( arr_a @ Resid @ T3 )
                          & ( paths_in_Arr_a @ Resid @ ( cons_a @ V2 @ Va ) )
                          & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) )
                     => ~ ( accp_list_a @ paths_in_Arr_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Arr.pelims(1)
thf(fact_900_Ide_Opelims_I3_J,axiom,
    ! [X2: list_a] :
      ( ~ ( paths_in_Ide_a @ resid @ X2 )
     => ( ( accp_list_a @ paths_in_Ide_rel_a @ X2 )
       => ( ( ( X2 = nil_a )
           => ~ ( accp_list_a @ paths_in_Ide_rel_a @ nil_a ) )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ nil_a ) )
                 => ( ide_a @ resid @ T3 ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                   => ( ( ide_a @ resid @ T3 )
                      & ( paths_in_Ide_a @ resid @ ( cons_a @ V2 @ Va ) )
                      & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% Ide.pelims(3)
thf(fact_901_Ide_Opelims_I2_J,axiom,
    ! [X2: list_a] :
      ( ( paths_in_Ide_a @ resid @ X2 )
     => ( ( accp_list_a @ paths_in_Ide_rel_a @ X2 )
       => ( ! [T3: a] :
              ( ( X2
                = ( cons_a @ T3 @ nil_a ) )
             => ( ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ nil_a ) )
               => ~ ( ide_a @ resid @ T3 ) ) )
         => ~ ! [T3: a,V2: a,Va: list_a] :
                ( ( X2
                  = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
               => ( ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ~ ( ( ide_a @ resid @ T3 )
                      & ( paths_in_Ide_a @ resid @ ( cons_a @ V2 @ Va ) )
                      & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% Ide.pelims(2)
thf(fact_902_Ide_Opelims_I1_J,axiom,
    ! [X2: list_a,Y2: $o] :
      ( ( ( paths_in_Ide_a @ resid @ X2 )
        = Y2 )
     => ( ( accp_list_a @ paths_in_Ide_rel_a @ X2 )
       => ( ( ( X2 = nil_a )
           => ( ~ Y2
             => ~ ( accp_list_a @ paths_in_Ide_rel_a @ nil_a ) ) )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ( Y2
                    = ( ide_a @ resid @ T3 ) )
                 => ~ ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ nil_a ) ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( Y2
                      = ( ( ide_a @ resid @ T3 )
                        & ( paths_in_Ide_a @ resid @ ( cons_a @ V2 @ Va ) )
                        & ( ord_less_eq_set_a @ ( targets_a @ resid @ T3 ) @ ( paths_in_Srcs_a @ resid @ ( cons_a @ V2 @ Va ) ) ) ) )
                   => ~ ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ).

% Ide.pelims(1)
thf(fact_903_paths__in__rts_OIde_Opelims_I1_J,axiom,
    ! [Resid: a > a > a,X2: list_a,Y2: $o] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Ide_a @ Resid @ X2 )
          = Y2 )
       => ( ( accp_list_a @ paths_in_Ide_rel_a @ X2 )
         => ( ( ( X2 = nil_a )
             => ( ~ Y2
               => ~ ( accp_list_a @ paths_in_Ide_rel_a @ nil_a ) ) )
           => ( ! [T3: a] :
                  ( ( X2
                    = ( cons_a @ T3 @ nil_a ) )
                 => ( ( Y2
                      = ( ide_a @ Resid @ T3 ) )
                   => ~ ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ nil_a ) ) ) )
             => ~ ! [T3: a,V2: a,Va: list_a] :
                    ( ( X2
                      = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                   => ( ( Y2
                        = ( ( ide_a @ Resid @ T3 )
                          & ( paths_in_Ide_a @ Resid @ ( cons_a @ V2 @ Va ) )
                          & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) )
                     => ~ ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.pelims(1)
thf(fact_904_paths__in__rts_OIde_Opelims_I2_J,axiom,
    ! [Resid: a > a > a,X2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( paths_in_Ide_a @ Resid @ X2 )
       => ( ( accp_list_a @ paths_in_Ide_rel_a @ X2 )
         => ( ! [T3: a] :
                ( ( X2
                  = ( cons_a @ T3 @ nil_a ) )
               => ( ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ nil_a ) )
                 => ~ ( ide_a @ Resid @ T3 ) ) )
           => ~ ! [T3: a,V2: a,Va: list_a] :
                  ( ( X2
                    = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( accp_list_a @ paths_in_Ide_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                   => ~ ( ( ide_a @ Resid @ T3 )
                        & ( paths_in_Ide_a @ Resid @ ( cons_a @ V2 @ Va ) )
                        & ( ord_less_eq_set_a @ ( targets_a @ Resid @ T3 ) @ ( paths_in_Srcs_a @ Resid @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Ide.pelims(2)
thf(fact_905_paths__in__rts_OSrcs_Opelims,axiom,
    ! [Resid: a > a > a,X2: list_a,Y2: set_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Srcs_a @ Resid @ X2 )
          = Y2 )
       => ( ( accp_list_a @ paths_in_Srcs_rel_a @ X2 )
         => ( ( ( X2 = nil_a )
             => ( ( Y2 = bot_bot_set_a )
               => ~ ( accp_list_a @ paths_in_Srcs_rel_a @ nil_a ) ) )
           => ( ! [T3: a] :
                  ( ( X2
                    = ( cons_a @ T3 @ nil_a ) )
                 => ( ( Y2
                      = ( sources_a @ Resid @ T3 ) )
                   => ~ ( accp_list_a @ paths_in_Srcs_rel_a @ ( cons_a @ T3 @ nil_a ) ) ) )
             => ~ ! [T3: a,V2: a,Va: list_a] :
                    ( ( X2
                      = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                   => ( ( Y2
                        = ( sources_a @ Resid @ T3 ) )
                     => ~ ( accp_list_a @ paths_in_Srcs_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Srcs.pelims
thf(fact_906_paths__in__rts_OTrgs_Opelims,axiom,
    ! [Resid: a > a > a,X2: list_a,Y2: set_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( ( paths_in_Trgs_a @ Resid @ X2 )
          = Y2 )
       => ( ( accp_list_a @ paths_in_Trgs_rel_a @ X2 )
         => ( ( ( X2 = nil_a )
             => ( ( Y2 = bot_bot_set_a )
               => ~ ( accp_list_a @ paths_in_Trgs_rel_a @ nil_a ) ) )
           => ( ! [T3: a] :
                  ( ( X2
                    = ( cons_a @ T3 @ nil_a ) )
                 => ( ( Y2
                      = ( targets_a @ Resid @ T3 ) )
                   => ~ ( accp_list_a @ paths_in_Trgs_rel_a @ ( cons_a @ T3 @ nil_a ) ) ) )
             => ~ ! [T3: a,V2: a,Va: list_a] :
                    ( ( X2
                      = ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) )
                   => ( ( Y2
                        = ( paths_in_Trgs_a @ Resid @ ( cons_a @ V2 @ Va ) ) )
                     => ~ ( accp_list_a @ paths_in_Trgs_rel_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% paths_in_rts.Trgs.pelims
thf(fact_907_simulation__axioms__def,axiom,
    ( simula3868467710248865958ms_a_a
    = ( ^ [A5: a > a > a,B4: a > a > a,F2: a > a] :
          ( ! [T6: a] :
              ( ~ ( arr_a @ A5 @ T6 )
             => ( ( F2 @ T6 )
                = ( partial_null_a @ B4 ) ) )
          & ! [T6: a,U5: a] :
              ( ( con_a @ A5 @ T6 @ U5 )
             => ( con_a @ B4 @ ( F2 @ T6 ) @ ( F2 @ U5 ) ) )
          & ! [T6: a,U5: a] :
              ( ( con_a @ A5 @ T6 @ U5 )
             => ( ( F2 @ ( A5 @ T6 @ U5 ) )
                = ( B4 @ ( F2 @ T6 ) @ ( F2 @ U5 ) ) ) ) ) ) ) ).

% simulation_axioms_def
thf(fact_908_simulation__axioms_Ointro,axiom,
    ! [A3: a > a > a,F3: a > a,B3: a > a > a] :
      ( ! [T3: a] :
          ( ~ ( arr_a @ A3 @ T3 )
         => ( ( F3 @ T3 )
            = ( partial_null_a @ B3 ) ) )
     => ( ! [T3: a,U4: a] :
            ( ( con_a @ A3 @ T3 @ U4 )
           => ( con_a @ B3 @ ( F3 @ T3 ) @ ( F3 @ U4 ) ) )
       => ( ! [T3: a,U4: a] :
              ( ( con_a @ A3 @ T3 @ U4 )
             => ( ( F3 @ ( A3 @ T3 @ U4 ) )
                = ( B3 @ ( F3 @ T3 ) @ ( F3 @ U4 ) ) ) )
         => ( simula3868467710248865958ms_a_a @ A3 @ B3 @ F3 ) ) ) ) ).

% simulation_axioms.intro
thf(fact_909_coherent__normal__sub__rts__axioms_Ointro,axiom,
    ! [Resid: a > a > a,NN: set_a] :
      ( ! [T3: a,U4: a,U7: a] :
          ( ( arr_a @ Resid @ T3 )
         => ( ( member_a @ U4 @ NN )
           => ( ( member_a @ U7 @ NN )
             => ( ( ( sources_a @ Resid @ U4 )
                  = ( sources_a @ Resid @ U7 ) )
               => ( ( ( targets_a @ Resid @ U4 )
                    = ( targets_a @ Resid @ U7 ) )
                 => ( ( ( sources_a @ Resid @ T3 )
                      = ( sources_a @ Resid @ U4 ) )
                   => ( ( member_a @ ( Resid @ ( Resid @ T3 @ U4 ) @ ( Resid @ T3 @ U7 ) ) @ NN )
                      & ( member_a @ ( Resid @ ( Resid @ T3 @ U7 ) @ ( Resid @ T3 @ U4 ) ) @ NN ) ) ) ) ) ) ) )
     => ( cohere4894532172567702276ioms_a @ Resid @ NN ) ) ).

% coherent_normal_sub_rts_axioms.intro
thf(fact_910_coherent__normal__sub__rts_Oaxioms_I2_J,axiom,
    ! [Resid: a > a > a,NN: set_a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( cohere4894532172567702276ioms_a @ Resid @ NN ) ) ).

% coherent_normal_sub_rts.axioms(2)
thf(fact_911_coherent__normal__sub__rts__axioms__def,axiom,
    ( cohere4894532172567702276ioms_a
    = ( ^ [Resid2: a > a > a,NN2: set_a] :
        ! [T6: a,U5: a,U8: a] :
          ( ( arr_a @ Resid2 @ T6 )
         => ( ( member_a @ U5 @ NN2 )
           => ( ( member_a @ U8 @ NN2 )
             => ( ( ( sources_a @ Resid2 @ U5 )
                  = ( sources_a @ Resid2 @ U8 ) )
               => ( ( ( targets_a @ Resid2 @ U5 )
                    = ( targets_a @ Resid2 @ U8 ) )
                 => ( ( ( sources_a @ Resid2 @ T6 )
                      = ( sources_a @ Resid2 @ U5 ) )
                   => ( ( member_a @ ( Resid2 @ ( Resid2 @ T6 @ U5 ) @ ( Resid2 @ T6 @ U8 ) ) @ NN2 )
                      & ( member_a @ ( Resid2 @ ( Resid2 @ T6 @ U8 ) @ ( Resid2 @ T6 @ U5 ) ) @ NN2 ) ) ) ) ) ) ) ) ) ) ).

% coherent_normal_sub_rts_axioms_def
thf(fact_912_R_OCong__iff__cong,axiom,
    ! [T: a,U: a] :
      ( ( normal_sub_Cong_a @ resid @ ( collect_a @ ( ide_a @ resid ) ) @ T @ U )
      = ( ( ide_a @ resid @ ( resid @ T @ U ) )
        & ( ide_a @ resid @ ( resid @ U @ T ) ) ) ) ).

% R.Cong_iff_cong
thf(fact_913_R_Ocomposite__of__source__arr,axiom,
    ! [T: a,A: a] :
      ( ( arr_a @ resid @ T )
     => ( ( member_a @ A @ ( sources_a @ resid @ T ) )
       => ( composite_of_a @ resid @ A @ T @ T ) ) ) ).

% R.composite_of_source_arr
thf(fact_914_R_Ocomposite__of__arr__target,axiom,
    ! [T: a,B: a] :
      ( ( arr_a @ resid @ T )
     => ( ( member_a @ B @ ( targets_a @ resid @ T ) )
       => ( composite_of_a @ resid @ T @ B @ T ) ) ) ).

% R.composite_of_arr_target
thf(fact_915_R_Ocomposite__of__unq__upto__cong,axiom,
    ! [U: a,T: a,V: a,V3: a] :
      ( ( composite_of_a @ resid @ U @ T @ V )
     => ( ( composite_of_a @ resid @ U @ T @ V3 )
       => ( ( ide_a @ resid @ ( resid @ V @ V3 ) )
          & ( ide_a @ resid @ ( resid @ V3 @ V ) ) ) ) ) ).

% R.composite_of_unq_upto_cong
thf(fact_916_R_Ocomposite__of__ide__self,axiom,
    ! [A: a] :
      ( ( ide_a @ resid @ A )
     => ( composite_of_a @ resid @ A @ A @ A ) ) ).

% R.composite_of_ide_self
thf(fact_917_R_Ocomposite__of__def,axiom,
    ! [U: a,T: a,V: a] :
      ( ( composite_of_a @ resid @ U @ T @ V )
      = ( ( ide_a @ resid @ ( resid @ U @ V ) )
        & ( ide_a @ resid @ ( resid @ ( resid @ V @ U ) @ T ) )
        & ( ide_a @ resid @ ( resid @ T @ ( resid @ V @ U ) ) ) ) ) ).

% R.composite_of_def
thf(fact_918_R_Ocomposite__of__cancel__left,axiom,
    ! [T: a,U: a,V: a,U3: a] :
      ( ( composite_of_a @ resid @ T @ U @ V )
     => ( ( composite_of_a @ resid @ T @ U3 @ V )
       => ( ( ide_a @ resid @ ( resid @ U @ U3 ) )
          & ( ide_a @ resid @ ( resid @ U3 @ U ) ) ) ) ) ).

% R.composite_of_cancel_left
thf(fact_919_R_Ocomposite__ofE,axiom,
    ! [U: a,T: a,V: a] :
      ( ( composite_of_a @ resid @ U @ T @ V )
     => ~ ( ( ide_a @ resid @ ( resid @ U @ V ) )
         => ~ ( ( ide_a @ resid @ ( resid @ ( resid @ V @ U ) @ T ) )
              & ( ide_a @ resid @ ( resid @ T @ ( resid @ V @ U ) ) ) ) ) ) ).

% R.composite_ofE
thf(fact_920_R_Ocon__composite__of__iff,axiom,
    ! [T: a,U: a,V: a,W: a] :
      ( ( composite_of_a @ resid @ T @ U @ V )
     => ( ( con_a @ resid @ W @ V )
        = ( con_a @ resid @ ( resid @ W @ T ) @ U ) ) ) ).

% R.con_composite_of_iff
thf(fact_921_R_Obounded__imp__con,axiom,
    ! [T: a,U: a,V: a,T5: a,U3: a] :
      ( ( composite_of_a @ resid @ T @ U @ V )
     => ( ( composite_of_a @ resid @ T5 @ U3 @ V )
       => ( con_a @ resid @ T @ T5 ) ) ) ).

% R.bounded_imp_con
thf(fact_922_R_Oresid__composite__of_I1_J,axiom,
    ! [T: a,U: a,W: a,V: a] :
      ( ( composite_of_a @ resid @ T @ U @ W )
     => ( ( con_a @ resid @ W @ V )
       => ( con_a @ resid @ ( resid @ V @ T ) @ ( resid @ W @ T ) ) ) ) ).

% R.resid_composite_of(1)
thf(fact_923_R_Oresid__composite__of_I2_J,axiom,
    ! [T: a,U: a,W: a,V: a] :
      ( ( composite_of_a @ resid @ T @ U @ W )
     => ( ( con_a @ resid @ W @ V )
       => ( con_a @ resid @ ( resid @ V @ T ) @ U ) ) ) ).

% R.resid_composite_of(2)
thf(fact_924_R_Oresid__composite__of_I4_J,axiom,
    ! [T: a,U: a,W: a,V: a] :
      ( ( composite_of_a @ resid @ T @ U @ W )
     => ( ( con_a @ resid @ W @ V )
       => ( composite_of_a @ resid @ ( resid @ T @ V ) @ ( resid @ U @ ( resid @ V @ T ) ) @ ( resid @ W @ V ) ) ) ) ).

% R.resid_composite_of(4)
thf(fact_925_R_Ocon__prfx__composite__of_I1_J,axiom,
    ! [T: a,U: a,W: a] :
      ( ( composite_of_a @ resid @ T @ U @ W )
     => ( con_a @ resid @ T @ W ) ) ).

% R.con_prfx_composite_of(1)
thf(fact_926_R_Ocon__prfx__composite__of_I2_J,axiom,
    ! [T: a,U: a,W: a,V: a] :
      ( ( composite_of_a @ resid @ T @ U @ W )
     => ( ( con_a @ resid @ W @ V )
       => ( con_a @ resid @ T @ V ) ) ) ).

% R.con_prfx_composite_of(2)
thf(fact_927_R_Otargets__composite__of,axiom,
    ! [U: a,T: a,V: a] :
      ( ( composite_of_a @ resid @ U @ T @ V )
     => ( ( targets_a @ resid @ V )
        = ( targets_a @ resid @ T ) ) ) ).

% R.targets_composite_of
thf(fact_928_R_Oarr__composite__of,axiom,
    ! [U: a,T: a,V: a] :
      ( ( composite_of_a @ resid @ U @ T @ V )
     => ( arr_a @ resid @ V ) ) ).

% R.arr_composite_of
thf(fact_929_R_Osources__composite__of,axiom,
    ! [U: a,T: a,V: a] :
      ( ( composite_of_a @ resid @ U @ T @ V )
     => ( ( sources_a @ resid @ V )
        = ( sources_a @ resid @ U ) ) ) ).

% R.sources_composite_of
thf(fact_930_R_Ojoin__ofE,axiom,
    ! [T: a,U: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ V )
     => ~ ( ( composite_of_a @ resid @ T @ ( resid @ U @ T ) @ V )
         => ~ ( composite_of_a @ resid @ U @ ( resid @ T @ U ) @ V ) ) ) ).

% R.join_ofE
thf(fact_931_R_Ojoin__of__def,axiom,
    ! [T: a,U: a,V: a] :
      ( ( join_of_a @ resid @ T @ U @ V )
      = ( ( composite_of_a @ resid @ T @ ( resid @ U @ T ) @ V )
        & ( composite_of_a @ resid @ U @ ( resid @ T @ U ) @ V ) ) ) ).

% R.join_of_def
thf(fact_932_R_Ocomposable__def,axiom,
    ! [T: a,U: a] :
      ( ( composable_a @ resid @ T @ U )
      = ( ? [X6: a] : ( composite_of_a @ resid @ T @ U @ X6 ) ) ) ).

% R.composable_def
thf(fact_933_R_Ocomposite__of__ide__arr,axiom,
    ! [A: a,T: a] :
      ( ( ide_a @ resid @ A )
     => ( ( composite_of_a @ resid @ A @ T @ T )
        = ( con_a @ resid @ T @ A ) ) ) ).

% R.composite_of_ide_arr
thf(fact_934_R_Ocomposite__of__arr__ide,axiom,
    ! [B: a,T: a] :
      ( ( ide_a @ resid @ B )
     => ( ( composite_of_a @ resid @ T @ B @ T )
        = ( con_a @ resid @ ( resid @ T @ T ) @ B ) ) ) ).

% R.composite_of_arr_ide
thf(fact_935_R_Oresid__composite__of_I3_J,axiom,
    ! [T: a,U: a,W: a,V: a] :
      ( ( composite_of_a @ resid @ T @ U @ W )
     => ( ( con_a @ resid @ W @ V )
       => ( ( ide_a @ resid @ ( resid @ ( resid @ V @ W ) @ ( resid @ ( resid @ V @ T ) @ U ) ) )
          & ( ide_a @ resid @ ( resid @ ( resid @ ( resid @ V @ T ) @ U ) @ ( resid @ V @ W ) ) ) ) ) ) ).

% R.resid_composite_of(3)
thf(fact_936_R_Ocomposite__ofI,axiom,
    ! [U: a,V: a,T: a] :
      ( ( ide_a @ resid @ ( resid @ U @ V ) )
     => ( ( ( ide_a @ resid @ ( resid @ ( resid @ V @ U ) @ T ) )
          & ( ide_a @ resid @ ( resid @ T @ ( resid @ V @ U ) ) ) )
       => ( composite_of_a @ resid @ U @ T @ V ) ) ) ).

% R.composite_ofI
thf(fact_937_R_Ojoin__ofI,axiom,
    ! [T: a,U: a,V: a] :
      ( ( composite_of_a @ resid @ T @ ( resid @ U @ T ) @ V )
     => ( ( composite_of_a @ resid @ U @ ( resid @ T @ U ) @ V )
       => ( join_of_a @ resid @ T @ U @ V ) ) ) ).

% R.join_ofI
thf(fact_938_coherent__normal__sub__rts_OCong__composite__of__normal__arr,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,T: a,T5: a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( ( composite_of_a @ Resid @ U @ T @ T5 )
       => ( ( member_a @ U @ NN )
         => ( normal_sub_Cong_a @ Resid @ NN @ T5 @ T ) ) ) ) ).

% coherent_normal_sub_rts.Cong_composite_of_normal_arr
thf(fact_939_coherent__normal__sub__rts_OCong_092_060_094sub_0620__composite__of__arr__normal,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,T5: a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( ( composite_of_a @ Resid @ T @ U @ T5 )
       => ( ( member_a @ U @ NN )
         => ( ( member_a @ ( Resid @ T5 @ T ) @ NN )
            & ( member_a @ ( Resid @ T @ T5 ) @ NN ) ) ) ) ) ).

% coherent_normal_sub_rts.Cong\<^sub>0_composite_of_arr_normal
thf(fact_940_rts_Ocomposite__of_Ocong,axiom,
    composite_of_a = composite_of_a ).

% rts.composite_of.cong
thf(fact_941_normal__sub__rts_OCong_Ocong,axiom,
    normal_sub_Cong_a = normal_sub_Cong_a ).

% normal_sub_rts.Cong.cong
thf(fact_942_coherent__normal__sub__rts_OCong__subst_I2_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,U: a,U3: a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
       => ( ( normal_sub_Cong_a @ Resid @ NN @ U @ U3 )
         => ( ( con_a @ Resid @ T @ U )
           => ( ( ( sources_a @ Resid @ T5 )
                = ( sources_a @ Resid @ U3 ) )
             => ( normal_sub_Cong_a @ Resid @ NN @ ( Resid @ T @ U ) @ ( Resid @ T5 @ U3 ) ) ) ) ) ) ) ).

% coherent_normal_sub_rts.Cong_subst(2)
thf(fact_943_coherent__normal__sub__rts_OCong__subst_I1_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,U: a,U3: a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
       => ( ( normal_sub_Cong_a @ Resid @ NN @ U @ U3 )
         => ( ( con_a @ Resid @ T @ U )
           => ( ( ( sources_a @ Resid @ T5 )
                = ( sources_a @ Resid @ U3 ) )
             => ( con_a @ Resid @ T5 @ U3 ) ) ) ) ) ) ).

% coherent_normal_sub_rts.Cong_subst(1)
thf(fact_944_coherent__normal__sub__rts_OCong__subst__con,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,T5: a,U3: a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( ( ( sources_a @ Resid @ T )
          = ( sources_a @ Resid @ U ) )
       => ( ( ( sources_a @ Resid @ T5 )
            = ( sources_a @ Resid @ U3 ) )
         => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
           => ( ( normal_sub_Cong_a @ Resid @ NN @ U @ U3 )
             => ( ( con_a @ Resid @ T @ U )
                = ( con_a @ Resid @ T5 @ U3 ) ) ) ) ) ) ) ).

% coherent_normal_sub_rts.Cong_subst_con
thf(fact_945_normal__sub__rts__axioms__def,axiom,
    ( normal7698203753654205830ioms_a
    = ( ^ [Resid2: a > a > a,NN2: set_a] :
          ( ! [T6: a] :
              ( ( member_a @ T6 @ NN2 )
             => ( arr_a @ Resid2 @ T6 ) )
          & ! [A6: a] :
              ( ( ide_a @ Resid2 @ A6 )
             => ( member_a @ A6 @ NN2 ) )
          & ! [U5: a,T6: a] :
              ( ( member_a @ U5 @ NN2 )
             => ( ( coinitial_a @ Resid2 @ T6 @ U5 )
               => ( member_a @ ( Resid2 @ U5 @ T6 ) @ NN2 ) ) )
          & ! [U5: a,T6: a] :
              ( ( member_a @ U5 @ NN2 )
             => ( ( member_a @ ( Resid2 @ T6 @ U5 ) @ NN2 )
               => ( member_a @ T6 @ NN2 ) ) )
          & ! [U5: a,T6: a] :
              ( ( member_a @ U5 @ NN2 )
             => ( ( seq_a @ Resid2 @ U5 @ T6 )
               => ? [X6: a] : ( composite_of_a @ Resid2 @ U5 @ T6 @ X6 ) ) )
          & ! [U5: a,T6: a] :
              ( ( member_a @ U5 @ NN2 )
             => ( ( seq_a @ Resid2 @ T6 @ U5 )
               => ? [X6: a] : ( composite_of_a @ Resid2 @ T6 @ U5 @ X6 ) ) ) ) ) ) ).

% normal_sub_rts_axioms_def
thf(fact_946_normal__sub__rts__axioms_Ointro,axiom,
    ! [NN: set_a,Resid: a > a > a] :
      ( ! [T3: a] :
          ( ( member_a @ T3 @ NN )
         => ( arr_a @ Resid @ T3 ) )
     => ( ! [A2: a] :
            ( ( ide_a @ Resid @ A2 )
           => ( member_a @ A2 @ NN ) )
       => ( ! [U4: a,T3: a] :
              ( ( member_a @ U4 @ NN )
             => ( ( coinitial_a @ Resid @ T3 @ U4 )
               => ( member_a @ ( Resid @ U4 @ T3 ) @ NN ) ) )
         => ( ! [U4: a,T3: a] :
                ( ( member_a @ U4 @ NN )
               => ( ( member_a @ ( Resid @ T3 @ U4 ) @ NN )
                 => ( member_a @ T3 @ NN ) ) )
           => ( ! [U4: a,T3: a] :
                  ( ( member_a @ U4 @ NN )
                 => ( ( seq_a @ Resid @ U4 @ T3 )
                   => ? [X_1: a] : ( composite_of_a @ Resid @ U4 @ T3 @ X_1 ) ) )
             => ( ! [U4: a,T3: a] :
                    ( ( member_a @ U4 @ NN )
                   => ( ( seq_a @ Resid @ T3 @ U4 )
                     => ? [X_1: a] : ( composite_of_a @ Resid @ T3 @ U4 @ X_1 ) ) )
               => ( normal7698203753654205830ioms_a @ Resid @ NN ) ) ) ) ) ) ) ).

% normal_sub_rts_axioms.intro
thf(fact_947_rotate1__hd__tl,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( rotate1_a @ Xs )
        = ( append_a @ ( tl_a @ Xs ) @ ( cons_a @ ( hd_a @ Xs ) @ nil_a ) ) ) ) ).

% rotate1_hd_tl
thf(fact_948_rotate1__is__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( rotate1_a @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% rotate1_is_Nil_conv
thf(fact_949_set__rotate1,axiom,
    ! [Xs: list_a] :
      ( ( set_a2 @ ( rotate1_a @ Xs ) )
      = ( set_a2 @ Xs ) ) ).

% set_rotate1
thf(fact_950_length__rotate1,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( rotate1_a @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_rotate1
thf(fact_951_rotate1_Osimps_I1_J,axiom,
    ( ( rotate1_a @ nil_a )
    = nil_a ) ).

% rotate1.simps(1)
thf(fact_952_rotate1_Osimps_I2_J,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( rotate1_a @ ( cons_a @ X2 @ Xs ) )
      = ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) ) ).

% rotate1.simps(2)
thf(fact_953_R_Oresiduation__axioms,axiom,
    residuation_a @ resid ).

% R.residuation_axioms
thf(fact_954_insert__subsetI,axiom,
    ! [X2: a,A3: set_a,X5: set_a] :
      ( ( member_a @ X2 @ A3 )
     => ( ( ord_less_eq_set_a @ X5 @ A3 )
       => ( ord_less_eq_set_a @ ( insert_a2 @ X2 @ X5 ) @ A3 ) ) ) ).

% insert_subsetI
thf(fact_955_subset__emptyI,axiom,
    ! [A3: set_a] :
      ( ! [X: a] :
          ~ ( member_a @ X @ A3 )
     => ( ord_less_eq_set_a @ A3 @ bot_bot_set_a ) ) ).

% subset_emptyI
thf(fact_956_residuation_Oaxioms_I1_J,axiom,
    ! [Resid: a > a > a] :
      ( ( residuation_a @ Resid )
     => ( partial_magma_a @ Resid ) ) ).

% residuation.axioms(1)
thf(fact_957_residuation_Ocon__sym,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( con_a @ Resid @ T @ U )
       => ( con_a @ Resid @ U @ T ) ) ) ).

% residuation.con_sym
thf(fact_958_residuation_Ocon__imp__arr__resid,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( ( Resid @ T @ U )
         != ( partial_null_a @ Resid ) )
       => ( ( Resid @ ( Resid @ T @ U ) @ ( Resid @ T @ U ) )
         != ( partial_null_a @ Resid ) ) ) ) ).

% residuation.con_imp_arr_resid
thf(fact_959_residuation_Ocon__sym__ax,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( ( Resid @ T @ U )
         != ( partial_null_a @ Resid ) )
       => ( ( Resid @ U @ T )
         != ( partial_null_a @ Resid ) ) ) ) ).

% residuation.con_sym_ax
thf(fact_960_residuation_Ocube__ax,axiom,
    ! [Resid: a > a > a,V: a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( ( Resid @ ( Resid @ V @ T ) @ ( Resid @ U @ T ) )
         != ( partial_null_a @ Resid ) )
       => ( ( Resid @ ( Resid @ V @ T ) @ ( Resid @ U @ T ) )
          = ( Resid @ ( Resid @ V @ U ) @ ( Resid @ T @ U ) ) ) ) ) ).

% residuation.cube_ax
thf(fact_961_residuation_Ocube,axiom,
    ! [Resid: a > a > a,V: a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( Resid @ ( Resid @ V @ T ) @ ( Resid @ U @ T ) )
        = ( Resid @ ( Resid @ V @ U ) @ ( Resid @ T @ U ) ) ) ) ).

% residuation.cube
thf(fact_962_residuation_Otrg__def,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( residuation_a @ Resid )
     => ( ( trg_a @ Resid @ T )
        = ( Resid @ T @ T ) ) ) ).

% residuation.trg_def
thf(fact_963_residuation_Oresid__arr__self,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( residuation_a @ Resid )
     => ( ( Resid @ T @ T )
        = ( trg_a @ Resid @ T ) ) ) ).

% residuation.resid_arr_self
thf(fact_964_residuation_Oide__def,axiom,
    ! [Resid: a > a > a,A: a] :
      ( ( residuation_a @ Resid )
     => ( ( ide_a @ Resid @ A )
        = ( ( con_a @ Resid @ A @ A )
          & ( ( Resid @ A @ A )
            = A ) ) ) ) ).

% residuation.ide_def
thf(fact_965_residuation_OideI,axiom,
    ! [Resid: a > a > a,A: a] :
      ( ( residuation_a @ Resid )
     => ( ( con_a @ Resid @ A @ A )
       => ( ( ( Resid @ A @ A )
            = A )
         => ( ide_a @ Resid @ A ) ) ) ) ).

% residuation.ideI
thf(fact_966_residuation_OideE,axiom,
    ! [Resid: a > a > a,A: a] :
      ( ( residuation_a @ Resid )
     => ( ( ide_a @ Resid @ A )
       => ~ ( ( con_a @ Resid @ A @ A )
           => ( ( Resid @ A @ A )
             != A ) ) ) ) ).

% residuation.ideE
thf(fact_967_residuation_Oide__implies__arr,axiom,
    ! [Resid: a > a > a,A: a] :
      ( ( residuation_a @ Resid )
     => ( ( ide_a @ Resid @ A )
       => ( arr_a @ Resid @ A ) ) ) ).

% residuation.ide_implies_arr
thf(fact_968_residuation_Oarr__resid__iff__con,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( arr_a @ Resid @ ( Resid @ T @ U ) )
        = ( con_a @ Resid @ T @ U ) ) ) ).

% residuation.arr_resid_iff_con
thf(fact_969_residuation_Oarr__resid,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( con_a @ Resid @ T @ U )
       => ( arr_a @ Resid @ ( Resid @ T @ U ) ) ) ) ).

% residuation.arr_resid
thf(fact_970_residuation_Oarr__def,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( residuation_a @ Resid )
     => ( ( arr_a @ Resid @ T )
        = ( con_a @ Resid @ T @ T ) ) ) ).

% residuation.arr_def
thf(fact_971_residuation_OarrI,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( residuation_a @ Resid )
     => ( ( con_a @ Resid @ T @ T )
       => ( arr_a @ Resid @ T ) ) ) ).

% residuation.arrI
thf(fact_972_residuation_OarrE,axiom,
    ! [Resid: a > a > a,T: a] :
      ( ( residuation_a @ Resid )
     => ( ( arr_a @ Resid @ T )
       => ( con_a @ Resid @ T @ T ) ) ) ).

% residuation.arrE
thf(fact_973_residuation_Ocon__implies__arr_I1_J,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( con_a @ Resid @ T @ U )
       => ( arr_a @ Resid @ T ) ) ) ).

% residuation.con_implies_arr(1)
thf(fact_974_residuation_Ocon__implies__arr_I2_J,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( con_a @ Resid @ T @ U )
       => ( arr_a @ Resid @ U ) ) ) ).

% residuation.con_implies_arr(2)
thf(fact_975_residuation_OconE,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( con_a @ Resid @ T @ U )
       => ( ( Resid @ T @ U )
         != ( partial_null_a @ Resid ) ) ) ) ).

% residuation.conE
thf(fact_976_residuation_OconI,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( ( Resid @ T @ U )
         != ( partial_null_a @ Resid ) )
       => ( con_a @ Resid @ T @ U ) ) ) ).

% residuation.conI
thf(fact_977_residuation_Ocon__def,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( residuation_a @ Resid )
     => ( ( con_a @ Resid @ T @ U )
        = ( ( Resid @ T @ U )
         != ( partial_null_a @ Resid ) ) ) ) ).

% residuation.con_def
thf(fact_978_residuation_Onot__arr__null,axiom,
    ! [Resid: a > a > a] :
      ( ( residuation_a @ Resid )
     => ~ ( arr_a @ Resid @ ( partial_null_a @ Resid ) ) ) ).

% residuation.not_arr_null
thf(fact_979_Resid_Opsimps_I6_J,axiom,
    ! [T: a,V: a,Va2: list_a,U: a,Vb: a,Vc: list_a] :
      ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) ) )
     => ( ( ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) )
             != ( partial_null_a @ resid ) )
            & ( ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ T @ U ) ) )
             != nil_a ) )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) )
            = ( cons_a @ ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) ) @ ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ T @ U ) ) ) ) ) )
        & ( ~ ( ( con_a @ resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) )
               != ( partial_null_a @ resid ) )
              & ( ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ T @ U ) ) )
               != nil_a ) )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) )
            = nil_a ) ) ) ) ).

% Resid.psimps(6)
thf(fact_980_Resid_Opsimps_I7_J,axiom,
    ! [T: a,Vb: a,Vc: list_a,U: a,V: a,Va2: list_a] :
      ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) ) )
     => ( ( ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
             != ( partial_null_a @ resid ) )
            & ( ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ T @ U ) ) )
             != nil_a ) )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
            = ( cons_a @ ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) @ ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ T @ U ) ) ) ) ) )
        & ( ~ ( ( con_a @ resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
               != ( partial_null_a @ resid ) )
              & ( ( paths_in_Resid_a @ resid @ ( paths_in_Residx1_a @ resid @ ( cons_a @ Vb @ Vc ) @ ( resid @ U @ T ) ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ T @ U ) ) )
               != nil_a ) )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
            = nil_a ) ) ) ) ).

% Resid.psimps(7)
thf(fact_981_product__lists_Osimps_I1_J,axiom,
    ( ( product_lists_a @ nil_list_a )
    = ( cons_list_a @ nil_a @ nil_list_a ) ) ).

% product_lists.simps(1)
thf(fact_982_Resid_Opsimps_I1_J,axiom,
    ! [Uu: list_a] :
      ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ resid ) @ ( produc6837034575241423639list_a @ nil_a @ Uu ) )
     => ( ( paths_in_Resid_a @ resid @ nil_a @ Uu )
        = nil_a ) ) ).

% Resid.psimps(1)
thf(fact_983_Resid_Opsimps_I2_J,axiom,
    ! [V: a,Va2: list_a] :
      ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ V @ Va2 ) @ nil_a ) )
     => ( ( paths_in_Resid_a @ resid @ ( cons_a @ V @ Va2 ) @ nil_a )
        = nil_a ) ) ).

% Resid.psimps(2)
thf(fact_984_Resid_Opsimps_I3_J,axiom,
    ! [T: a,U: a] :
      ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) ) )
     => ( ( ( con_a @ resid @ T @ U )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
            = ( cons_a @ ( resid @ T @ U ) @ nil_a ) ) )
        & ( ~ ( con_a @ resid @ T @ U )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
            = nil_a ) ) ) ) ).

% Resid.psimps(3)
thf(fact_985_Resid_Opsimps_I5_J,axiom,
    ! [T: a,V: a,Va2: list_a,U: a] :
      ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) ) )
     => ( ( ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) )
             != nil_a ) )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) )
            = ( cons_a @ ( resid @ T @ U ) @ ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) ) ) ) )
        & ( ~ ( ( con_a @ resid @ T @ U )
              & ( ( paths_in_Residx1_a @ resid @ ( cons_a @ V @ Va2 ) @ ( resid @ U @ T ) )
               != nil_a ) )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) )
            = nil_a ) ) ) ) ).

% Resid.psimps(5)
thf(fact_986_Resid_Opsimps_I4_J,axiom,
    ! [T: a,U: a,V: a,Va2: list_a] :
      ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) ) )
     => ( ( ( ( con_a @ resid @ T @ U )
            & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
             != ( partial_null_a @ resid ) ) )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
            = ( cons_a @ ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) @ nil_a ) ) )
        & ( ~ ( ( con_a @ resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ resid @ ( resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
               != ( partial_null_a @ resid ) ) )
         => ( ( paths_in_Resid_a @ resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
            = nil_a ) ) ) ) ).

% Resid.psimps(4)
thf(fact_987_shuffles_Ocases,axiom,
    ! [X2: produc9164743771328383783list_a] :
      ( ! [Ys2: list_a] :
          ( X2
         != ( produc6837034575241423639list_a @ nil_a @ Ys2 ) )
     => ( ! [Xs2: list_a] :
            ( X2
           != ( produc6837034575241423639list_a @ Xs2 @ nil_a ) )
       => ~ ! [X: a,Xs2: list_a,Y4: a,Ys2: list_a] :
              ( X2
             != ( produc6837034575241423639list_a @ ( cons_a @ X @ Xs2 ) @ ( cons_a @ Y4 @ Ys2 ) ) ) ) ) ).

% shuffles.cases
thf(fact_988_splice_Ocases,axiom,
    ! [X2: produc9164743771328383783list_a] :
      ( ! [Ys2: list_a] :
          ( X2
         != ( produc6837034575241423639list_a @ nil_a @ Ys2 ) )
     => ~ ! [X: a,Xs2: list_a,Ys2: list_a] :
            ( X2
           != ( produc6837034575241423639list_a @ ( cons_a @ X @ Xs2 ) @ Ys2 ) ) ) ).

% splice.cases
thf(fact_989_paths__in__rts_OResid_Opsimps_I1_J,axiom,
    ! [Resid: a > a > a,Uu: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ Resid ) @ ( produc6837034575241423639list_a @ nil_a @ Uu ) )
       => ( ( paths_in_Resid_a @ Resid @ nil_a @ Uu )
          = nil_a ) ) ) ).

% paths_in_rts.Resid.psimps(1)
thf(fact_990_in__set__product__lists__length,axiom,
    ! [Xs: list_a,Xss2: list_list_a] :
      ( ( member_list_a @ Xs @ ( set_list_a2 @ ( product_lists_a @ Xss2 ) ) )
     => ( ( size_size_list_a @ Xs )
        = ( size_s349497388124573686list_a @ Xss2 ) ) ) ).

% in_set_product_lists_length
thf(fact_991_paths__in__rts_OResid_Opsimps_I2_J,axiom,
    ! [Resid: a > a > a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ Resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ V @ Va2 ) @ nil_a ) )
       => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ V @ Va2 ) @ nil_a )
          = nil_a ) ) ) ).

% paths_in_rts.Resid.psimps(2)
thf(fact_992_paths__in__rts_OResid_Opsimps_I3_J,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ Resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) ) )
       => ( ( ( con_a @ Resid @ T @ U )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
              = ( cons_a @ ( Resid @ T @ U ) @ nil_a ) ) )
          & ( ~ ( con_a @ Resid @ T @ U )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ nil_a ) )
              = nil_a ) ) ) ) ) ).

% paths_in_rts.Resid.psimps(3)
thf(fact_993_paths__in__rts_OResidx1_Ocases,axiom,
    ! [Resid: a > a > a,X2: produc2579390645249093025st_a_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ! [U4: a] :
            ( X2
           != ( produc4781227316648555537st_a_a @ nil_a @ U4 ) )
       => ( ! [T3: a,U4: a] :
              ( X2
             != ( produc4781227316648555537st_a_a @ ( cons_a @ T3 @ nil_a ) @ U4 ) )
         => ~ ! [T3: a,V2: a,Va: list_a,U4: a] :
                ( X2
               != ( produc4781227316648555537st_a_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) @ U4 ) ) ) ) ) ).

% paths_in_rts.Residx1.cases
thf(fact_994_paths__in__rts_OResid1x_Ocases,axiom,
    ! [Resid: a > a > a,X2: produc8685980395799941037list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ! [T3: a] :
            ( X2
           != ( produc6670463072477821725list_a @ T3 @ nil_a ) )
       => ( ! [T3: a,U4: a] :
              ( X2
             != ( produc6670463072477821725list_a @ T3 @ ( cons_a @ U4 @ nil_a ) ) )
         => ~ ! [T3: a,U4: a,V2: a,Va: list_a] :
                ( X2
               != ( produc6670463072477821725list_a @ T3 @ ( cons_a @ U4 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ).

% paths_in_rts.Resid1x.cases
thf(fact_995_paths__in__rts_OResid_Opsimps_I5_J,axiom,
    ! [Resid: a > a > a,T: a,V: a,Va2: list_a,U: a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ Resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) ) )
       => ( ( ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
               != nil_a ) )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) )
              = ( cons_a @ ( Resid @ T @ U ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) ) ) )
          & ( ~ ( ( con_a @ Resid @ T @ U )
                & ( ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) )
                 != nil_a ) )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ nil_a ) )
              = nil_a ) ) ) ) ) ).

% paths_in_rts.Resid.psimps(5)
thf(fact_996_paths__in__rts_OResid_Opsimps_I4_J,axiom,
    ! [Resid: a > a > a,T: a,U: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ Resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) ) )
       => ( ( ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
               != ( partial_null_a @ Resid ) ) )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
              = ( cons_a @ ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) @ nil_a ) ) )
          & ( ~ ( ( con_a @ Resid @ T @ U )
                & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
                 != ( partial_null_a @ Resid ) ) )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ nil_a ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
              = nil_a ) ) ) ) ) ).

% paths_in_rts.Resid.psimps(4)
thf(fact_997_paths__in__rts_OResid_Opsimps_I7_J,axiom,
    ! [Resid: a > a > a,T: a,Vb: a,Vc: list_a,U: a,V: a,Va2: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ Resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) ) )
       => ( ( ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
               != ( partial_null_a @ Resid ) )
              & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ T @ U ) ) )
               != nil_a ) )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
              = ( cons_a @ ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) ) @ ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ T @ U ) ) ) ) ) )
          & ( ~ ( ( con_a @ Resid @ T @ U )
                & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ V @ Va2 ) )
                 != ( partial_null_a @ Resid ) )
                & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ T @ U ) ) )
                 != nil_a ) )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ Vb @ Vc ) ) @ ( cons_a @ U @ ( cons_a @ V @ Va2 ) ) )
              = nil_a ) ) ) ) ) ).

% paths_in_rts.Resid.psimps(7)
thf(fact_998_paths__in__rts_OResid_Opsimps_I6_J,axiom,
    ! [Resid: a > a > a,T: a,V: a,Va2: list_a,U: a,Vb: a,Vc: list_a] :
      ( ( paths_in_rts_a @ Resid )
     => ( ( accp_P7377042638478740784list_a @ ( paths_in_Resid_rel_a @ Resid ) @ ( produc6837034575241423639list_a @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) ) )
       => ( ( ( ( con_a @ Resid @ T @ U )
              & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) )
               != ( partial_null_a @ Resid ) )
              & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ T @ U ) ) )
               != nil_a ) )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) )
              = ( cons_a @ ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) ) @ ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ T @ U ) ) ) ) ) )
          & ( ~ ( ( con_a @ Resid @ T @ U )
                & ( ( paths_in_Resid1x_a @ Resid @ ( Resid @ T @ U ) @ ( cons_a @ Vb @ Vc ) )
                 != ( partial_null_a @ Resid ) )
                & ( ( paths_in_Resid_a @ Resid @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ V @ Va2 ) @ ( Resid @ U @ T ) ) @ ( paths_in_Residx1_a @ Resid @ ( cons_a @ Vb @ Vc ) @ ( Resid @ T @ U ) ) )
                 != nil_a ) )
           => ( ( paths_in_Resid_a @ Resid @ ( cons_a @ T @ ( cons_a @ V @ Va2 ) ) @ ( cons_a @ U @ ( cons_a @ Vb @ Vc ) ) )
              = nil_a ) ) ) ) ) ).

% paths_in_rts.Resid.psimps(6)
thf(fact_999_splice_Opinduct,axiom,
    ! [A0: list_a,A1: list_a,P: list_a > list_a > $o] :
      ( ( accp_P7377042638478740784list_a @ splice_rel_a @ ( produc6837034575241423639list_a @ A0 @ A1 ) )
     => ( ! [Ys2: list_a] :
            ( ( accp_P7377042638478740784list_a @ splice_rel_a @ ( produc6837034575241423639list_a @ nil_a @ Ys2 ) )
           => ( P @ nil_a @ Ys2 ) )
       => ( ! [X: a,Xs2: list_a,Ys2: list_a] :
              ( ( accp_P7377042638478740784list_a @ splice_rel_a @ ( produc6837034575241423639list_a @ ( cons_a @ X @ Xs2 ) @ Ys2 ) )
             => ( ( P @ Ys2 @ Xs2 )
               => ( P @ ( cons_a @ X @ Xs2 ) @ Ys2 ) ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% splice.pinduct
thf(fact_1000_shuffles_Opinduct,axiom,
    ! [A0: list_a,A1: list_a,P: list_a > list_a > $o] :
      ( ( accp_P7377042638478740784list_a @ shuffles_rel_a @ ( produc6837034575241423639list_a @ A0 @ A1 ) )
     => ( ! [Ys2: list_a] :
            ( ( accp_P7377042638478740784list_a @ shuffles_rel_a @ ( produc6837034575241423639list_a @ nil_a @ Ys2 ) )
           => ( P @ nil_a @ Ys2 ) )
       => ( ! [Xs2: list_a] :
              ( ( accp_P7377042638478740784list_a @ shuffles_rel_a @ ( produc6837034575241423639list_a @ Xs2 @ nil_a ) )
             => ( P @ Xs2 @ nil_a ) )
         => ( ! [X: a,Xs2: list_a,Y4: a,Ys2: list_a] :
                ( ( accp_P7377042638478740784list_a @ shuffles_rel_a @ ( produc6837034575241423639list_a @ ( cons_a @ X @ Xs2 ) @ ( cons_a @ Y4 @ Ys2 ) ) )
               => ( ( P @ Xs2 @ ( cons_a @ Y4 @ Ys2 ) )
                 => ( ( P @ ( cons_a @ X @ Xs2 ) @ Ys2 )
                   => ( P @ ( cons_a @ X @ Xs2 ) @ ( cons_a @ Y4 @ Ys2 ) ) ) ) )
           => ( P @ A0 @ A1 ) ) ) ) ) ).

% shuffles.pinduct
thf(fact_1001_Cons__in__lex,axiom,
    ! [X2: list_a,Xs: list_list_a,Y2: list_a,Ys: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( cons_list_a @ X2 @ Xs ) @ ( cons_list_a @ Y2 @ Ys ) ) @ ( lex_list_a @ R ) )
      = ( ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ R )
          & ( ( size_s349497388124573686list_a @ Xs )
            = ( size_s349497388124573686list_a @ Ys ) ) )
        | ( ( X2 = Y2 )
          & ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Ys ) @ ( lex_list_a @ R ) ) ) ) ) ).

% Cons_in_lex
thf(fact_1002_Cons__in__lex,axiom,
    ! [X2: a,Xs: list_a,Y2: a,Ys: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( cons_a @ X2 @ Xs ) @ ( cons_a @ Y2 @ Ys ) ) @ ( lex_a @ R ) )
      = ( ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Y2 ) @ R )
          & ( ( size_size_list_a @ Xs )
            = ( size_size_list_a @ Ys ) ) )
        | ( ( X2 = Y2 )
          & ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( lex_a @ R ) ) ) ) ) ).

% Cons_in_lex
thf(fact_1003_Residx1_Ocases,axiom,
    ! [X2: produc2579390645249093025st_a_a] :
      ( ! [U4: a] :
          ( X2
         != ( produc4781227316648555537st_a_a @ nil_a @ U4 ) )
     => ( ! [T3: a,U4: a] :
            ( X2
           != ( produc4781227316648555537st_a_a @ ( cons_a @ T3 @ nil_a ) @ U4 ) )
       => ~ ! [T3: a,V2: a,Va: list_a,U4: a] :
              ( X2
             != ( produc4781227316648555537st_a_a @ ( cons_a @ T3 @ ( cons_a @ V2 @ Va ) ) @ U4 ) ) ) ) ).

% Residx1.cases
thf(fact_1004_Resid1x_Ocases,axiom,
    ! [X2: produc8685980395799941037list_a] :
      ( ! [T3: a] :
          ( X2
         != ( produc6670463072477821725list_a @ T3 @ nil_a ) )
     => ( ! [T3: a,U4: a] :
            ( X2
           != ( produc6670463072477821725list_a @ T3 @ ( cons_a @ U4 @ nil_a ) ) )
       => ~ ! [T3: a,U4: a,V2: a,Va: list_a] :
              ( X2
             != ( produc6670463072477821725list_a @ T3 @ ( cons_a @ U4 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ).

% Resid1x.cases
thf(fact_1005_successively_Ocases,axiom,
    ! [X2: produc5032551385658279741list_a] :
      ( ! [P2: a > a > $o] :
          ( X2
         != ( produc8111569692950616493list_a @ P2 @ nil_a ) )
     => ( ! [P2: a > a > $o,X: a] :
            ( X2
           != ( produc8111569692950616493list_a @ P2 @ ( cons_a @ X @ nil_a ) ) )
       => ~ ! [P2: a > a > $o,X: a,Y4: a,Xs2: list_a] :
              ( X2
             != ( produc8111569692950616493list_a @ P2 @ ( cons_a @ X @ ( cons_a @ Y4 @ Xs2 ) ) ) ) ) ) ).

% successively.cases
thf(fact_1006_sorted__wrt_Ocases,axiom,
    ! [X2: produc5032551385658279741list_a] :
      ( ! [P2: a > a > $o] :
          ( X2
         != ( produc8111569692950616493list_a @ P2 @ nil_a ) )
     => ~ ! [P2: a > a > $o,X: a,Ys2: list_a] :
            ( X2
           != ( produc8111569692950616493list_a @ P2 @ ( cons_a @ X @ Ys2 ) ) ) ) ).

% sorted_wrt.cases
thf(fact_1007_Nil2__notin__lex,axiom,
    ! [Xs: list_a,R: set_Product_prod_a_a] :
      ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ nil_a ) @ ( lex_a @ R ) ) ).

% Nil2_notin_lex
thf(fact_1008_Nil__notin__lex,axiom,
    ! [Ys: list_a,R: set_Product_prod_a_a] :
      ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ nil_a @ Ys ) @ ( lex_a @ R ) ) ).

% Nil_notin_lex
thf(fact_1009_lex__append__leftI,axiom,
    ! [Ys: list_a,Zs: list_a,R: set_Product_prod_a_a,Xs: list_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Ys @ Zs ) @ ( lex_a @ R ) )
     => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ Xs @ Ys ) @ ( append_a @ Xs @ Zs ) ) @ ( lex_a @ R ) ) ) ).

% lex_append_leftI
thf(fact_1010_map__tailrec__rev_Ocases,axiom,
    ! [X2: produc1473018763691903991list_a] :
      ( ! [F4: a > a,Bs: list_a] :
          ( X2
         != ( produc8643929849434629545list_a @ F4 @ ( produc6837034575241423639list_a @ nil_a @ Bs ) ) )
     => ~ ! [F4: a > a,A2: a,As2: list_a,Bs: list_a] :
            ( X2
           != ( produc8643929849434629545list_a @ F4 @ ( produc6837034575241423639list_a @ ( cons_a @ A2 @ As2 ) @ Bs ) ) ) ) ).

% map_tailrec_rev.cases
thf(fact_1011_lex__append__left__iff,axiom,
    ! [R: set_Product_prod_a_a,Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ! [X: a] :
          ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ X ) @ R )
     => ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ Xs @ Ys ) @ ( append_a @ Xs @ Zs ) ) @ ( lex_a @ R ) )
        = ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Ys @ Zs ) @ ( lex_a @ R ) ) ) ) ).

% lex_append_left_iff
thf(fact_1012_lex__append__left__iff,axiom,
    ! [R: set_Pr4048851178543822343list_a,Xs: list_list_a,Ys: list_list_a,Zs: list_list_a] :
      ( ! [X: list_a] :
          ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X @ X ) @ R )
     => ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( append_list_a @ Xs @ Ys ) @ ( append_list_a @ Xs @ Zs ) ) @ ( lex_list_a @ R ) )
        = ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Ys @ Zs ) @ ( lex_list_a @ R ) ) ) ) ).

% lex_append_left_iff
thf(fact_1013_lex__append__leftD,axiom,
    ! [R: set_Product_prod_a_a,Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ! [X: a] :
          ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ X ) @ R )
     => ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ Xs @ Ys ) @ ( append_a @ Xs @ Zs ) ) @ ( lex_a @ R ) )
       => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Ys @ Zs ) @ ( lex_a @ R ) ) ) ) ).

% lex_append_leftD
thf(fact_1014_lex__append__leftD,axiom,
    ! [R: set_Pr4048851178543822343list_a,Xs: list_list_a,Ys: list_list_a,Zs: list_list_a] :
      ( ! [X: list_a] :
          ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X @ X ) @ R )
     => ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( append_list_a @ Xs @ Ys ) @ ( append_list_a @ Xs @ Zs ) ) @ ( lex_list_a @ R ) )
       => ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Ys @ Zs ) @ ( lex_list_a @ R ) ) ) ) ).

% lex_append_leftD
thf(fact_1015_lex__append__rightI,axiom,
    ! [Xs: list_a,Ys: list_a,R: set_Product_prod_a_a,Vs: list_a,Us2: list_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( lex_a @ R ) )
     => ( ( ( size_size_list_a @ Vs )
          = ( size_size_list_a @ Us2 ) )
       => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ Xs @ Us2 ) @ ( append_a @ Ys @ Vs ) ) @ ( lex_a @ R ) ) ) ) ).

% lex_append_rightI
thf(fact_1016_Resid1x_Opelims,axiom,
    ! [X2: a,Xa: list_a,Y2: a] :
      ( ( ( paths_in_Resid1x_a @ resid @ X2 @ Xa )
        = Y2 )
     => ( ( accp_P3213725926765619766list_a @ ( paths_6492648068886854876_rel_a @ resid ) @ ( produc6670463072477821725list_a @ X2 @ Xa ) )
       => ( ( ( Xa = nil_a )
           => ( ( Y2
                = ( partial_null_a @ resid ) )
             => ~ ( accp_P3213725926765619766list_a @ ( paths_6492648068886854876_rel_a @ resid ) @ ( produc6670463072477821725list_a @ X2 @ nil_a ) ) ) )
         => ( ! [U4: a] :
                ( ( Xa
                  = ( cons_a @ U4 @ nil_a ) )
               => ( ( Y2
                    = ( resid @ X2 @ U4 ) )
                 => ~ ( accp_P3213725926765619766list_a @ ( paths_6492648068886854876_rel_a @ resid ) @ ( produc6670463072477821725list_a @ X2 @ ( cons_a @ U4 @ nil_a ) ) ) ) )
           => ~ ! [U4: a,V2: a,Va: list_a] :
                  ( ( Xa
                    = ( cons_a @ U4 @ ( cons_a @ V2 @ Va ) ) )
                 => ( ( Y2
                      = ( paths_in_Resid1x_a @ resid @ ( resid @ X2 @ U4 ) @ ( cons_a @ V2 @ Va ) ) )
                   => ~ ( accp_P3213725926765619766list_a @ ( paths_6492648068886854876_rel_a @ resid ) @ ( produc6670463072477821725list_a @ X2 @ ( cons_a @ U4 @ ( cons_a @ V2 @ Va ) ) ) ) ) ) ) ) ) ) ).

% Resid1x.pelims
thf(fact_1017_splice_Opelims,axiom,
    ! [X2: list_a,Xa: list_a,Y2: list_a] :
      ( ( ( splice_a @ X2 @ Xa )
        = Y2 )
     => ( ( accp_P7377042638478740784list_a @ splice_rel_a @ ( produc6837034575241423639list_a @ X2 @ Xa ) )
       => ( ( ( X2 = nil_a )
           => ( ( Y2 = Xa )
             => ~ ( accp_P7377042638478740784list_a @ splice_rel_a @ ( produc6837034575241423639list_a @ nil_a @ Xa ) ) ) )
         => ~ ! [X: a,Xs2: list_a] :
                ( ( X2
                  = ( cons_a @ X @ Xs2 ) )
               => ( ( Y2
                    = ( cons_a @ X @ ( splice_a @ Xa @ Xs2 ) ) )
                 => ~ ( accp_P7377042638478740784list_a @ splice_rel_a @ ( produc6837034575241423639list_a @ ( cons_a @ X @ Xs2 ) @ Xa ) ) ) ) ) ) ) ).

% splice.pelims
thf(fact_1018_splice__Nil2,axiom,
    ! [Xs: list_a] :
      ( ( splice_a @ Xs @ nil_a )
      = Xs ) ).

% splice_Nil2
thf(fact_1019_split__Nil__iff,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( splice_a @ Xs @ Ys )
        = nil_a )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% split_Nil_iff
thf(fact_1020_length__splice,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( size_size_list_a @ ( splice_a @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) ) ) ).

% length_splice
thf(fact_1021_splice_Osimps_I2_J,axiom,
    ! [X2: a,Xs: list_a,Ys: list_a] :
      ( ( splice_a @ ( cons_a @ X2 @ Xs ) @ Ys )
      = ( cons_a @ X2 @ ( splice_a @ Ys @ Xs ) ) ) ).

% splice.simps(2)
thf(fact_1022_splice_Osimps_I1_J,axiom,
    ! [Ys: list_a] :
      ( ( splice_a @ nil_a @ Ys )
      = Ys ) ).

% splice.simps(1)
thf(fact_1023_splice_Oelims,axiom,
    ! [X2: list_a,Xa: list_a,Y2: list_a] :
      ( ( ( splice_a @ X2 @ Xa )
        = Y2 )
     => ( ( ( X2 = nil_a )
         => ( Y2 != Xa ) )
       => ~ ! [X: a,Xs2: list_a] :
              ( ( X2
                = ( cons_a @ X @ Xs2 ) )
             => ( Y2
               != ( cons_a @ X @ ( splice_a @ Xa @ Xs2 ) ) ) ) ) ) ).

% splice.elims
thf(fact_1024_splice_Opsimps_I2_J,axiom,
    ! [X2: a,Xs: list_a,Ys: list_a] :
      ( ( accp_P7377042638478740784list_a @ splice_rel_a @ ( produc6837034575241423639list_a @ ( cons_a @ X2 @ Xs ) @ Ys ) )
     => ( ( splice_a @ ( cons_a @ X2 @ Xs ) @ Ys )
        = ( cons_a @ X2 @ ( splice_a @ Ys @ Xs ) ) ) ) ).

% splice.psimps(2)
thf(fact_1025_splice_Opsimps_I1_J,axiom,
    ! [Ys: list_a] :
      ( ( accp_P7377042638478740784list_a @ splice_rel_a @ ( produc6837034575241423639list_a @ nil_a @ Ys ) )
     => ( ( splice_a @ nil_a @ Ys )
        = Ys ) ) ).

% splice.psimps(1)
thf(fact_1026_bind__simps_I2_J,axiom,
    ! [X2: a,Xs: list_a,F: a > list_a] :
      ( ( bind_a_a @ ( cons_a @ X2 @ Xs ) @ F )
      = ( append_a @ ( F @ X2 ) @ ( bind_a_a @ Xs @ F ) ) ) ).

% bind_simps(2)
thf(fact_1027_residuation__def,axiom,
    ( residuation_a
    = ( ^ [Resid2: a > a > a] :
          ( ( partial_magma_a @ Resid2 )
          & ( residuation_axioms_a @ Resid2 ) ) ) ) ).

% residuation_def
thf(fact_1028_bind__simps_I1_J,axiom,
    ! [F: a > list_a] :
      ( ( bind_a_a @ nil_a @ F )
      = nil_a ) ).

% bind_simps(1)
thf(fact_1029_residuation__axioms__def,axiom,
    ( residuation_axioms_a
    = ( ^ [Resid2: a > a > a] :
          ( ! [T6: a,U5: a] :
              ( ( ( Resid2 @ T6 @ U5 )
               != ( partial_null_a @ Resid2 ) )
             => ( ( Resid2 @ U5 @ T6 )
               != ( partial_null_a @ Resid2 ) ) )
          & ! [T6: a,U5: a] :
              ( ( ( Resid2 @ T6 @ U5 )
               != ( partial_null_a @ Resid2 ) )
             => ( ( Resid2 @ ( Resid2 @ T6 @ U5 ) @ ( Resid2 @ T6 @ U5 ) )
               != ( partial_null_a @ Resid2 ) ) )
          & ! [V4: a,T6: a,U5: a] :
              ( ( ( Resid2 @ ( Resid2 @ V4 @ T6 ) @ ( Resid2 @ U5 @ T6 ) )
               != ( partial_null_a @ Resid2 ) )
             => ( ( Resid2 @ ( Resid2 @ V4 @ T6 ) @ ( Resid2 @ U5 @ T6 ) )
                = ( Resid2 @ ( Resid2 @ V4 @ U5 ) @ ( Resid2 @ T6 @ U5 ) ) ) ) ) ) ) ).

% residuation_axioms_def
thf(fact_1030_residuation__axioms_Ointro,axiom,
    ! [Resid: a > a > a] :
      ( ! [T3: a,U4: a] :
          ( ( ( Resid @ T3 @ U4 )
           != ( partial_null_a @ Resid ) )
         => ( ( Resid @ U4 @ T3 )
           != ( partial_null_a @ Resid ) ) )
     => ( ! [T3: a,U4: a] :
            ( ( ( Resid @ T3 @ U4 )
             != ( partial_null_a @ Resid ) )
           => ( ( Resid @ ( Resid @ T3 @ U4 ) @ ( Resid @ T3 @ U4 ) )
             != ( partial_null_a @ Resid ) ) )
       => ( ! [V2: a,T3: a,U4: a] :
              ( ( ( Resid @ ( Resid @ V2 @ T3 ) @ ( Resid @ U4 @ T3 ) )
               != ( partial_null_a @ Resid ) )
             => ( ( Resid @ ( Resid @ V2 @ T3 ) @ ( Resid @ U4 @ T3 ) )
                = ( Resid @ ( Resid @ V2 @ U4 ) @ ( Resid @ T3 @ U4 ) ) ) )
         => ( residuation_axioms_a @ Resid ) ) ) ) ).

% residuation_axioms.intro
thf(fact_1031_residuation_Oaxioms_I2_J,axiom,
    ! [Resid: a > a > a] :
      ( ( residuation_a @ Resid )
     => ( residuation_axioms_a @ Resid ) ) ).

% residuation.axioms(2)
thf(fact_1032_residuation_Ointro,axiom,
    ! [Resid: a > a > a] :
      ( ( partial_magma_a @ Resid )
     => ( ( residuation_axioms_a @ Resid )
       => ( residuation_a @ Resid ) ) ) ).

% residuation.intro
thf(fact_1033_append__butlast__last__id,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( append_a @ ( butlast_a @ Xs ) @ ( cons_a @ ( last_a @ Xs ) @ nil_a ) )
        = Xs ) ) ).

% append_butlast_last_id
thf(fact_1034_rts__with__composites__axioms_Ointro,axiom,
    ! [Resid: a > a > a] :
      ( ! [T3: a,U4: a] :
          ( ( seq_a @ Resid @ T3 @ U4 )
         => ( composable_a @ Resid @ T3 @ U4 ) )
     => ( rts_wi2614412583573296275ioms_a @ Resid ) ) ).

% rts_with_composites_axioms.intro
thf(fact_1035_butlast__snoc,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( butlast_a @ ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) )
      = Xs ) ).

% butlast_snoc
thf(fact_1036_butlast_Osimps_I1_J,axiom,
    ( ( butlast_a @ nil_a )
    = nil_a ) ).

% butlast.simps(1)
thf(fact_1037_butlast__tl,axiom,
    ! [Xs: list_a] :
      ( ( butlast_a @ ( tl_a @ Xs ) )
      = ( tl_a @ ( butlast_a @ Xs ) ) ) ).

% butlast_tl
thf(fact_1038_in__set__butlastD,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ ( butlast_a @ Xs ) ) )
     => ( member_a @ X2 @ ( set_a2 @ Xs ) ) ) ).

% in_set_butlastD
thf(fact_1039_butlast_Osimps_I2_J,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( ( Xs = nil_a )
       => ( ( butlast_a @ ( cons_a @ X2 @ Xs ) )
          = nil_a ) )
      & ( ( Xs != nil_a )
       => ( ( butlast_a @ ( cons_a @ X2 @ Xs ) )
          = ( cons_a @ X2 @ ( butlast_a @ Xs ) ) ) ) ) ).

% butlast.simps(2)
thf(fact_1040_butlast__append,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( ( Ys = nil_a )
       => ( ( butlast_a @ ( append_a @ Xs @ Ys ) )
          = ( butlast_a @ Xs ) ) )
      & ( ( Ys != nil_a )
       => ( ( butlast_a @ ( append_a @ Xs @ Ys ) )
          = ( append_a @ Xs @ ( butlast_a @ Ys ) ) ) ) ) ).

% butlast_append
thf(fact_1041_in__set__butlast__appendI,axiom,
    ! [X2: a,Xs: list_a,Ys: list_a] :
      ( ( ( member_a @ X2 @ ( set_a2 @ ( butlast_a @ Xs ) ) )
        | ( member_a @ X2 @ ( set_a2 @ ( butlast_a @ Ys ) ) ) )
     => ( member_a @ X2 @ ( set_a2 @ ( butlast_a @ ( append_a @ Xs @ Ys ) ) ) ) ) ).

% in_set_butlast_appendI
thf(fact_1042_snoc__eq__iff__butlast,axiom,
    ! [Xs: list_a,X2: a,Ys: list_a] :
      ( ( ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) )
        = Ys )
      = ( ( Ys != nil_a )
        & ( ( butlast_a @ Ys )
          = Xs )
        & ( ( last_a @ Ys )
          = X2 ) ) ) ).

% snoc_eq_iff_butlast
thf(fact_1043_rts__with__composites__axioms__def,axiom,
    ( rts_wi2614412583573296275ioms_a
    = ( ^ [Resid2: a > a > a] :
        ! [T6: a,U5: a] :
          ( ( seq_a @ Resid2 @ T6 @ U5 )
         => ( composable_a @ Resid2 @ T6 @ U5 ) ) ) ) ).

% rts_with_composites_axioms_def
thf(fact_1044_subseqs_Osimps_I1_J,axiom,
    ( ( subseqs_a @ nil_a )
    = ( cons_list_a @ nil_a @ nil_list_a ) ) ).

% subseqs.simps(1)
thf(fact_1045_rts__with__joins__axioms__def,axiom,
    ( rts_wi560353115624263628ioms_a
    = ( ^ [Resid2: a > a > a] :
        ! [T6: a,U5: a] :
          ( ( con_a @ Resid2 @ T6 @ U5 )
         => ( joinable_a @ Resid2 @ T6 @ U5 ) ) ) ) ).

% rts_with_joins_axioms_def
thf(fact_1046_Cons__in__subseqsD,axiom,
    ! [Y2: a,Ys: list_a,Xs: list_a] :
      ( ( member_list_a @ ( cons_a @ Y2 @ Ys ) @ ( set_list_a2 @ ( subseqs_a @ Xs ) ) )
     => ( member_list_a @ Ys @ ( set_list_a2 @ ( subseqs_a @ Xs ) ) ) ) ).

% Cons_in_subseqsD
thf(fact_1047_rts__with__joins__axioms_Ointro,axiom,
    ! [Resid: a > a > a] :
      ( ! [T3: a,U4: a] :
          ( ( con_a @ Resid @ T3 @ U4 )
         => ( joinable_a @ Resid @ T3 @ U4 ) )
     => ( rts_wi560353115624263628ioms_a @ Resid ) ) ).

% rts_with_joins_axioms.intro
thf(fact_1048_snoc__listrel1__snoc__iff,axiom,
    ! [Xs: list_list_a,X2: list_a,Ys: list_list_a,Y2: list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( append_list_a @ Xs @ ( cons_list_a @ X2 @ nil_list_a ) ) @ ( append_list_a @ Ys @ ( cons_list_a @ Y2 @ nil_list_a ) ) ) @ ( listrel1_list_a @ R ) )
      = ( ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Ys ) @ ( listrel1_list_a @ R ) )
          & ( X2 = Y2 ) )
        | ( ( Xs = Ys )
          & ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ R ) ) ) ) ).

% snoc_listrel1_snoc_iff
thf(fact_1049_snoc__listrel1__snoc__iff,axiom,
    ! [Xs: list_a,X2: a,Ys: list_a,Y2: a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) @ ( append_a @ Ys @ ( cons_a @ Y2 @ nil_a ) ) ) @ ( listrel1_a @ R ) )
      = ( ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( listrel1_a @ R ) )
          & ( X2 = Y2 ) )
        | ( ( Xs = Ys )
          & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Y2 ) @ R ) ) ) ) ).

% snoc_listrel1_snoc_iff
thf(fact_1050_confluent__rts_Oconfluence,axiom,
    ! [Resid: a > a > a,T: a,U: a] :
      ( ( confluent_rts_a @ Resid )
     => ( ( coinitial_a @ Resid @ T @ U )
       => ( con_a @ Resid @ T @ U ) ) ) ).

% confluent_rts.confluence
thf(fact_1051_Cons__listrel1__Cons,axiom,
    ! [X2: list_a,Xs: list_list_a,Y2: list_a,Ys: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( cons_list_a @ X2 @ Xs ) @ ( cons_list_a @ Y2 @ Ys ) ) @ ( listrel1_list_a @ R ) )
      = ( ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ R )
          & ( Xs = Ys ) )
        | ( ( X2 = Y2 )
          & ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Ys ) @ ( listrel1_list_a @ R ) ) ) ) ) ).

% Cons_listrel1_Cons
thf(fact_1052_Cons__listrel1__Cons,axiom,
    ! [X2: a,Xs: list_a,Y2: a,Ys: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( cons_a @ X2 @ Xs ) @ ( cons_a @ Y2 @ Ys ) ) @ ( listrel1_a @ R ) )
      = ( ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Y2 ) @ R )
          & ( Xs = Ys ) )
        | ( ( X2 = Y2 )
          & ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( listrel1_a @ R ) ) ) ) ) ).

% Cons_listrel1_Cons
thf(fact_1053_not__Nil__listrel1,axiom,
    ! [Xs: list_a,R: set_Product_prod_a_a] :
      ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ nil_a @ Xs ) @ ( listrel1_a @ R ) ) ).

% not_Nil_listrel1
thf(fact_1054_not__listrel1__Nil,axiom,
    ! [Xs: list_a,R: set_Product_prod_a_a] :
      ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ nil_a ) @ ( listrel1_a @ R ) ) ).

% not_listrel1_Nil
thf(fact_1055_listrel1I2,axiom,
    ! [Xs: list_a,Ys: list_a,R: set_Product_prod_a_a,X2: a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( listrel1_a @ R ) )
     => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( cons_a @ X2 @ Xs ) @ ( cons_a @ X2 @ Ys ) ) @ ( listrel1_a @ R ) ) ) ).

% listrel1I2
thf(fact_1056_append__listrel1I,axiom,
    ! [Xs: list_a,Ys: list_a,R: set_Product_prod_a_a,Us2: list_a,Vs: list_a] :
      ( ( ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( listrel1_a @ R ) )
          & ( Us2 = Vs ) )
        | ( ( Xs = Ys )
          & ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Us2 @ Vs ) @ ( listrel1_a @ R ) ) ) )
     => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ Xs @ Us2 ) @ ( append_a @ Ys @ Vs ) ) @ ( listrel1_a @ R ) ) ) ).

% append_listrel1I
thf(fact_1057_listrel1__eq__len,axiom,
    ! [Xs: list_a,Ys: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( listrel1_a @ R ) )
     => ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) ) ) ).

% listrel1_eq_len
thf(fact_1058_Cons__listrel1E2,axiom,
    ! [Xs: list_list_a,Y2: list_a,Ys: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ ( cons_list_a @ Y2 @ Ys ) ) @ ( listrel1_list_a @ R ) )
     => ( ! [X: list_a] :
            ( ( Xs
              = ( cons_list_a @ X @ Ys ) )
           => ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X @ Y2 ) @ R ) )
       => ~ ! [Zs2: list_list_a] :
              ( ( Xs
                = ( cons_list_a @ Y2 @ Zs2 ) )
             => ~ ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Zs2 @ Ys ) @ ( listrel1_list_a @ R ) ) ) ) ) ).

% Cons_listrel1E2
thf(fact_1059_Cons__listrel1E2,axiom,
    ! [Xs: list_a,Y2: a,Ys: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ ( cons_a @ Y2 @ Ys ) ) @ ( listrel1_a @ R ) )
     => ( ! [X: a] :
            ( ( Xs
              = ( cons_a @ X @ Ys ) )
           => ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y2 ) @ R ) )
       => ~ ! [Zs2: list_a] :
              ( ( Xs
                = ( cons_a @ Y2 @ Zs2 ) )
             => ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Zs2 @ Ys ) @ ( listrel1_a @ R ) ) ) ) ) ).

% Cons_listrel1E2
thf(fact_1060_Cons__listrel1E1,axiom,
    ! [X2: list_a,Xs: list_list_a,Ys: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( cons_list_a @ X2 @ Xs ) @ Ys ) @ ( listrel1_list_a @ R ) )
     => ( ! [Y4: list_a] :
            ( ( Ys
              = ( cons_list_a @ Y4 @ Xs ) )
           => ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y4 ) @ R ) )
       => ~ ! [Zs2: list_list_a] :
              ( ( Ys
                = ( cons_list_a @ X2 @ Zs2 ) )
             => ~ ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Zs2 ) @ ( listrel1_list_a @ R ) ) ) ) ) ).

% Cons_listrel1E1
thf(fact_1061_Cons__listrel1E1,axiom,
    ! [X2: a,Xs: list_a,Ys: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( cons_a @ X2 @ Xs ) @ Ys ) @ ( listrel1_a @ R ) )
     => ( ! [Y4: a] :
            ( ( Ys
              = ( cons_a @ Y4 @ Xs ) )
           => ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Y4 ) @ R ) )
       => ~ ! [Zs2: list_a] :
              ( ( Ys
                = ( cons_a @ X2 @ Zs2 ) )
             => ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Zs2 ) @ ( listrel1_a @ R ) ) ) ) ) ).

% Cons_listrel1E1
thf(fact_1062_listrel1I1,axiom,
    ! [X2: a,Y2: a,R: set_Product_prod_a_a,Xs: list_a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Y2 ) @ R )
     => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( cons_a @ X2 @ Xs ) @ ( cons_a @ Y2 @ Xs ) ) @ ( listrel1_a @ R ) ) ) ).

% listrel1I1
thf(fact_1063_listrel1I1,axiom,
    ! [X2: list_a,Y2: list_a,R: set_Pr4048851178543822343list_a,Xs: list_list_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ R )
     => ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( cons_list_a @ X2 @ Xs ) @ ( cons_list_a @ Y2 @ Xs ) ) @ ( listrel1_list_a @ R ) ) ) ).

% listrel1I1
thf(fact_1064_listrel1I,axiom,
    ! [X2: a,Y2: a,R: set_Product_prod_a_a,Xs: list_a,Us2: list_a,Vs: list_a,Ys: list_a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Y2 ) @ R )
     => ( ( Xs
          = ( append_a @ Us2 @ ( cons_a @ X2 @ Vs ) ) )
       => ( ( Ys
            = ( append_a @ Us2 @ ( cons_a @ Y2 @ Vs ) ) )
         => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( listrel1_a @ R ) ) ) ) ) ).

% listrel1I
thf(fact_1065_listrel1I,axiom,
    ! [X2: list_a,Y2: list_a,R: set_Pr4048851178543822343list_a,Xs: list_list_a,Us2: list_list_a,Vs: list_list_a,Ys: list_list_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ R )
     => ( ( Xs
          = ( append_list_a @ Us2 @ ( cons_list_a @ X2 @ Vs ) ) )
       => ( ( Ys
            = ( append_list_a @ Us2 @ ( cons_list_a @ Y2 @ Vs ) ) )
         => ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Ys ) @ ( listrel1_list_a @ R ) ) ) ) ) ).

% listrel1I
thf(fact_1066_listrel1E,axiom,
    ! [Xs: list_list_a,Ys: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Ys ) @ ( listrel1_list_a @ R ) )
     => ~ ! [X: list_a,Y4: list_a] :
            ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X @ Y4 ) @ R )
           => ! [Us3: list_list_a,Vs2: list_list_a] :
                ( ( Xs
                  = ( append_list_a @ Us3 @ ( cons_list_a @ X @ Vs2 ) ) )
               => ( Ys
                 != ( append_list_a @ Us3 @ ( cons_list_a @ Y4 @ Vs2 ) ) ) ) ) ) ).

% listrel1E
thf(fact_1067_listrel1E,axiom,
    ! [Xs: list_a,Ys: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( listrel1_a @ R ) )
     => ~ ! [X: a,Y4: a] :
            ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y4 ) @ R )
           => ! [Us3: list_a,Vs2: list_a] :
                ( ( Xs
                  = ( append_a @ Us3 @ ( cons_a @ X @ Vs2 ) ) )
               => ( Ys
                 != ( append_a @ Us3 @ ( cons_a @ Y4 @ Vs2 ) ) ) ) ) ) ).

% listrel1E
thf(fact_1068_confluent__rts__axioms__def,axiom,
    ( conflu3014480972103220363ioms_a
    = ( ^ [Resid2: a > a > a] :
        ! [T6: a,U5: a] :
          ( ( coinitial_a @ Resid2 @ T6 @ U5 )
         => ( con_a @ Resid2 @ T6 @ U5 ) ) ) ) ).

% confluent_rts_axioms_def
thf(fact_1069_confluent__rts__axioms_Ointro,axiom,
    ! [Resid: a > a > a] :
      ( ! [T3: a,U4: a] :
          ( ( coinitial_a @ Resid @ T3 @ U4 )
         => ( con_a @ Resid @ T3 @ U4 ) )
     => ( conflu3014480972103220363ioms_a @ Resid ) ) ).

% confluent_rts_axioms.intro
thf(fact_1070_R_Oidentities__form__normal__sub__rts,axiom,
    normal_sub_rts_a @ resid @ ( collect_a @ ( ide_a @ resid ) ) ).

% R.identities_form_normal_sub_rts
thf(fact_1071_distinct__adj__append__iff,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( distinct_adj_a @ ( append_a @ Xs @ Ys ) )
      = ( ( distinct_adj_a @ Xs )
        & ( distinct_adj_a @ Ys )
        & ( ( Xs = nil_a )
          | ( Ys = nil_a )
          | ( ( last_a @ Xs )
           != ( hd_a @ Ys ) ) ) ) ) ).

% distinct_adj_append_iff
thf(fact_1072_distinct__adj__Cons__Cons,axiom,
    ! [X2: a,Y2: a,Xs: list_a] :
      ( ( distinct_adj_a @ ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs ) ) )
      = ( ( X2 != Y2 )
        & ( distinct_adj_a @ ( cons_a @ Y2 @ Xs ) ) ) ) ).

% distinct_adj_Cons_Cons
thf(fact_1073_normal__sub__rts_Ocomposite__closed__right,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ U @ NN )
       => ( ( seq_a @ Resid @ T @ U )
         => ? [X_12: a] : ( composite_of_a @ Resid @ T @ U @ X_12 ) ) ) ) ).

% normal_sub_rts.composite_closed_right
thf(fact_1074_normal__sub__rts_Ocomposite__closed__left,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ U @ NN )
       => ( ( seq_a @ Resid @ U @ T )
         => ? [X_12: a] : ( composite_of_a @ Resid @ U @ T @ X_12 ) ) ) ) ).

% normal_sub_rts.composite_closed_left
thf(fact_1075_normal__sub__rts_Ofactor__closed_I2_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,V: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( composite_of_a @ Resid @ T @ U @ V )
       => ( ( member_a @ V @ NN )
         => ( member_a @ U @ NN ) ) ) ) ).

% normal_sub_rts.factor_closed(2)
thf(fact_1076_normal__sub__rts_Ofactor__closed_I1_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,V: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( composite_of_a @ Resid @ T @ U @ V )
       => ( ( member_a @ V @ NN )
         => ( member_a @ T @ NN ) ) ) ) ).

% normal_sub_rts.factor_closed(1)
thf(fact_1077_normal__sub__rts_OCong__closure__props_I3_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ U ) @ NN )
          & ( member_a @ ( Resid @ U @ T ) @ NN ) )
       => ( normal_sub_Cong_a @ Resid @ NN @ T @ U ) ) ) ).

% normal_sub_rts.Cong_closure_props(3)
thf(fact_1078_normal__sub__rts_OCong__closure__props_I2_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,V: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ U )
       => ( ( normal_sub_Cong_a @ Resid @ NN @ U @ V )
         => ( normal_sub_Cong_a @ Resid @ NN @ T @ V ) ) ) ) ).

% normal_sub_rts.Cong_closure_props(2)
thf(fact_1079_normal__sub__rts_OCong__closure__props_I1_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ U )
       => ( normal_sub_Cong_a @ Resid @ NN @ U @ T ) ) ) ).

% normal_sub_rts.Cong_closure_props(1)
thf(fact_1080_normal__sub__rts_OCongE,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
       => ~ ! [U4: a] :
              ( ( member_a @ U4 @ NN )
             => ! [U7: a] :
                  ( ( member_a @ U7 @ NN )
                 => ~ ( ( member_a @ ( Resid @ ( Resid @ T @ U4 ) @ ( Resid @ T5 @ U7 ) ) @ NN )
                      & ( member_a @ ( Resid @ ( Resid @ T5 @ U7 ) @ ( Resid @ T @ U4 ) ) @ NN ) ) ) ) ) ) ).

% normal_sub_rts.CongE
thf(fact_1081_normal__sub__rts_OCongI,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,U3: a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ U @ NN )
       => ( ( member_a @ U3 @ NN )
         => ( ( ( member_a @ ( Resid @ ( Resid @ T @ U ) @ ( Resid @ T5 @ U3 ) ) @ NN )
              & ( member_a @ ( Resid @ ( Resid @ T5 @ U3 ) @ ( Resid @ T @ U ) ) @ NN ) )
           => ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 ) ) ) ) ) ).

% normal_sub_rts.CongI
thf(fact_1082_normal__sub__rts_OCong__def,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
        = ( ? [U5: a,U8: a] :
              ( ( member_a @ U5 @ NN )
              & ( member_a @ U8 @ NN )
              & ( member_a @ ( Resid @ ( Resid @ T @ U5 ) @ ( Resid @ T5 @ U8 ) ) @ NN )
              & ( member_a @ ( Resid @ ( Resid @ T5 @ U8 ) @ ( Resid @ T @ U5 ) ) @ NN ) ) ) ) ) ).

% normal_sub_rts.Cong_def
thf(fact_1083_normal__sub__rts_OCong__symmetric,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
       => ( normal_sub_Cong_a @ Resid @ NN @ T5 @ T ) ) ) ).

% normal_sub_rts.Cong_symmetric
thf(fact_1084_normal__sub__rts_OCong__transitive,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T8: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T8 )
       => ( ( normal_sub_Cong_a @ Resid @ NN @ T8 @ T5 )
         => ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 ) ) ) ) ).

% normal_sub_rts.Cong_transitive
thf(fact_1085_normal__sub__rts_OCong_092_060_094sub_0620__iff,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
        = ( ? [U5: a,U8: a,V4: a,V5: a] :
              ( ( member_a @ U5 @ NN )
              & ( member_a @ U8 @ NN )
              & ( member_a @ ( Resid @ V4 @ V5 ) @ NN )
              & ( member_a @ ( Resid @ V5 @ V4 ) @ NN )
              & ( composite_of_a @ Resid @ T @ U5 @ V4 )
              & ( composite_of_a @ Resid @ T5 @ U8 @ V5 ) ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_iff
thf(fact_1086_normal__sub__rts_Ocomposite__closed,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,V: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ T @ NN )
       => ( ( member_a @ U @ NN )
         => ( ( composite_of_a @ Resid @ T @ U @ V )
           => ( member_a @ V @ NN ) ) ) ) ) ).

% normal_sub_rts.composite_closed
thf(fact_1087_normal__sub__rts_Onormal__is__Cong__closed,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ T @ NN )
       => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
         => ( member_a @ T5 @ NN ) ) ) ) ).

% normal_sub_rts.normal_is_Cong_closed
thf(fact_1088_normal__sub__rts_Ocomposite__of__arr__normal,axiom,
    ! [Resid: a > a > a,NN: set_a,Arr: a > $o,T: a,U: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( Arr @ T )
       => ( ( member_a @ U @ NN )
         => ( ( composite_of_a @ Resid @ T @ U @ T5 )
           => ( ( member_a @ ( Resid @ T5 @ T ) @ NN )
              & ( member_a @ ( Resid @ T @ T5 ) @ NN ) ) ) ) ) ) ).

% normal_sub_rts.composite_of_arr_normal
thf(fact_1089_normal__sub__rts_OCong_092_060_094sub_0620__cancel__left,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,V: a,U3: a,V3: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( composite_of_a @ Resid @ T @ U @ V )
       => ( ( composite_of_a @ Resid @ T @ U3 @ V3 )
         => ( ( ( member_a @ ( Resid @ V @ V3 ) @ NN )
              & ( member_a @ ( Resid @ V3 @ V ) @ NN ) )
           => ( ( member_a @ ( Resid @ U @ U3 ) @ NN )
              & ( member_a @ ( Resid @ U3 @ U ) @ NN ) ) ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_cancel_left
thf(fact_1090_normal__sub__rts_OCong_092_060_094sub_0620__implies__Cong,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_implies_Cong
thf(fact_1091_normal__sub__rts_Oaxioms_I2_J,axiom,
    ! [Resid: a > a > a,NN: set_a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( normal7698203753654205830ioms_a @ Resid @ NN ) ) ).

% normal_sub_rts.axioms(2)
thf(fact_1092_normal__sub__rts_OResid__along__normal__preserves__reflects__con,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ U @ NN )
       => ( ( ( sources_a @ Resid @ T )
            = ( sources_a @ Resid @ U ) )
         => ( ( con_a @ Resid @ ( Resid @ T @ U ) @ ( Resid @ T5 @ U ) )
            = ( con_a @ Resid @ T @ T5 ) ) ) ) ) ).

% normal_sub_rts.Resid_along_normal_preserves_reflects_con
thf(fact_1093_normal__sub__rts_Odiamond__commutes__upto__Cong_092_060_094sub_0620,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,V: a,V3: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( con_a @ Resid @ T @ U )
       => ( ( composite_of_a @ Resid @ T @ ( Resid @ U @ T ) @ V )
         => ( ( composite_of_a @ Resid @ U @ ( Resid @ T @ U ) @ V3 )
           => ( ( member_a @ ( Resid @ V @ V3 ) @ NN )
              & ( member_a @ ( Resid @ V3 @ V ) @ NN ) ) ) ) ) ) ).

% normal_sub_rts.diamond_commutes_upto_Cong\<^sub>0
thf(fact_1094_normal__sub__rts_OCong__reflexive,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( arr_a @ Resid @ T )
       => ( normal_sub_Cong_a @ Resid @ NN @ T @ T ) ) ) ).

% normal_sub_rts.Cong_reflexive
thf(fact_1095_normal__sub__rts_OCong__imp__arr_I1_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
       => ( arr_a @ Resid @ T ) ) ) ).

% normal_sub_rts.Cong_imp_arr(1)
thf(fact_1096_normal__sub__rts_OCong__imp__arr_I2_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
       => ( arr_a @ Resid @ T5 ) ) ) ).

% normal_sub_rts.Cong_imp_arr(2)
thf(fact_1097_normal__sub__rts_OCong_092_060_094sub_0620__imp__coinitial,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( ( sources_a @ Resid @ T )
          = ( sources_a @ Resid @ T5 ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_imp_coinitial
thf(fact_1098_normal__sub__rts_OResid__along__normal__preserves__Cong_092_060_094sub_0620,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,U: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( ( member_a @ U @ NN )
         => ( ( ( sources_a @ Resid @ T )
              = ( sources_a @ Resid @ U ) )
           => ( ( member_a @ ( Resid @ ( Resid @ T @ U ) @ ( Resid @ T5 @ U ) ) @ NN )
              & ( member_a @ ( Resid @ ( Resid @ T5 @ U ) @ ( Resid @ T @ U ) ) @ NN ) ) ) ) ) ) ).

% normal_sub_rts.Resid_along_normal_preserves_Cong\<^sub>0
thf(fact_1099_normal__sub__rts_Oforward__stable,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ U @ NN )
       => ( ( coinitial_a @ Resid @ T @ U )
         => ( member_a @ ( Resid @ U @ T ) @ NN ) ) ) ) ).

% normal_sub_rts.forward_stable
thf(fact_1100_coherent__normal__sub__rts_Oaxioms_I1_J,axiom,
    ! [Resid: a > a > a,NN: set_a] :
      ( ( cohere6072184133013167079_rts_a @ Resid @ NN )
     => ( normal_sub_rts_a @ Resid @ NN ) ) ).

% coherent_normal_sub_rts.axioms(1)
thf(fact_1101_distinct__adj__ConsD,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( distinct_adj_a @ ( cons_a @ X2 @ Xs ) )
     => ( distinct_adj_a @ Xs ) ) ).

% distinct_adj_ConsD
thf(fact_1102_distinct__adj__Nil,axiom,
    distinct_adj_a @ nil_a ).

% distinct_adj_Nil
thf(fact_1103_distinct__adj__appendD1,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( distinct_adj_a @ ( append_a @ Xs @ Ys ) )
     => ( distinct_adj_a @ Xs ) ) ).

% distinct_adj_appendD1
thf(fact_1104_distinct__adj__appendD2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( distinct_adj_a @ ( append_a @ Xs @ Ys ) )
     => ( distinct_adj_a @ Ys ) ) ).

% distinct_adj_appendD2
thf(fact_1105_normal__sub__rts_Oide__closed,axiom,
    ! [Resid: a > a > a,NN: set_a,A: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ide_a @ Resid @ A )
       => ( member_a @ A @ NN ) ) ) ).

% normal_sub_rts.ide_closed
thf(fact_1106_normal__sub__rts_Oprfx__closed,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ U @ NN )
       => ( ( ide_a @ Resid @ ( Resid @ T @ U ) )
         => ( member_a @ T @ NN ) ) ) ) ).

% normal_sub_rts.prfx_closed
thf(fact_1107_normal__sub__rts_Obackward__stable,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ U @ NN )
       => ( ( member_a @ ( Resid @ T @ U ) @ NN )
         => ( member_a @ T @ NN ) ) ) ) ).

% normal_sub_rts.backward_stable
thf(fact_1108_normal__sub__rts_OCong_092_060_094sub_0620__symmetric,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( ( member_a @ ( Resid @ T5 @ T ) @ NN )
          & ( member_a @ ( Resid @ T @ T5 ) @ NN ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_symmetric
thf(fact_1109_normal__sub__rts_OCong_092_060_094sub_0620__transitive,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,T8: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( ( ( member_a @ ( Resid @ T5 @ T8 ) @ NN )
            & ( member_a @ ( Resid @ T8 @ T5 ) @ NN ) )
         => ( ( member_a @ ( Resid @ T @ T8 ) @ NN )
            & ( member_a @ ( Resid @ T8 @ T ) @ NN ) ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_transitive
thf(fact_1110_normal__sub__rts_OResid__along__normal__reflects__Cong_092_060_094sub_0620,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ ( Resid @ T @ U ) @ ( Resid @ T5 @ U ) ) @ NN )
          & ( member_a @ ( Resid @ ( Resid @ T5 @ U ) @ ( Resid @ T @ U ) ) @ NN ) )
       => ( ( member_a @ U @ NN )
         => ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
            & ( member_a @ ( Resid @ T5 @ T ) @ NN ) ) ) ) ) ).

% normal_sub_rts.Resid_along_normal_reflects_Cong\<^sub>0
thf(fact_1111_normal__sub__rts_Oelements__are__arr,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ T @ NN )
       => ( arr_a @ Resid @ T ) ) ) ).

% normal_sub_rts.elements_are_arr
thf(fact_1112_normal__sub__rts_OCong_092_060_094sub_0620__reflexive,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( arr_a @ Resid @ T )
       => ( ( member_a @ ( Resid @ T @ T ) @ NN )
          & ( member_a @ ( Resid @ T @ T ) @ NN ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_reflexive
thf(fact_1113_normal__sub__rts_OCong_092_060_094sub_0620__subst__left_I2_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,U: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( ( con_a @ Resid @ T @ U )
         => ( ( member_a @ ( Resid @ ( Resid @ T @ U ) @ ( Resid @ T5 @ U ) ) @ NN )
            & ( member_a @ ( Resid @ ( Resid @ T5 @ U ) @ ( Resid @ T @ U ) ) @ NN ) ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_subst_left(2)
thf(fact_1114_normal__sub__rts_OCong_092_060_094sub_0620__subst__left_I1_J,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,U: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( ( con_a @ Resid @ T @ U )
         => ( con_a @ Resid @ T5 @ U ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_subst_left(1)
thf(fact_1115_normal__sub__rts_OCong_092_060_094sub_0620__subst__right_I2_J,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,U3: a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ U @ U3 ) @ NN )
          & ( member_a @ ( Resid @ U3 @ U ) @ NN ) )
       => ( ( con_a @ Resid @ T @ U )
         => ( ( member_a @ ( Resid @ ( Resid @ ( Resid @ T @ U ) @ ( Resid @ U3 @ U ) ) @ ( Resid @ ( Resid @ T @ U3 ) @ ( Resid @ U @ U3 ) ) ) @ NN )
            & ( member_a @ ( Resid @ ( Resid @ ( Resid @ T @ U3 ) @ ( Resid @ U @ U3 ) ) @ ( Resid @ ( Resid @ T @ U ) @ ( Resid @ U3 @ U ) ) ) @ NN ) ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_subst_right(2)
thf(fact_1116_normal__sub__rts_OCong_092_060_094sub_0620__subst__right_I1_J,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,U3: a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ U @ U3 ) @ NN )
          & ( member_a @ ( Resid @ U3 @ U ) @ NN ) )
       => ( ( con_a @ Resid @ T @ U )
         => ( con_a @ Resid @ T @ U3 ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_subst_right(1)
thf(fact_1117_normal__sub__rts_OCong_092_060_094sub_0620__imp__con,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( con_a @ Resid @ T @ T5 ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_imp_con
thf(fact_1118_normal__sub__rts_OCong_092_060_094sub_0620__subst__Con,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,U: a,U3: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( ( member_a @ ( Resid @ T @ T5 ) @ NN )
          & ( member_a @ ( Resid @ T5 @ T ) @ NN ) )
       => ( ( ( member_a @ ( Resid @ U @ U3 ) @ NN )
            & ( member_a @ ( Resid @ U3 @ U ) @ NN ) )
         => ( ( con_a @ Resid @ T @ U )
            = ( con_a @ Resid @ T5 @ U3 ) ) ) ) ) ).

% normal_sub_rts.Cong\<^sub>0_subst_Con
thf(fact_1119_normal__sub__rts_Oresid__along__elem__preserves__con,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,U: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( con_a @ Resid @ T @ T5 )
       => ( ( coinitial_a @ Resid @ T @ U )
         => ( ( member_a @ U @ NN )
           => ( con_a @ Resid @ ( Resid @ T @ U ) @ ( Resid @ T5 @ U ) ) ) ) ) ) ).

% normal_sub_rts.resid_along_elem_preserves_con
thf(fact_1120_normal__sub__rts_Oin__targets__respects__Cong,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,B: a,B2: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
       => ( ( member_a @ B @ ( targets_a @ Resid @ T ) )
         => ( ( member_a @ B2 @ ( targets_a @ Resid @ T5 ) )
           => ( normal_sub_Cong_a @ Resid @ NN @ B @ B2 ) ) ) ) ) ).

% normal_sub_rts.in_targets_respects_Cong
thf(fact_1121_normal__sub__rts_Otargets__are__Cong,axiom,
    ! [Resid: a > a > a,NN: set_a,B: a,T: a,B2: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ B @ ( targets_a @ Resid @ T ) )
       => ( ( member_a @ B2 @ ( targets_a @ Resid @ T ) )
         => ( normal_sub_Cong_a @ Resid @ NN @ B @ B2 ) ) ) ) ).

% normal_sub_rts.targets_are_Cong
thf(fact_1122_normal__sub__rts_Oin__sources__respects__Cong,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,T5: a,A: a,A4: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( normal_sub_Cong_a @ Resid @ NN @ T @ T5 )
       => ( ( member_a @ A @ ( sources_a @ Resid @ T ) )
         => ( ( member_a @ A4 @ ( sources_a @ Resid @ T5 ) )
           => ( normal_sub_Cong_a @ Resid @ NN @ A @ A4 ) ) ) ) ) ).

% normal_sub_rts.in_sources_respects_Cong
thf(fact_1123_normal__sub__rts_Osources__are__Cong,axiom,
    ! [Resid: a > a > a,NN: set_a,A: a,T: a,A4: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ A @ ( sources_a @ Resid @ T ) )
       => ( ( member_a @ A4 @ ( sources_a @ Resid @ T ) )
         => ( normal_sub_Cong_a @ Resid @ NN @ A @ A4 ) ) ) ) ).

% normal_sub_rts.sources_are_Cong
thf(fact_1124_normal__sub__rts_OCong__closure__props_I4_J,axiom,
    ! [Resid: a > a > a,NN: set_a,U: a,T: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( member_a @ U @ NN )
       => ( ( ( sources_a @ Resid @ T )
            = ( sources_a @ Resid @ U ) )
         => ( normal_sub_Cong_a @ Resid @ NN @ T @ ( Resid @ T @ U ) ) ) ) ) ).

% normal_sub_rts.Cong_closure_props(4)
thf(fact_1125_distinct__adj__singleton,axiom,
    ! [X2: a] : ( distinct_adj_a @ ( cons_a @ X2 @ nil_a ) ) ).

% distinct_adj_singleton
thf(fact_1126_coherent__normal__sub__rts_Ointro,axiom,
    ! [Resid: a > a > a,NN: set_a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( cohere4894532172567702276ioms_a @ Resid @ NN )
       => ( cohere6072184133013167079_rts_a @ Resid @ NN ) ) ) ).

% coherent_normal_sub_rts.intro
thf(fact_1127_coherent__normal__sub__rts__def,axiom,
    ( cohere6072184133013167079_rts_a
    = ( ^ [Resid2: a > a > a,NN2: set_a] :
          ( ( normal_sub_rts_a @ Resid2 @ NN2 )
          & ( cohere4894532172567702276ioms_a @ Resid2 @ NN2 ) ) ) ) ).

% coherent_normal_sub_rts_def
thf(fact_1128_normal__sub__rts_Ocomposite__of__normal__arr,axiom,
    ! [Resid: a > a > a,NN: set_a,T: a,U: a,T5: a] :
      ( ( normal_sub_rts_a @ Resid @ NN )
     => ( ( arr_a @ Resid @ T )
       => ( ( member_a @ U @ NN )
         => ( ( composite_of_a @ Resid @ U @ T @ T5 )
           => ( normal_sub_Cong_a @ Resid @ NN @ T5 @ T ) ) ) ) ) ).

% normal_sub_rts.composite_of_normal_arr
thf(fact_1129_distinct__adj__Cons,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( distinct_adj_a @ ( cons_a @ X2 @ Xs ) )
      = ( ( Xs = nil_a )
        | ( ( X2
           != ( hd_a @ Xs ) )
          & ( distinct_adj_a @ Xs ) ) ) ) ).

% distinct_adj_Cons
thf(fact_1130_gen__length__def,axiom,
    ( gen_length_a
    = ( ^ [N2: nat,Xs5: list_a] : ( plus_plus_nat @ N2 @ ( size_size_list_a @ Xs5 ) ) ) ) ).

% gen_length_def
thf(fact_1131_shuffles_Opsimps_I2_J,axiom,
    ! [Xs: list_a] :
      ( ( accp_P7377042638478740784list_a @ shuffles_rel_a @ ( produc6837034575241423639list_a @ Xs @ nil_a ) )
     => ( ( shuffles_a @ Xs @ nil_a )
        = ( insert_list_a @ Xs @ bot_bot_set_list_a ) ) ) ).

% shuffles.psimps(2)
thf(fact_1132_Nil__in__shuffles,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( member_list_a @ nil_a @ ( shuffles_a @ Xs @ Ys ) )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% Nil_in_shuffles
thf(fact_1133_shufflesE,axiom,
    ! [Zs: list_a,Xs: list_a,Ys: list_a] :
      ( ( member_list_a @ Zs @ ( shuffles_a @ Xs @ Ys ) )
     => ( ( ( Zs = Xs )
         => ( Ys != nil_a ) )
       => ( ( ( Zs = Ys )
           => ( Xs != nil_a ) )
         => ( ! [X: a,Xs4: list_a] :
                ( ( Xs
                  = ( cons_a @ X @ Xs4 ) )
               => ! [Z4: a,Zs4: list_a] :
                    ( ( Zs
                      = ( cons_a @ Z4 @ Zs4 ) )
                   => ( ( X = Z4 )
                     => ~ ( member_list_a @ Zs4 @ ( shuffles_a @ Xs4 @ Ys ) ) ) ) )
           => ~ ! [Y4: a,Ys6: list_a] :
                  ( ( Ys
                    = ( cons_a @ Y4 @ Ys6 ) )
                 => ! [Z4: a,Zs4: list_a] :
                      ( ( Zs
                        = ( cons_a @ Z4 @ Zs4 ) )
                     => ( ( Y4 = Z4 )
                       => ~ ( member_list_a @ Zs4 @ ( shuffles_a @ Xs @ Ys6 ) ) ) ) ) ) ) ) ) ).

% shufflesE
thf(fact_1134_length__shuffles,axiom,
    ! [Zs: list_a,Xs: list_a,Ys: list_a] :
      ( ( member_list_a @ Zs @ ( shuffles_a @ Xs @ Ys ) )
     => ( ( size_size_list_a @ Zs )
        = ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) ) ) ) ).

% length_shuffles
thf(fact_1135_Nil__in__shufflesI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs = nil_a )
     => ( ( Ys = nil_a )
       => ( member_list_a @ nil_a @ ( shuffles_a @ Xs @ Ys ) ) ) ) ).

% Nil_in_shufflesI
thf(fact_1136_Cons__in__shuffles__leftI,axiom,
    ! [Zs: list_a,Xs: list_a,Ys: list_a,Z3: a] :
      ( ( member_list_a @ Zs @ ( shuffles_a @ Xs @ Ys ) )
     => ( member_list_a @ ( cons_a @ Z3 @ Zs ) @ ( shuffles_a @ ( cons_a @ Z3 @ Xs ) @ Ys ) ) ) ).

% Cons_in_shuffles_leftI
thf(fact_1137_Cons__in__shuffles__rightI,axiom,
    ! [Zs: list_a,Xs: list_a,Ys: list_a,Z3: a] :
      ( ( member_list_a @ Zs @ ( shuffles_a @ Xs @ Ys ) )
     => ( member_list_a @ ( cons_a @ Z3 @ Zs ) @ ( shuffles_a @ Xs @ ( cons_a @ Z3 @ Ys ) ) ) ) ).

% Cons_in_shuffles_rightI
thf(fact_1138_shuffles_Osimps_I2_J,axiom,
    ! [Xs: list_a] :
      ( ( shuffles_a @ Xs @ nil_a )
      = ( insert_list_a @ Xs @ bot_bot_set_list_a ) ) ).

% shuffles.simps(2)
thf(fact_1139_shuffles_Osimps_I1_J,axiom,
    ! [Ys: list_a] :
      ( ( shuffles_a @ nil_a @ Ys )
      = ( insert_list_a @ Ys @ bot_bot_set_list_a ) ) ).

% shuffles.simps(1)
thf(fact_1140_gen__length__code_I1_J,axiom,
    ! [N: nat] :
      ( ( gen_length_a @ N @ nil_a )
      = N ) ).

% gen_length_code(1)
thf(fact_1141_Cons__in__shuffles__iff,axiom,
    ! [Z3: a,Zs: list_a,Xs: list_a,Ys: list_a] :
      ( ( member_list_a @ ( cons_a @ Z3 @ Zs ) @ ( shuffles_a @ Xs @ Ys ) )
      = ( ( ( Xs != nil_a )
          & ( ( hd_a @ Xs )
            = Z3 )
          & ( member_list_a @ Zs @ ( shuffles_a @ ( tl_a @ Xs ) @ Ys ) ) )
        | ( ( Ys != nil_a )
          & ( ( hd_a @ Ys )
            = Z3 )
          & ( member_list_a @ Zs @ ( shuffles_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ) ).

% Cons_in_shuffles_iff
thf(fact_1142_shuffles_Opsimps_I1_J,axiom,
    ! [Ys: list_a] :
      ( ( accp_P7377042638478740784list_a @ shuffles_rel_a @ ( produc6837034575241423639list_a @ nil_a @ Ys ) )
     => ( ( shuffles_a @ nil_a @ Ys )
        = ( insert_list_a @ Ys @ bot_bot_set_list_a ) ) ) ).

% shuffles.psimps(1)
thf(fact_1143_listset_Osimps_I1_J,axiom,
    ( ( listset_a @ nil_set_a )
    = ( insert_list_a @ nil_a @ bot_bot_set_list_a ) ) ).

% listset.simps(1)
thf(fact_1144_lists__empty,axiom,
    ( ( lists_a @ bot_bot_set_a )
    = ( insert_list_a @ nil_a @ bot_bot_set_list_a ) ) ).

% lists_empty
thf(fact_1145_Cons__in__lists__iff,axiom,
    ! [X2: a,Xs: list_a,A3: set_a] :
      ( ( member_list_a @ ( cons_a @ X2 @ Xs ) @ ( lists_a @ A3 ) )
      = ( ( member_a @ X2 @ A3 )
        & ( member_list_a @ Xs @ ( lists_a @ A3 ) ) ) ) ).

% Cons_in_lists_iff
thf(fact_1146_in__listsI,axiom,
    ! [Xs: list_a,A3: set_a] :
      ( ! [X: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
         => ( member_a @ X @ A3 ) )
     => ( member_list_a @ Xs @ ( lists_a @ A3 ) ) ) ).

% in_listsI
thf(fact_1147_lists__Int__eq,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( lists_a @ ( inf_inf_set_a @ A3 @ B3 ) )
      = ( inf_inf_set_list_a @ ( lists_a @ A3 ) @ ( lists_a @ B3 ) ) ) ).

% lists_Int_eq
thf(fact_1148_append__in__lists__conv,axiom,
    ! [Xs: list_a,Ys: list_a,A3: set_a] :
      ( ( member_list_a @ ( append_a @ Xs @ Ys ) @ ( lists_a @ A3 ) )
      = ( ( member_list_a @ Xs @ ( lists_a @ A3 ) )
        & ( member_list_a @ Ys @ ( lists_a @ A3 ) ) ) ) ).

% append_in_lists_conv
thf(fact_1149_lists__mono,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ord_le8861187494160871172list_a @ ( lists_a @ A3 ) @ ( lists_a @ B3 ) ) ) ).

% lists_mono
thf(fact_1150_lists_Ocases,axiom,
    ! [A: list_a,A3: set_a] :
      ( ( member_list_a @ A @ ( lists_a @ A3 ) )
     => ( ( A != nil_a )
       => ~ ! [A2: a,L2: list_a] :
              ( ( A
                = ( cons_a @ A2 @ L2 ) )
             => ( ( member_a @ A2 @ A3 )
               => ~ ( member_list_a @ L2 @ ( lists_a @ A3 ) ) ) ) ) ) ).

% lists.cases
thf(fact_1151_lists_Osimps,axiom,
    ! [A: list_a,A3: set_a] :
      ( ( member_list_a @ A @ ( lists_a @ A3 ) )
      = ( ( A = nil_a )
        | ? [A6: a,L3: list_a] :
            ( ( A
              = ( cons_a @ A6 @ L3 ) )
            & ( member_a @ A6 @ A3 )
            & ( member_list_a @ L3 @ ( lists_a @ A3 ) ) ) ) ) ).

% lists.simps
thf(fact_1152_listsE,axiom,
    ! [X2: a,L: list_a,A3: set_a] :
      ( ( member_list_a @ ( cons_a @ X2 @ L ) @ ( lists_a @ A3 ) )
     => ~ ( ( member_a @ X2 @ A3 )
         => ~ ( member_list_a @ L @ ( lists_a @ A3 ) ) ) ) ).

% listsE
thf(fact_1153_lists_OCons,axiom,
    ! [A: a,A3: set_a,L: list_a] :
      ( ( member_a @ A @ A3 )
     => ( ( member_list_a @ L @ ( lists_a @ A3 ) )
       => ( member_list_a @ ( cons_a @ A @ L ) @ ( lists_a @ A3 ) ) ) ) ).

% lists.Cons
thf(fact_1154_lists_ONil,axiom,
    ! [A3: set_a] : ( member_list_a @ nil_a @ ( lists_a @ A3 ) ) ).

% lists.Nil
thf(fact_1155_lists__IntI,axiom,
    ! [L: list_a,A3: set_a,B3: set_a] :
      ( ( member_list_a @ L @ ( lists_a @ A3 ) )
     => ( ( member_list_a @ L @ ( lists_a @ B3 ) )
       => ( member_list_a @ L @ ( lists_a @ ( inf_inf_set_a @ A3 @ B3 ) ) ) ) ) ).

% lists_IntI
thf(fact_1156_in__lists__conv__set,axiom,
    ! [Xs: list_a,A3: set_a] :
      ( ( member_list_a @ Xs @ ( lists_a @ A3 ) )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ ( set_a2 @ Xs ) )
           => ( member_a @ X3 @ A3 ) ) ) ) ).

% in_lists_conv_set
thf(fact_1157_in__listsD,axiom,
    ! [Xs: list_a,A3: set_a] :
      ( ( member_list_a @ Xs @ ( lists_a @ A3 ) )
     => ! [X4: a] :
          ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
         => ( member_a @ X4 @ A3 ) ) ) ).

% in_listsD
thf(fact_1158_subset__code_I3_J,axiom,
    ~ ( ord_less_eq_set_a @ ( coset_a @ nil_a ) @ ( set_a2 @ nil_a ) ) ).

% subset_code(3)
thf(fact_1159_set__insert,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( set_a2 @ ( insert_a @ X2 @ Xs ) )
      = ( insert_a2 @ X2 @ ( set_a2 @ Xs ) ) ) ).

% set_insert
thf(fact_1160_in__set__insert,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
     => ( ( insert_a @ X2 @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_1161_insert__Nil,axiom,
    ! [X2: a] :
      ( ( insert_a @ X2 @ nil_a )
      = ( cons_a @ X2 @ nil_a ) ) ).

% insert_Nil
thf(fact_1162_not__in__set__insert,axiom,
    ! [X2: a,Xs: list_a] :
      ( ~ ( member_a @ X2 @ ( set_a2 @ Xs ) )
     => ( ( insert_a @ X2 @ Xs )
        = ( cons_a @ X2 @ Xs ) ) ) ).

% not_in_set_insert
thf(fact_1163_subset__code_I2_J,axiom,
    ! [A3: set_a,Ys: list_a] :
      ( ( ord_less_eq_set_a @ A3 @ ( coset_a @ Ys ) )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ ( set_a2 @ Ys ) )
           => ~ ( member_a @ X3 @ A3 ) ) ) ) ).

% subset_code(2)
thf(fact_1164_List_Oinsert__def,axiom,
    ( insert_a
    = ( ^ [X3: a,Xs5: list_a] : ( if_list_a @ ( member_a @ X3 @ ( set_a2 @ Xs5 ) ) @ Xs5 @ ( cons_a @ X3 @ Xs5 ) ) ) ) ).

% List.insert_def
thf(fact_1165_maps__simps_I1_J,axiom,
    ! [F: a > list_a,X2: a,Xs: list_a] :
      ( ( maps_a_a @ F @ ( cons_a @ X2 @ Xs ) )
      = ( append_a @ ( F @ X2 ) @ ( maps_a_a @ F @ Xs ) ) ) ).

% maps_simps(1)
thf(fact_1166_member__remove,axiom,
    ! [X2: a,Y2: a,A3: set_a] :
      ( ( member_a @ X2 @ ( remove_a @ Y2 @ A3 ) )
      = ( ( member_a @ X2 @ A3 )
        & ( X2 != Y2 ) ) ) ).

% member_remove
thf(fact_1167_maps__simps_I2_J,axiom,
    ! [F: a > list_a] :
      ( ( maps_a_a @ F @ nil_a )
      = nil_a ) ).

% maps_simps(2)
thf(fact_1168_simulation__to__weakly__extensional__rts_Opreserves__trg,axiom,
    ! [A3: a > a > a,B3: a > a > a,F3: a > a,B: a,T: a] :
      ( ( simula2709571904647515914ts_a_a @ A3 @ B3 @ F3 )
     => ( ( member_a @ B @ ( targets_a @ A3 @ T ) )
       => ( ( trg_a @ B3 @ ( F3 @ T ) )
          = ( F3 @ B ) ) ) ) ).

% simulation_to_weakly_extensional_rts.preserves_trg
thf(fact_1169_Set_Ois__empty__def,axiom,
    ( is_empty_a
    = ( ^ [A5: set_a] : ( A5 = bot_bot_set_a ) ) ) ).

% Set.is_empty_def
thf(fact_1170_is__empty__set,axiom,
    ! [Xs: list_a] :
      ( ( is_empty_a @ ( set_a2 @ Xs ) )
      = ( null_a @ Xs ) ) ).

% is_empty_set
thf(fact_1171_lexord__sufI,axiom,
    ! [U: list_a,W: list_a,R: set_Product_prod_a_a,V: list_a,Z3: list_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ U @ W ) @ ( lexord_a @ R ) )
     => ( ( ord_less_eq_nat @ ( size_size_list_a @ W ) @ ( size_size_list_a @ U ) )
       => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ U @ V ) @ ( append_a @ W @ Z3 ) ) @ ( lexord_a @ R ) ) ) ) ).

% lexord_sufI
thf(fact_1172_lexord__cons__cons,axiom,
    ! [A: list_a,X2: list_list_a,B: list_a,Y2: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( cons_list_a @ A @ X2 ) @ ( cons_list_a @ B @ Y2 ) ) @ ( lexord_list_a @ R ) )
      = ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ A @ B ) @ R )
        | ( ( A = B )
          & ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ X2 @ Y2 ) @ ( lexord_list_a @ R ) ) ) ) ) ).

% lexord_cons_cons
thf(fact_1173_lexord__cons__cons,axiom,
    ! [A: a,X2: list_a,B: a,Y2: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( cons_a @ A @ X2 ) @ ( cons_a @ B @ Y2 ) ) @ ( lexord_a @ R ) )
      = ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ A @ B ) @ R )
        | ( ( A = B )
          & ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ ( lexord_a @ R ) ) ) ) ) ).

% lexord_cons_cons
thf(fact_1174_lexord__Nil__left,axiom,
    ! [Y2: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ nil_a @ Y2 ) @ ( lexord_a @ R ) )
      = ( ? [A6: a,X3: list_a] :
            ( Y2
            = ( cons_a @ A6 @ X3 ) ) ) ) ).

% lexord_Nil_left
thf(fact_1175_null__rec_I1_J,axiom,
    ! [X2: a,Xs: list_a] :
      ~ ( null_a @ ( cons_a @ X2 @ Xs ) ) ).

% null_rec(1)
thf(fact_1176_lexord__append__leftI,axiom,
    ! [U: list_a,V: list_a,R: set_Product_prod_a_a,X2: list_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ U @ V ) @ ( lexord_a @ R ) )
     => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ X2 @ U ) @ ( append_a @ X2 @ V ) ) @ ( lexord_a @ R ) ) ) ).

% lexord_append_leftI
thf(fact_1177_lexord__linear,axiom,
    ! [R: set_Product_prod_a_a,X2: list_a,Y2: list_a] :
      ( ! [A2: a,B7: a] :
          ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ A2 @ B7 ) @ R )
          | ( A2 = B7 )
          | ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ B7 @ A2 ) @ R ) )
     => ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ ( lexord_a @ R ) )
        | ( X2 = Y2 )
        | ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Y2 @ X2 ) @ ( lexord_a @ R ) ) ) ) ).

% lexord_linear
thf(fact_1178_lexord__linear,axiom,
    ! [R: set_Pr4048851178543822343list_a,X2: list_list_a,Y2: list_list_a] :
      ( ! [A2: list_a,B7: list_a] :
          ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ A2 @ B7 ) @ R )
          | ( A2 = B7 )
          | ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ B7 @ A2 ) @ R ) )
     => ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ X2 @ Y2 ) @ ( lexord_list_a @ R ) )
        | ( X2 = Y2 )
        | ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Y2 @ X2 ) @ ( lexord_list_a @ R ) ) ) ) ).

% lexord_linear
thf(fact_1179_lexord__irreflexive,axiom,
    ! [R: set_Product_prod_a_a,Xs: list_a] :
      ( ! [X: a] :
          ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ X ) @ R )
     => ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Xs ) @ ( lexord_a @ R ) ) ) ).

% lexord_irreflexive
thf(fact_1180_lexord__irreflexive,axiom,
    ! [R: set_Pr4048851178543822343list_a,Xs: list_list_a] :
      ( ! [X: list_a] :
          ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X @ X ) @ R )
     => ~ ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Xs ) @ ( lexord_list_a @ R ) ) ) ).

% lexord_irreflexive
thf(fact_1181_lexord__Nil__right,axiom,
    ! [X2: list_a,R: set_Product_prod_a_a] :
      ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ nil_a ) @ ( lexord_a @ R ) ) ).

% lexord_Nil_right
thf(fact_1182_eq__Nil__null,axiom,
    ! [Xs: list_a] :
      ( ( Xs = nil_a )
      = ( null_a @ Xs ) ) ).

% eq_Nil_null
thf(fact_1183_null__rec_I2_J,axiom,
    null_a @ nil_a ).

% null_rec(2)
thf(fact_1184_lexord__partial__trans,axiom,
    ! [Xs: list_a,R: set_Product_prod_a_a,Ys: list_a,Zs: list_a] :
      ( ! [X: a,Y4: a,Z4: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
         => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y4 ) @ R )
           => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Y4 @ Z4 ) @ R )
             => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Z4 ) @ R ) ) ) )
     => ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( lexord_a @ R ) )
       => ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Ys @ Zs ) @ ( lexord_a @ R ) )
         => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Zs ) @ ( lexord_a @ R ) ) ) ) ) ).

% lexord_partial_trans
thf(fact_1185_lexord__partial__trans,axiom,
    ! [Xs: list_list_a,R: set_Pr4048851178543822343list_a,Ys: list_list_a,Zs: list_list_a] :
      ( ! [X: list_a,Y4: list_a,Z4: list_a] :
          ( ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
         => ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X @ Y4 ) @ R )
           => ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Y4 @ Z4 ) @ R )
             => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X @ Z4 ) @ R ) ) ) )
     => ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Ys ) @ ( lexord_list_a @ R ) )
       => ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Ys @ Zs ) @ ( lexord_list_a @ R ) )
         => ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs @ Zs ) @ ( lexord_list_a @ R ) ) ) ) ) ).

% lexord_partial_trans
thf(fact_1186_lexord__append__leftD,axiom,
    ! [X2: list_list_a,U: list_list_a,V: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( append_list_a @ X2 @ U ) @ ( append_list_a @ X2 @ V ) ) @ ( lexord_list_a @ R ) )
     => ( ! [A2: list_a] :
            ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ A2 @ A2 ) @ R )
       => ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ U @ V ) @ ( lexord_list_a @ R ) ) ) ) ).

% lexord_append_leftD
thf(fact_1187_lexord__append__leftD,axiom,
    ! [X2: list_a,U: list_a,V: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ X2 @ U ) @ ( append_a @ X2 @ V ) ) @ ( lexord_a @ R ) )
     => ( ! [A2: a] :
            ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ A2 @ A2 ) @ R )
       => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ U @ V ) @ ( lexord_a @ R ) ) ) ) ).

% lexord_append_leftD
thf(fact_1188_lexord__append__rightI,axiom,
    ! [Y2: list_a,X2: list_a,R: set_Product_prod_a_a] :
      ( ? [B8: a,Z5: list_a] :
          ( Y2
          = ( cons_a @ B8 @ Z5 ) )
     => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ ( append_a @ X2 @ Y2 ) ) @ ( lexord_a @ R ) ) ) ).

% lexord_append_rightI
thf(fact_1189_lexord__sufE,axiom,
    ! [Xs: list_a,Zs: list_a,Ys: list_a,Qs: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ Xs @ Zs ) @ ( append_a @ Ys @ Qs ) ) @ ( lexord_a @ R ) )
     => ( ( Xs != Ys )
       => ( ( ( size_size_list_a @ Xs )
            = ( size_size_list_a @ Ys ) )
         => ( ( ( size_size_list_a @ Zs )
              = ( size_size_list_a @ Qs ) )
           => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs @ Ys ) @ ( lexord_a @ R ) ) ) ) ) ) ).

% lexord_sufE
thf(fact_1190_lexord__lex,axiom,
    ! [X2: list_a,Y2: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ ( lex_a @ R ) )
      = ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X2 @ Y2 ) @ ( lexord_a @ R ) )
        & ( ( size_size_list_a @ X2 )
          = ( size_size_list_a @ Y2 ) ) ) ) ).

% lexord_lex
thf(fact_1191_lexord__append__left__rightI,axiom,
    ! [A: a,B: a,R: set_Product_prod_a_a,U: list_a,X2: list_a,Y2: list_a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ A @ B ) @ R )
     => ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ U @ ( cons_a @ A @ X2 ) ) @ ( append_a @ U @ ( cons_a @ B @ Y2 ) ) ) @ ( lexord_a @ R ) ) ) ).

% lexord_append_left_rightI
thf(fact_1192_lexord__append__left__rightI,axiom,
    ! [A: list_a,B: list_a,R: set_Pr4048851178543822343list_a,U: list_list_a,X2: list_list_a,Y2: list_list_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ A @ B ) @ R )
     => ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( append_list_a @ U @ ( cons_list_a @ A @ X2 ) ) @ ( append_list_a @ U @ ( cons_list_a @ B @ Y2 ) ) ) @ ( lexord_list_a @ R ) ) ) ).

% lexord_append_left_rightI
thf(fact_1193_lexord__same__pref__iff,axiom,
    ! [Xs: list_list_a,Ys: list_list_a,Zs: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ ( append_list_a @ Xs @ Ys ) @ ( append_list_a @ Xs @ Zs ) ) @ ( lexord_list_a @ R ) )
      = ( ? [X3: list_a] :
            ( ( member_list_a @ X3 @ ( set_list_a2 @ Xs ) )
            & ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X3 @ X3 ) @ R ) )
        | ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Ys @ Zs ) @ ( lexord_list_a @ R ) ) ) ) ).

% lexord_same_pref_iff
thf(fact_1194_lexord__same__pref__iff,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( append_a @ Xs @ Ys ) @ ( append_a @ Xs @ Zs ) ) @ ( lexord_a @ R ) )
      = ( ? [X3: a] :
            ( ( member_a @ X3 @ ( set_a2 @ Xs ) )
            & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X3 @ X3 ) @ R ) )
        | ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Ys @ Zs ) @ ( lexord_a @ R ) ) ) ) ).

% lexord_same_pref_iff
thf(fact_1195_concat__eq__append__conv,axiom,
    ! [Xss2: list_list_a,Ys: list_a,Zs: list_a] :
      ( ( ( concat_a @ Xss2 )
        = ( append_a @ Ys @ Zs ) )
      = ( ( ( Xss2 = nil_list_a )
         => ( ( Ys = nil_a )
            & ( Zs = nil_a ) ) )
        & ( ( Xss2 != nil_list_a )
         => ? [Xss1: list_list_a,Xs5: list_a,Xs6: list_a,Xss22: list_list_a] :
              ( ( Xss2
                = ( append_list_a @ Xss1 @ ( cons_list_a @ ( append_a @ Xs5 @ Xs6 ) @ Xss22 ) ) )
              & ( Ys
                = ( append_a @ ( concat_a @ Xss1 ) @ Xs5 ) )
              & ( Zs
                = ( append_a @ Xs6 @ ( concat_a @ Xss22 ) ) ) ) ) ) ) ).

% concat_eq_append_conv
thf(fact_1196_length__n__lists__elem,axiom,
    ! [Ys: list_a,N: nat,Xs: list_a] :
      ( ( member_list_a @ Ys @ ( set_list_a2 @ ( n_lists_a @ N @ Xs ) ) )
     => ( ( size_size_list_a @ Ys )
        = N ) ) ).

% length_n_lists_elem
thf(fact_1197_concat__eq__Nil__conv,axiom,
    ! [Xss2: list_list_a] :
      ( ( ( concat_a @ Xss2 )
        = nil_a )
      = ( ! [X3: list_a] :
            ( ( member_list_a @ X3 @ ( set_list_a2 @ Xss2 ) )
           => ( X3 = nil_a ) ) ) ) ).

% concat_eq_Nil_conv
thf(fact_1198_Nil__eq__concat__conv,axiom,
    ! [Xss2: list_list_a] :
      ( ( nil_a
        = ( concat_a @ Xss2 ) )
      = ( ! [X3: list_a] :
            ( ( member_list_a @ X3 @ ( set_list_a2 @ Xss2 ) )
           => ( X3 = nil_a ) ) ) ) ).

% Nil_eq_concat_conv
thf(fact_1199_concat__append,axiom,
    ! [Xs: list_list_a,Ys: list_list_a] :
      ( ( concat_a @ ( append_list_a @ Xs @ Ys ) )
      = ( append_a @ ( concat_a @ Xs ) @ ( concat_a @ Ys ) ) ) ).

% concat_append
thf(fact_1200_concat_Osimps_I1_J,axiom,
    ( ( concat_a @ nil_list_a )
    = nil_a ) ).

% concat.simps(1)
thf(fact_1201_concat_Osimps_I2_J,axiom,
    ! [X2: list_a,Xs: list_list_a] :
      ( ( concat_a @ ( cons_list_a @ X2 @ Xs ) )
      = ( append_a @ X2 @ ( concat_a @ Xs ) ) ) ).

% concat.simps(2)
thf(fact_1202_hd__concat,axiom,
    ! [Xs: list_list_a] :
      ( ( Xs != nil_list_a )
     => ( ( ( hd_list_a @ Xs )
         != nil_a )
       => ( ( hd_a @ ( concat_a @ Xs ) )
          = ( hd_a @ ( hd_list_a @ Xs ) ) ) ) ) ).

% hd_concat
thf(fact_1203_concat__eq__appendD,axiom,
    ! [Xss2: list_list_a,Ys: list_a,Zs: list_a] :
      ( ( ( concat_a @ Xss2 )
        = ( append_a @ Ys @ Zs ) )
     => ( ( Xss2 != nil_list_a )
       => ? [Xss12: list_list_a,Xs2: list_a,Xs4: list_a,Xss23: list_list_a] :
            ( ( Xss2
              = ( append_list_a @ Xss12 @ ( cons_list_a @ ( append_a @ Xs2 @ Xs4 ) @ Xss23 ) ) )
            & ( Ys
              = ( append_a @ ( concat_a @ Xss12 ) @ Xs2 ) )
            & ( Zs
              = ( append_a @ Xs4 @ ( concat_a @ Xss23 ) ) ) ) ) ) ).

% concat_eq_appendD
thf(fact_1204_n__lists__Nil,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( n_lists_a @ N @ nil_a )
          = ( cons_list_a @ nil_a @ nil_list_a ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( n_lists_a @ N @ nil_a )
          = nil_list_a ) ) ) ).

% n_lists_Nil
thf(fact_1205_n__lists_Osimps_I1_J,axiom,
    ! [Xs: list_a] :
      ( ( n_lists_a @ zero_zero_nat @ Xs )
      = ( cons_list_a @ nil_a @ nil_list_a ) ) ).

% n_lists.simps(1)
thf(fact_1206_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_1207_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_1208_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_1209_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1210_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1211_length__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( size_size_list_a @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_a ) ) ).

% length_0_conv
thf(fact_1212_add__nonpos__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_1213_add__nonneg__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1214_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_1215_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1216_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1217_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1218_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1219_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1220_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_1221_length__code,axiom,
    ( size_size_list_a
    = ( gen_length_a @ zero_zero_nat ) ) ).

% length_code
thf(fact_1222_list_Osize_I3_J,axiom,
    ( ( size_size_list_a @ nil_a )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_1223_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_1224_set__replicate,axiom,
    ! [N: nat,X2: a] :
      ( ( N != zero_zero_nat )
     => ( ( set_a2 @ ( replicate_a @ N @ X2 ) )
        = ( insert_a2 @ X2 @ bot_bot_set_a ) ) ) ).

% set_replicate
thf(fact_1225_concat__replicate__trivial,axiom,
    ! [I: nat] :
      ( ( concat_a @ ( replicate_list_a @ I @ nil_a ) )
      = nil_a ) ).

% concat_replicate_trivial
thf(fact_1226_length__replicate,axiom,
    ! [N: nat,X2: a] :
      ( ( size_size_list_a @ ( replicate_a @ N @ X2 ) )
      = N ) ).

% length_replicate
thf(fact_1227_empty__replicate,axiom,
    ! [N: nat,X2: a] :
      ( ( nil_a
        = ( replicate_a @ N @ X2 ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_1228_replicate__empty,axiom,
    ! [N: nat,X2: a] :
      ( ( ( replicate_a @ N @ X2 )
        = nil_a )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_1229_in__set__replicate,axiom,
    ! [X2: a,N: nat,Y2: a] :
      ( ( member_a @ X2 @ ( set_a2 @ ( replicate_a @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_1230_Bex__set__replicate,axiom,
    ! [N: nat,A: a,P: a > $o] :
      ( ( ? [X3: a] :
            ( ( member_a @ X3 @ ( set_a2 @ ( replicate_a @ N @ A ) ) )
            & ( P @ X3 ) ) )
      = ( ( P @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_1231_Ball__set__replicate,axiom,
    ! [N: nat,A: a,P: a > $o] :
      ( ( ! [X3: a] :
            ( ( member_a @ X3 @ ( set_a2 @ ( replicate_a @ N @ A ) ) )
           => ( P @ X3 ) ) )
      = ( ( P @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_1232_hd__replicate,axiom,
    ! [N: nat,X2: a] :
      ( ( N != zero_zero_nat )
     => ( ( hd_a @ ( replicate_a @ N @ X2 ) )
        = X2 ) ) ).

% hd_replicate
thf(fact_1233_last__replicate,axiom,
    ! [N: nat,X2: a] :
      ( ( N != zero_zero_nat )
     => ( ( last_a @ ( replicate_a @ N @ X2 ) )
        = X2 ) ) ).

% last_replicate
thf(fact_1234_replicate__0,axiom,
    ! [X2: a] :
      ( ( replicate_a @ zero_zero_nat @ X2 )
      = nil_a ) ).

% replicate_0
thf(fact_1235_replicate__eqI,axiom,
    ! [Xs: list_a,N: nat,X2: a] :
      ( ( ( size_size_list_a @ Xs )
        = N )
     => ( ! [Y4: a] :
            ( ( member_a @ Y4 @ ( set_a2 @ Xs ) )
           => ( Y4 = X2 ) )
       => ( Xs
          = ( replicate_a @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_1236_replicate__length__same,axiom,
    ! [Xs: list_a,X2: a] :
      ( ! [X: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
         => ( X = X2 ) )
     => ( ( replicate_a @ ( size_size_list_a @ Xs ) @ X2 )
        = Xs ) ) ).

% replicate_length_same
thf(fact_1237_replicate__app__Cons__same,axiom,
    ! [N: nat,X2: a,Xs: list_a] :
      ( ( append_a @ ( replicate_a @ N @ X2 ) @ ( cons_a @ X2 @ Xs ) )
      = ( cons_a @ X2 @ ( append_a @ ( replicate_a @ N @ X2 ) @ Xs ) ) ) ).

% replicate_app_Cons_same
thf(fact_1238_comm__append__are__replicate,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Ys @ Xs ) )
     => ? [M: nat,N3: nat,Zs2: list_a] :
          ( ( ( concat_a @ ( replicate_list_a @ M @ Zs2 ) )
            = Xs )
          & ( ( concat_a @ ( replicate_list_a @ N3 @ Zs2 ) )
            = Ys ) ) ) ).

% comm_append_are_replicate
thf(fact_1239_append__replicate__commute,axiom,
    ! [N: nat,X2: a,K: nat] :
      ( ( append_a @ ( replicate_a @ N @ X2 ) @ ( replicate_a @ K @ X2 ) )
      = ( append_a @ ( replicate_a @ K @ X2 ) @ ( replicate_a @ N @ X2 ) ) ) ).

% append_replicate_commute
thf(fact_1240_replicate__add,axiom,
    ! [N: nat,M2: nat,X2: a] :
      ( ( replicate_a @ ( plus_plus_nat @ N @ M2 ) @ X2 )
      = ( append_a @ ( replicate_a @ N @ X2 ) @ ( replicate_a @ M2 @ X2 ) ) ) ).

% replicate_add
thf(fact_1241_replicate__append__same,axiom,
    ! [I: nat,X2: a] :
      ( ( append_a @ ( replicate_a @ I @ X2 ) @ ( cons_a @ X2 @ nil_a ) )
      = ( cons_a @ X2 @ ( replicate_a @ I @ X2 ) ) ) ).

% replicate_append_same
thf(fact_1242_set__replicate__conv__if,axiom,
    ! [N: nat,X2: a] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_a2 @ ( replicate_a @ N @ X2 ) )
          = bot_bot_set_a ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_a2 @ ( replicate_a @ N @ X2 ) )
          = ( insert_a2 @ X2 @ bot_bot_set_a ) ) ) ) ).

% set_replicate_conv_if
thf(fact_1243_nth__equal__first__eq,axiom,
    ! [X2: a,Xs: list_a,N: nat] :
      ( ~ ( member_a @ X2 @ ( set_a2 @ Xs ) )
     => ( ( ord_less_eq_nat @ N @ ( size_size_list_a @ Xs ) )
       => ( ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ N )
            = X2 )
          = ( N = zero_zero_nat ) ) ) ) ).

% nth_equal_first_eq
thf(fact_1244_nths__singleton,axiom,
    ! [A3: set_nat,X2: a] :
      ( ( ( member_nat @ zero_zero_nat @ A3 )
       => ( ( nths_a @ ( cons_a @ X2 @ nil_a ) @ A3 )
          = ( cons_a @ X2 @ nil_a ) ) )
      & ( ~ ( member_nat @ zero_zero_nat @ A3 )
       => ( ( nths_a @ ( cons_a @ X2 @ nil_a ) @ A3 )
          = nil_a ) ) ) ).

% nths_singleton
thf(fact_1245_nths__nil,axiom,
    ! [A3: set_nat] :
      ( ( nths_a @ nil_a @ A3 )
      = nil_a ) ).

% nths_nil
thf(fact_1246_nths__empty,axiom,
    ! [Xs: list_a] :
      ( ( nths_a @ Xs @ bot_bot_set_nat )
      = nil_a ) ).

% nths_empty
thf(fact_1247_nth__Cons__0,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ zero_zero_nat )
      = X2 ) ).

% nth_Cons_0
thf(fact_1248_nth__append__length,axiom,
    ! [Xs: list_a,X2: a,Ys: list_a] :
      ( ( nth_a @ ( append_a @ Xs @ ( cons_a @ X2 @ Ys ) ) @ ( size_size_list_a @ Xs ) )
      = X2 ) ).

% nth_append_length
thf(fact_1249_nth__append__length__plus,axiom,
    ! [Xs: list_a,Ys: list_a,N: nat] :
      ( ( nth_a @ ( append_a @ Xs @ Ys ) @ ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ N ) )
      = ( nth_a @ Ys @ N ) ) ).

% nth_append_length_plus
thf(fact_1250_hd__conv__nth,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ Xs )
        = ( nth_a @ Xs @ zero_zero_nat ) ) ) ).

% hd_conv_nth
thf(fact_1251_set__nths__subset,axiom,
    ! [Xs: list_a,I2: set_nat] : ( ord_less_eq_set_a @ ( set_a2 @ ( nths_a @ Xs @ I2 ) ) @ ( set_a2 @ Xs ) ) ).

% set_nths_subset
thf(fact_1252_notin__set__nthsI,axiom,
    ! [X2: a,Xs: list_a,I2: set_nat] :
      ( ~ ( member_a @ X2 @ ( set_a2 @ Xs ) )
     => ~ ( member_a @ X2 @ ( set_a2 @ ( nths_a @ Xs @ I2 ) ) ) ) ).

% notin_set_nthsI
thf(fact_1253_in__set__nthsD,axiom,
    ! [X2: a,Xs: list_a,I2: set_nat] :
      ( ( member_a @ X2 @ ( set_a2 @ ( nths_a @ Xs @ I2 ) ) )
     => ( member_a @ X2 @ ( set_a2 @ Xs ) ) ) ).

% in_set_nthsD
thf(fact_1254_nth__drop,axiom,
    ! [N: nat,Xs: list_a,I: nat] :
      ( ( ord_less_eq_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( drop_a @ N @ Xs ) @ I )
        = ( nth_a @ Xs @ ( plus_plus_nat @ N @ I ) ) ) ) ).

% nth_drop
thf(fact_1255_successively__append__iff,axiom,
    ! [P: a > a > $o,Xs: list_a,Ys: list_a] :
      ( ( successively_a @ P @ ( append_a @ Xs @ Ys ) )
      = ( ( successively_a @ P @ Xs )
        & ( successively_a @ P @ Ys )
        & ( ( Xs = nil_a )
          | ( Ys = nil_a )
          | ( P @ ( last_a @ Xs ) @ ( hd_a @ Ys ) ) ) ) ) ).

% successively_append_iff
thf(fact_1256_drop__all,axiom,
    ! [Xs: list_a,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N )
     => ( ( drop_a @ N @ Xs )
        = nil_a ) ) ).

% drop_all
thf(fact_1257_drop__eq__Nil,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ( drop_a @ N @ Xs )
        = nil_a )
      = ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N ) ) ).

% drop_eq_Nil
thf(fact_1258_drop__eq__Nil2,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( nil_a
        = ( drop_a @ N @ Xs ) )
      = ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N ) ) ).

% drop_eq_Nil2
thf(fact_1259_nth__via__drop,axiom,
    ! [N: nat,Xs: list_a,Y2: a,Ys: list_a] :
      ( ( ( drop_a @ N @ Xs )
        = ( cons_a @ Y2 @ Ys ) )
     => ( ( nth_a @ Xs @ N )
        = Y2 ) ) ).

% nth_via_drop
thf(fact_1260_successively__Cons,axiom,
    ! [P: a > a > $o,X2: a,Xs: list_a] :
      ( ( successively_a @ P @ ( cons_a @ X2 @ Xs ) )
      = ( ( Xs = nil_a )
        | ( ( P @ X2 @ ( hd_a @ Xs ) )
          & ( successively_a @ P @ Xs ) ) ) ) ).

% successively_Cons
thf(fact_1261_successively_Osimps_I1_J,axiom,
    ! [P: a > a > $o] : ( successively_a @ P @ nil_a ) ).

% successively.simps(1)
thf(fact_1262_drop__Nil,axiom,
    ! [N: nat] :
      ( ( drop_a @ N @ nil_a )
      = nil_a ) ).

% drop_Nil
thf(fact_1263_successively_Oelims_I2_J,axiom,
    ! [X2: a > a > $o,Xa: list_a] :
      ( ( successively_a @ X2 @ Xa )
     => ( ( Xa != nil_a )
       => ( ! [X: a] :
              ( Xa
             != ( cons_a @ X @ nil_a ) )
         => ~ ! [X: a,Y4: a,Xs2: list_a] :
                ( ( Xa
                  = ( cons_a @ X @ ( cons_a @ Y4 @ Xs2 ) ) )
               => ~ ( ( X2 @ X @ Y4 )
                    & ( successively_a @ X2 @ ( cons_a @ Y4 @ Xs2 ) ) ) ) ) ) ) ).

% successively.elims(2)
thf(fact_1264_successively_Oelims_I1_J,axiom,
    ! [X2: a > a > $o,Xa: list_a,Y2: $o] :
      ( ( ( successively_a @ X2 @ Xa )
        = Y2 )
     => ( ( ( Xa = nil_a )
         => ~ Y2 )
       => ( ( ? [X: a] :
                ( Xa
                = ( cons_a @ X @ nil_a ) )
           => ~ Y2 )
         => ~ ! [X: a,Y4: a,Xs2: list_a] :
                ( ( Xa
                  = ( cons_a @ X @ ( cons_a @ Y4 @ Xs2 ) ) )
               => ( Y2
                  = ( ~ ( ( X2 @ X @ Y4 )
                        & ( successively_a @ X2 @ ( cons_a @ Y4 @ Xs2 ) ) ) ) ) ) ) ) ) ).

% successively.elims(1)
thf(fact_1265_successively_Osimps_I2_J,axiom,
    ! [P: a > a > $o,X2: a] : ( successively_a @ P @ ( cons_a @ X2 @ nil_a ) ) ).

% successively.simps(2)
thf(fact_1266_successively__cong,axiom,
    ! [Xs: list_a,P: a > a > $o,Q: a > a > $o,Ys: list_a] :
      ( ! [X: a,Y4: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
         => ( ( member_a @ Y4 @ ( set_a2 @ Xs ) )
           => ( ( P @ X @ Y4 )
              = ( Q @ X @ Y4 ) ) ) )
     => ( ( Xs = Ys )
       => ( ( successively_a @ P @ Xs )
          = ( successively_a @ Q @ Ys ) ) ) ) ).

% successively_cong
thf(fact_1267_successively__mono,axiom,
    ! [P: a > a > $o,Xs: list_a,Q: a > a > $o] :
      ( ( successively_a @ P @ Xs )
     => ( ! [X: a,Y4: a] :
            ( ( member_a @ X @ ( set_a2 @ Xs ) )
           => ( ( member_a @ Y4 @ ( set_a2 @ Xs ) )
             => ( ( P @ X @ Y4 )
               => ( Q @ X @ Y4 ) ) ) )
       => ( successively_a @ Q @ Xs ) ) ) ).

% successively_mono
thf(fact_1268_in__set__dropD,axiom,
    ! [X2: a,N: nat,Xs: list_a] :
      ( ( member_a @ X2 @ ( set_a2 @ ( drop_a @ N @ Xs ) ) )
     => ( member_a @ X2 @ ( set_a2 @ Xs ) ) ) ).

% in_set_dropD
thf(fact_1269_tl__drop,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( tl_a @ ( drop_a @ N @ Xs ) )
      = ( drop_a @ N @ ( tl_a @ Xs ) ) ) ).

% tl_drop
thf(fact_1270_successively_Oelims_I3_J,axiom,
    ! [X2: a > a > $o,Xa: list_a] :
      ( ~ ( successively_a @ X2 @ Xa )
     => ~ ! [X: a,Y4: a,Xs2: list_a] :
            ( ( Xa
              = ( cons_a @ X @ ( cons_a @ Y4 @ Xs2 ) ) )
           => ( ( X2 @ X @ Y4 )
              & ( successively_a @ X2 @ ( cons_a @ Y4 @ Xs2 ) ) ) ) ) ).

% successively.elims(3)
thf(fact_1271_successively_Osimps_I3_J,axiom,
    ! [P: a > a > $o,X2: a,Y2: a,Xs: list_a] :
      ( ( successively_a @ P @ ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs ) ) )
      = ( ( P @ X2 @ Y2 )
        & ( successively_a @ P @ ( cons_a @ Y2 @ Xs ) ) ) ) ).

% successively.simps(3)
thf(fact_1272_set__drop__subset__set__drop,axiom,
    ! [N: nat,M2: nat,Xs: list_a] :
      ( ( ord_less_eq_nat @ N @ M2 )
     => ( ord_less_eq_set_a @ ( set_a2 @ ( drop_a @ M2 @ Xs ) ) @ ( set_a2 @ ( drop_a @ N @ Xs ) ) ) ) ).

% set_drop_subset_set_drop
thf(fact_1273_set__drop__subset,axiom,
    ! [N: nat,Xs: list_a] : ( ord_less_eq_set_a @ ( set_a2 @ ( drop_a @ N @ Xs ) ) @ ( set_a2 @ Xs ) ) ).

% set_drop_subset
thf(fact_1274_listrel_Ocases,axiom,
    ! [A1: list_list_a,A22: list_list_a,R: set_Pr4048851178543822343list_a] :
      ( ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ A1 @ A22 ) @ ( listre6772471554020304241list_a @ R ) )
     => ( ( ( A1 = nil_list_a )
         => ( A22 != nil_list_a ) )
       => ~ ! [X: list_a,Y4: list_a,Xs2: list_list_a] :
              ( ( A1
                = ( cons_list_a @ X @ Xs2 ) )
             => ! [Ys2: list_list_a] :
                  ( ( A22
                    = ( cons_list_a @ Y4 @ Ys2 ) )
                 => ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ X @ Y4 ) @ R )
                   => ~ ( member1318342207407915856list_a @ ( produc8696003437204565271list_a @ Xs2 @ Ys2 ) @ ( listre6772471554020304241list_a @ R ) ) ) ) ) ) ) ).

% listrel.cases
thf(fact_1275_listrel_Ocases,axiom,
    ! [A1: list_list_a,A22: list_a,R: set_Pr8962057229576493569st_a_a] :
      ( ( member4371779931761811402list_a @ ( produc1599761694186162065list_a @ A1 @ A22 ) @ ( listrel_list_a_a @ R ) )
     => ( ( ( A1 = nil_list_a )
         => ( A22 != nil_a ) )
       => ~ ! [X: list_a,Y4: a,Xs2: list_list_a] :
              ( ( A1
                = ( cons_list_a @ X @ Xs2 ) )
             => ! [Ys2: list_a] :
                  ( ( A22
                    = ( cons_a @ Y4 @ Ys2 ) )
                 => ( ( member8006451231845903178st_a_a @ ( produc4781227316648555537st_a_a @ X @ Y4 ) @ R )
                   => ~ ( member4371779931761811402list_a @ ( produc1599761694186162065list_a @ Xs2 @ Ys2 ) @ ( listrel_list_a_a @ R ) ) ) ) ) ) ) ).

% listrel.cases
thf(fact_1276_listrel_Ocases,axiom,
    ! [A1: list_a,A22: list_list_a,R: set_Pr2070066670564046349list_a] :
      ( ( member3917598494194944214list_a @ ( produc5682643643425543581list_a @ A1 @ A22 ) @ ( listrel_a_list_a @ R ) )
     => ( ( ( A1 = nil_a )
         => ( A22 != nil_list_a ) )
       => ~ ! [X: a,Y4: list_a,Xs2: list_a] :
              ( ( A1
                = ( cons_a @ X @ Xs2 ) )
             => ! [Ys2: list_list_a] :
                  ( ( A22
                    = ( cons_list_a @ Y4 @ Ys2 ) )
                 => ( ( member4889668945541975382list_a @ ( produc6670463072477821725list_a @ X @ Y4 ) @ R )
                   => ~ ( member3917598494194944214list_a @ ( produc5682643643425543581list_a @ Xs2 @ Ys2 ) @ ( listrel_a_list_a @ R ) ) ) ) ) ) ) ).

% listrel.cases
thf(fact_1277_listrel_Ocases,axiom,
    ! [A1: list_a,A22: list_a,R: set_Product_prod_a_a] :
      ( ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ A1 @ A22 ) @ ( listrel_a_a @ R ) )
     => ( ( ( A1 = nil_a )
         => ( A22 != nil_a ) )
       => ~ ! [X: a,Y4: a,Xs2: list_a] :
              ( ( A1
                = ( cons_a @ X @ Xs2 ) )
             => ! [Ys2: list_a] :
                  ( ( A22
                    = ( cons_a @ Y4 @ Ys2 ) )
                 => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y4 ) @ R )
                   => ~ ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ Xs2 @ Ys2 ) @ ( listrel_a_a @ R ) ) ) ) ) ) ) ).

% listrel.cases

% Helper facts (3)
thf(help_If_3_1_If_001t__List__Olist_Itf__a_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__List__Olist_Itf__a_J_T,axiom,
    ! [X2: list_a,Y2: list_a] :
      ( ( if_list_a @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__List__Olist_Itf__a_J_T,axiom,
    ! [X2: list_a,Y2: list_a] :
      ( ( if_list_a @ $true @ X2 @ Y2 )
      = X2 ) ).

% Conjectures (10)
thf(conj_0,hypothesis,
    $true ).

thf(conj_1,hypothesis,
    $true ).

thf(conj_2,hypothesis,
    ! [T9: list_a,U9: list_a] :
      ( ( ( paths_in_Resid_a @ resid @ T9 @ U9 )
       != nil_a )
      = ( ( paths_in_Resid_a @ resid @ U9 @ T9 )
       != nil_a ) ) ).

thf(conj_3,hypothesis,
    ! [T2: a,U6: a] :
      ( ( con_a @ resid @ T2 @ U6 )
     => ( con_a @ resid @ U6 @ T2 ) ) ).

thf(conj_4,hypothesis,
    ! [T9: list_a,A7: a] :
      ( ( paths_in_Arr_a @ resid @ T9 )
     => ( ( member_a @ A7 @ ( paths_in_Srcs_a @ resid @ T9 ) )
       => ( ( paths_in_Resid_a @ resid @ T9 @ ( cons_a @ A7 @ nil_a ) )
          = T9 ) ) ) ).

thf(conj_5,hypothesis,
    ! [T2: a,U6: a] :
      ( ( con_a @ resid @ T2 @ U6 )
     => ( arr_a @ resid @ T2 ) ) ).

thf(conj_6,hypothesis,
    ! [T2: a,U6: a] :
      ( ( con_a @ resid @ T2 @ U6 )
     => ( arr_a @ resid @ U6 ) ) ).

thf(conj_7,hypothesis,
    ! [T9: list_a] : ( ord_less_eq_set_a @ ( paths_in_Srcs_a @ resid @ T9 ) @ ( collect_a @ ( ide_a @ resid ) ) ) ).

thf(conj_8,hypothesis,
    ta = nil_a ).

thf(conj_9,conjecture,
    ( ( ( con_a @ resid @ aa @ t )
      & ( paths_in_Arr_a @ resid @ ta )
      & ( member_a @ ( resid @ aa @ t ) @ ( paths_in_Srcs_a @ resid @ ta ) ) )
    = ( ( paths_in_Arr_a @ resid @ ( cons_a @ t @ ta ) )
      & ( member_a @ aa @ ( paths_in_Srcs_a @ resid @ ( cons_a @ t @ ta ) ) ) ) ) ).

%------------------------------------------------------------------------------