TPTP Problem File: SLH0054^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Frequency_Moments/0087_Frequency_Moment_k/prob_00623_026891__20029820_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1190 ( 426 unt; 141 typ;   0 def)
%            Number of atoms       : 3181 (1025 equ;   0 cnn)
%            Maximal formula atoms :   12 (   3 avg)
%            Number of connectives : 8950 ( 494   ~;  58   |; 270   &;6474   @)
%                                         (   0 <=>;1654  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   21 (   7 avg)
%            Number of types       :   16 (  15 usr)
%            Number of type conns  :  465 ( 465   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  127 ( 126 usr;  21 con; 0-2 aty)
%            Number of variables   : 2737 ( 115   ^;2449   !; 173   ?;2737   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 12:20:04.271
%------------------------------------------------------------------------------
% Could-be-implicit typings (15)
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_Pr8693737435421807431at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    set_Pr6218003697084177305l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    list_P6011104703257516679at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Pr1261947904930325089at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__Multiset__Omultiset_It__Real__Oreal_J,type,
    multiset_real: $tType ).

thf(ty_n_t__Multiset__Omultiset_It__Nat__Onat_J,type,
    multiset_nat: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (126)
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    finite711546835091564841at_nat: set_Pr1261947904930325089at_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Real__Oreal,type,
    finite_card_real: set_real > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
    finite8100373058378681591st_nat: set_list_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    finite6177210948735845034at_nat: set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
    finite_finite_real: set_real > $o ).

thf(sy_c_Frequency__Moment__k_OM_092_060_094sub_0621,type,
    frequency_Moment_M_1: list_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    minus_1356011639430497352at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_It__Nat__Onat_J,type,
    zero_z7348594199698428585et_nat: multiset_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    zero_z3979849011205770936at_nat: product_prod_nat_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Set__Oset_It__Nat__Onat_J,type,
    zero_zero_set_nat: set_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    zero_z7294763051868718104at_nat: set_Pr1261947904930325089at_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Set__Oset_It__Real__Oreal_J,type,
    zero_zero_set_real: set_real ).

thf(sy_c_Infinite__Set_Owellorder__class_Oenumerate_001t__Nat__Onat,type,
    infini8530281810654367211te_nat: set_nat > nat > nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Nat__Onat,type,
    lattic7446932960582359483at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Real__Oreal,type,
    lattic488527866317076247t_real: ( nat > real ) > set_nat > nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    lattic4984276347100956536at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > product_prod_nat_nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Real__Oreal,type,
    lattic7428442014618555988t_real: ( product_prod_nat_nat > real ) > set_Pr1261947904930325089at_nat > product_prod_nat_nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Real__Oreal_001t__Nat__Onat,type,
    lattic5055836439445974935al_nat: ( real > nat ) > set_real > real ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Real__Oreal_001t__Real__Oreal,type,
    lattic8440615504127631091l_real: ( real > real ) > set_real > real ).

thf(sy_c_List_Obind_001t__Nat__Onat_001t__Nat__Onat,type,
    bind_nat_nat: list_nat > ( nat > list_nat ) > list_nat ).

thf(sy_c_List_Ocan__select_001t__Nat__Onat,type,
    can_select_nat: ( nat > $o ) > set_nat > $o ).

thf(sy_c_List_Ocan__select_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    can_se4754832747099445502at_nat: ( product_prod_nat_nat > $o ) > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_List_Ocan__select_001t__Real__Oreal,type,
    can_select_real: ( real > $o ) > set_real > $o ).

thf(sy_c_List_Ogen__length_001t__Nat__Onat,type,
    gen_length_nat: nat > list_nat > nat ).

thf(sy_c_List_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Oinsert_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    insert8944034826898310173at_nat: product_prod_nat_nat > list_P6011104703257516679at_nat > list_P6011104703257516679at_nat ).

thf(sy_c_List_Oinsert_001t__Real__Oreal,type,
    insert_real: real > list_real > list_real ).

thf(sy_c_List_Olinorder_Osorted__list__of__set_001t__Real__Oreal,type,
    sorted6366500744023230182t_real: ( real > real > $o ) > set_real > list_real ).

thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
    linord2614967742042102400et_nat: set_nat > list_nat ).

thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Real__Oreal,type,
    linord4252657396651189596t_real: set_real > list_real ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    nil_Pr5478986624290739719at_nat: list_P6011104703257516679at_nat ).

thf(sy_c_List_Olist_ONil_001t__Real__Oreal,type,
    nil_real: list_real ).

thf(sy_c_List_Olist_Ohd_001t__Nat__Onat,type,
    hd_nat: list_nat > nat ).

thf(sy_c_List_Olist_Ohd_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    hd_Pro3460610213475200108at_nat: list_P6011104703257516679at_nat > product_prod_nat_nat ).

thf(sy_c_List_Olist_Ohd_001t__Real__Oreal,type,
    hd_real: list_real > real ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    set_Pr5648618587558075414at_nat: list_P6011104703257516679at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
    set_real2: list_real > set_real ).

thf(sy_c_List_Olist__ex1_001t__Nat__Onat,type,
    list_ex1_nat: ( nat > $o ) > list_nat > $o ).

thf(sy_c_List_Olist__ex1_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    list_e8644085759156585930at_nat: ( product_prod_nat_nat > $o ) > list_P6011104703257516679at_nat > $o ).

thf(sy_c_List_Olist__ex1_001t__Real__Oreal,type,
    list_ex1_real: ( real > $o ) > list_real > $o ).

thf(sy_c_List_Omaps_001t__Nat__Onat_001t__Nat__Onat,type,
    maps_nat_nat: ( nat > list_nat ) > list_nat > list_nat ).

thf(sy_c_List_Omember_001t__Nat__Onat,type,
    member_nat: list_nat > nat > $o ).

thf(sy_c_List_Omember_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member6104210405413575452at_nat: list_P6011104703257516679at_nat > product_prod_nat_nat > $o ).

thf(sy_c_List_Omember_001t__Real__Oreal,type,
    member_real: list_real > real > $o ).

thf(sy_c_List_Onths_001t__Nat__Onat,type,
    nths_nat: list_nat > set_nat > list_nat ).

thf(sy_c_List_Onths_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    nths_P6079298444859966469at_nat: list_P6011104703257516679at_nat > set_nat > list_P6011104703257516679at_nat ).

thf(sy_c_List_Onths_001t__Real__Oreal,type,
    nths_real: list_real > set_nat > list_real ).

thf(sy_c_List_Onull_001t__Nat__Onat,type,
    null_nat: list_nat > $o ).

thf(sy_c_List_Oremdups__adj_001t__Nat__Onat,type,
    remdups_adj_nat: list_nat > list_nat ).

thf(sy_c_List_Oremdups__adj_001t__Real__Oreal,type,
    remdups_adj_real: list_real > list_real ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    replic4235873036481779905at_nat: nat > product_prod_nat_nat > list_P6011104703257516679at_nat ).

thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
    replicate_real: nat > real > list_real ).

thf(sy_c_List_Osorted__wrt_001t__Nat__Onat,type,
    sorted_wrt_nat: ( nat > nat > $o ) > list_nat > $o ).

thf(sy_c_List_Osorted__wrt_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    sorted5214655850825725294at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > list_P6011104703257516679at_nat > $o ).

thf(sy_c_List_Osorted__wrt_001t__Real__Oreal,type,
    sorted_wrt_real: ( real > real > $o ) > list_real > $o ).

thf(sy_c_Multiset_Olinorder__class_Osorted__list__of__multiset_001t__Nat__Onat,type,
    linord3047872887403683810et_nat: multiset_nat > list_nat ).

thf(sy_c_Multiset_Olinorder__class_Osorted__list__of__multiset_001t__Real__Oreal,type,
    linord36121425647212990t_real: multiset_real > list_real ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    size_s5460976970255530739at_nat: list_P6011104703257516679at_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
    size_size_list_real: list_real > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_Eo_J,type,
    bot_bot_nat_o: nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    bot_bo482883023278783056_nat_o: product_prod_nat_nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Real__Oreal_M_Eo_J,type,
    bot_bot_real_o: real > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__List__Olist_It__Nat__Onat_J,type,
    bot_bot_list_nat: list_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    bot_bo2099793752762293965at_nat: set_Pr1261947904930325089at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    bot_bo5327735625951526323at_nat: set_Pr8693737435421807431at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    bot_bo3948376660626123781l_real: set_Pr6218003697084177305l_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__List__Olist_It__Nat__Onat_J,type,
    ord_less_list_nat: list_nat > list_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    ord_le1203424502768444845at_nat: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le7866589430770878221at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__List__Olist_It__Nat__Onat_J,type,
    ord_less_eq_list_nat: list_nat > list_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    ord_le8460144461188290721at_nat: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le3146513528884898305at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Real__Oreal,type,
    order_Greatest_real: ( real > $o ) > real ).

thf(sy_c_Relation_ODomain_001t__Nat__Onat_001t__Nat__Onat,type,
    domain_nat_nat: set_Pr1261947904930325089at_nat > set_nat ).

thf(sy_c_Relation_OId__on_001t__Nat__Onat,type,
    id_on_nat: set_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Relation_OId__on_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    id_on_2554058798563519774at_nat: set_Pr1261947904930325089at_nat > set_Pr8693737435421807431at_nat ).

thf(sy_c_Relation_OId__on_001t__Real__Oreal,type,
    id_on_real: set_real > set_Pr6218003697084177305l_real ).

thf(sy_c_Relation_ORange_001t__Nat__Onat_001t__Nat__Onat,type,
    range_nat_nat: set_Pr1261947904930325089at_nat > set_nat ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    collec3392354462482085612at_nat: ( product_prod_nat_nat > $o ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat2: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    insert8211810215607154385at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real2: real > set_real > set_real ).

thf(sy_c_Set_Ois__empty_001t__Nat__Onat,type,
    is_empty_nat: set_nat > $o ).

thf(sy_c_Set_Ois__empty_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    is_emp1662574758705540307at_nat: set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Set_Ois__empty_001t__Real__Oreal,type,
    is_empty_real: set_real > $o ).

thf(sy_c_Set_Ois__singleton_001t__Nat__Onat,type,
    is_singleton_nat: set_nat > $o ).

thf(sy_c_Set_Ois__singleton_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    is_sin2850979758926227957at_nat: set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Set_Ois__singleton_001t__Real__Oreal,type,
    is_singleton_real: set_real > $o ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
    member_list_nat: list_nat > set_list_nat > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat2: nat > set_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real2: real > set_real > $o ).

thf(sy_v_as,type,
    as: list_nat ).

thf(sy_v_k,type,
    k: nat ).

% Relevant facts (1048)
thf(fact_0_False,axiom,
    as != nil_nat ).

% False
thf(fact_1_mem__simps_I2_J,axiom,
    ! [C: real] :
      ~ ( member_real2 @ C @ bot_bot_set_real ) ).

% mem_simps(2)
thf(fact_2_mem__simps_I2_J,axiom,
    ! [C: nat] :
      ~ ( member_nat2 @ C @ bot_bot_set_nat ) ).

% mem_simps(2)
thf(fact_3_mem__simps_I2_J,axiom,
    ! [C: product_prod_nat_nat] :
      ~ ( member8440522571783428010at_nat @ C @ bot_bo2099793752762293965at_nat ) ).

% mem_simps(2)
thf(fact_4_all__not__in__conv,axiom,
    ! [A: set_real] :
      ( ( ! [X: real] :
            ~ ( member_real2 @ X @ A ) )
      = ( A = bot_bot_set_real ) ) ).

% all_not_in_conv
thf(fact_5_all__not__in__conv,axiom,
    ! [A: set_nat] :
      ( ( ! [X: nat] :
            ~ ( member_nat2 @ X @ A ) )
      = ( A = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_6_all__not__in__conv,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( ! [X: product_prod_nat_nat] :
            ~ ( member8440522571783428010at_nat @ X @ A ) )
      = ( A = bot_bo2099793752762293965at_nat ) ) ).

% all_not_in_conv
thf(fact_7_Collect__empty__eq,axiom,
    ! [P: real > $o] :
      ( ( ( collect_real @ P )
        = bot_bot_set_real )
      = ( ! [X: real] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_8_Collect__empty__eq,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( ! [X: nat] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_9_Collect__empty__eq,axiom,
    ! [P: product_prod_nat_nat > $o] :
      ( ( ( collec3392354462482085612at_nat @ P )
        = bot_bo2099793752762293965at_nat )
      = ( ! [X: product_prod_nat_nat] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_10_empty__Collect__eq,axiom,
    ! [P: real > $o] :
      ( ( bot_bot_set_real
        = ( collect_real @ P ) )
      = ( ! [X: real] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_11_empty__Collect__eq,axiom,
    ! [P: nat > $o] :
      ( ( bot_bot_set_nat
        = ( collect_nat @ P ) )
      = ( ! [X: nat] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_12_empty__Collect__eq,axiom,
    ! [P: product_prod_nat_nat > $o] :
      ( ( bot_bo2099793752762293965at_nat
        = ( collec3392354462482085612at_nat @ P ) )
      = ( ! [X: product_prod_nat_nat] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_13_emptyE,axiom,
    ! [A2: real] :
      ~ ( member_real2 @ A2 @ bot_bot_set_real ) ).

% emptyE
thf(fact_14_emptyE,axiom,
    ! [A2: nat] :
      ~ ( member_nat2 @ A2 @ bot_bot_set_nat ) ).

% emptyE
thf(fact_15_emptyE,axiom,
    ! [A2: product_prod_nat_nat] :
      ~ ( member8440522571783428010at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ).

% emptyE
thf(fact_16_equals0D,axiom,
    ! [A: set_real,A2: real] :
      ( ( A = bot_bot_set_real )
     => ~ ( member_real2 @ A2 @ A ) ) ).

% equals0D
thf(fact_17_equals0D,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( A = bot_bot_set_nat )
     => ~ ( member_nat2 @ A2 @ A ) ) ).

% equals0D
thf(fact_18_equals0D,axiom,
    ! [A: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat] :
      ( ( A = bot_bo2099793752762293965at_nat )
     => ~ ( member8440522571783428010at_nat @ A2 @ A ) ) ).

% equals0D
thf(fact_19_equals0I,axiom,
    ! [A: set_real] :
      ( ! [Y: real] :
          ~ ( member_real2 @ Y @ A )
     => ( A = bot_bot_set_real ) ) ).

% equals0I
thf(fact_20_equals0I,axiom,
    ! [A: set_nat] :
      ( ! [Y: nat] :
          ~ ( member_nat2 @ Y @ A )
     => ( A = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_21_equals0I,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ! [Y: product_prod_nat_nat] :
          ~ ( member8440522571783428010at_nat @ Y @ A )
     => ( A = bot_bo2099793752762293965at_nat ) ) ).

% equals0I
thf(fact_22_ex__in__conv,axiom,
    ! [A: set_real] :
      ( ( ? [X: real] : ( member_real2 @ X @ A ) )
      = ( A != bot_bot_set_real ) ) ).

% ex_in_conv
thf(fact_23_ex__in__conv,axiom,
    ! [A: set_nat] :
      ( ( ? [X: nat] : ( member_nat2 @ X @ A ) )
      = ( A != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_24_ex__in__conv,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( ? [X: product_prod_nat_nat] : ( member8440522571783428010at_nat @ X @ A ) )
      = ( A != bot_bo2099793752762293965at_nat ) ) ).

% ex_in_conv
thf(fact_25_set__empty,axiom,
    ! [Xs: list_nat] :
      ( ( ( set_nat2 @ Xs )
        = bot_bot_set_nat )
      = ( Xs = nil_nat ) ) ).

% set_empty
thf(fact_26_set__empty,axiom,
    ! [Xs: list_P6011104703257516679at_nat] :
      ( ( ( set_Pr5648618587558075414at_nat @ Xs )
        = bot_bo2099793752762293965at_nat )
      = ( Xs = nil_Pr5478986624290739719at_nat ) ) ).

% set_empty
thf(fact_27_set__empty,axiom,
    ! [Xs: list_real] :
      ( ( ( set_real2 @ Xs )
        = bot_bot_set_real )
      = ( Xs = nil_real ) ) ).

% set_empty
thf(fact_28_set__empty2,axiom,
    ! [Xs: list_nat] :
      ( ( bot_bot_set_nat
        = ( set_nat2 @ Xs ) )
      = ( Xs = nil_nat ) ) ).

% set_empty2
thf(fact_29_set__empty2,axiom,
    ! [Xs: list_P6011104703257516679at_nat] :
      ( ( bot_bo2099793752762293965at_nat
        = ( set_Pr5648618587558075414at_nat @ Xs ) )
      = ( Xs = nil_Pr5478986624290739719at_nat ) ) ).

% set_empty2
thf(fact_30_set__empty2,axiom,
    ! [Xs: list_real] :
      ( ( bot_bot_set_real
        = ( set_real2 @ Xs ) )
      = ( Xs = nil_real ) ) ).

% set_empty2
thf(fact_31_bot__set__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat @ bot_bot_nat_o ) ) ).

% bot_set_def
thf(fact_32_bot__set__def,axiom,
    ( bot_bo2099793752762293965at_nat
    = ( collec3392354462482085612at_nat @ bot_bo482883023278783056_nat_o ) ) ).

% bot_set_def
thf(fact_33_bot__set__def,axiom,
    ( bot_bot_set_real
    = ( collect_real @ bot_bot_real_o ) ) ).

% bot_set_def
thf(fact_34_empty__set,axiom,
    ( bot_bot_set_nat
    = ( set_nat2 @ nil_nat ) ) ).

% empty_set
thf(fact_35_empty__set,axiom,
    ( bot_bo2099793752762293965at_nat
    = ( set_Pr5648618587558075414at_nat @ nil_Pr5478986624290739719at_nat ) ) ).

% empty_set
thf(fact_36_empty__set,axiom,
    ( bot_bot_set_real
    = ( set_real2 @ nil_real ) ) ).

% empty_set
thf(fact_37_non__empty__space,axiom,
    ( ( as != nil_nat )
   => ( ( frequency_Moment_M_1 @ as )
     != bot_bo2099793752762293965at_nat ) ) ).

% non_empty_space
thf(fact_38_Set_Ois__empty__def,axiom,
    ( is_empty_nat
    = ( ^ [A3: set_nat] : ( A3 = bot_bot_set_nat ) ) ) ).

% Set.is_empty_def
thf(fact_39_Set_Ois__empty__def,axiom,
    ( is_emp1662574758705540307at_nat
    = ( ^ [A3: set_Pr1261947904930325089at_nat] : ( A3 = bot_bo2099793752762293965at_nat ) ) ) ).

% Set.is_empty_def
thf(fact_40_Set_Ois__empty__def,axiom,
    ( is_empty_real
    = ( ^ [A3: set_real] : ( A3 = bot_bot_set_real ) ) ) ).

% Set.is_empty_def
thf(fact_41_list__ex1__simps_I1_J,axiom,
    ! [P: nat > $o] :
      ~ ( list_ex1_nat @ P @ nil_nat ) ).

% list_ex1_simps(1)
thf(fact_42_nths__empty,axiom,
    ! [Xs: list_nat] :
      ( ( nths_nat @ Xs @ bot_bot_set_nat )
      = nil_nat ) ).

% nths_empty
thf(fact_43_bot__list__def,axiom,
    bot_bot_list_nat = nil_nat ).

% bot_list_def
thf(fact_44_Collect__empty__eq__bot,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( P = bot_bot_nat_o ) ) ).

% Collect_empty_eq_bot
thf(fact_45_Collect__empty__eq__bot,axiom,
    ! [P: product_prod_nat_nat > $o] :
      ( ( ( collec3392354462482085612at_nat @ P )
        = bot_bo2099793752762293965at_nat )
      = ( P = bot_bo482883023278783056_nat_o ) ) ).

% Collect_empty_eq_bot
thf(fact_46_Collect__empty__eq__bot,axiom,
    ! [P: real > $o] :
      ( ( ( collect_real @ P )
        = bot_bot_set_real )
      = ( P = bot_bot_real_o ) ) ).

% Collect_empty_eq_bot
thf(fact_47_bot__empty__eq,axiom,
    ( bot_bot_nat_o
    = ( ^ [X: nat] : ( member_nat2 @ X @ bot_bot_set_nat ) ) ) ).

% bot_empty_eq
thf(fact_48_bot__empty__eq,axiom,
    ( bot_bo482883023278783056_nat_o
    = ( ^ [X: product_prod_nat_nat] : ( member8440522571783428010at_nat @ X @ bot_bo2099793752762293965at_nat ) ) ) ).

% bot_empty_eq
thf(fact_49_bot__empty__eq,axiom,
    ( bot_bot_real_o
    = ( ^ [X: real] : ( member_real2 @ X @ bot_bot_set_real ) ) ) ).

% bot_empty_eq
thf(fact_50_in__set__member,axiom,
    ! [X2: real,Xs: list_real] :
      ( ( member_real2 @ X2 @ ( set_real2 @ Xs ) )
      = ( member_real @ Xs @ X2 ) ) ).

% in_set_member
thf(fact_51_in__set__member,axiom,
    ! [X2: product_prod_nat_nat,Xs: list_P6011104703257516679at_nat] :
      ( ( member8440522571783428010at_nat @ X2 @ ( set_Pr5648618587558075414at_nat @ Xs ) )
      = ( member6104210405413575452at_nat @ Xs @ X2 ) ) ).

% in_set_member
thf(fact_52_in__set__member,axiom,
    ! [X2: nat,Xs: list_nat] :
      ( ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) )
      = ( member_nat @ Xs @ X2 ) ) ).

% in_set_member
thf(fact_53_member__rec_I2_J,axiom,
    ! [Y2: nat] :
      ~ ( member_nat @ nil_nat @ Y2 ) ).

% member_rec(2)
thf(fact_54_gen__length__code_I1_J,axiom,
    ! [N: nat] :
      ( ( gen_length_nat @ N @ nil_nat )
      = N ) ).

% gen_length_code(1)
thf(fact_55_nths__nil,axiom,
    ! [A: set_nat] :
      ( ( nths_nat @ nil_nat @ A )
      = nil_nat ) ).

% nths_nil
thf(fact_56_in__set__nthsD,axiom,
    ! [X2: real,Xs: list_real,I: set_nat] :
      ( ( member_real2 @ X2 @ ( set_real2 @ ( nths_real @ Xs @ I ) ) )
     => ( member_real2 @ X2 @ ( set_real2 @ Xs ) ) ) ).

% in_set_nthsD
thf(fact_57_in__set__nthsD,axiom,
    ! [X2: product_prod_nat_nat,Xs: list_P6011104703257516679at_nat,I: set_nat] :
      ( ( member8440522571783428010at_nat @ X2 @ ( set_Pr5648618587558075414at_nat @ ( nths_P6079298444859966469at_nat @ Xs @ I ) ) )
     => ( member8440522571783428010at_nat @ X2 @ ( set_Pr5648618587558075414at_nat @ Xs ) ) ) ).

% in_set_nthsD
thf(fact_58_in__set__nthsD,axiom,
    ! [X2: nat,Xs: list_nat,I: set_nat] :
      ( ( member_nat2 @ X2 @ ( set_nat2 @ ( nths_nat @ Xs @ I ) ) )
     => ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) ) ) ).

% in_set_nthsD
thf(fact_59_notin__set__nthsI,axiom,
    ! [X2: real,Xs: list_real,I: set_nat] :
      ( ~ ( member_real2 @ X2 @ ( set_real2 @ Xs ) )
     => ~ ( member_real2 @ X2 @ ( set_real2 @ ( nths_real @ Xs @ I ) ) ) ) ).

% notin_set_nthsI
thf(fact_60_notin__set__nthsI,axiom,
    ! [X2: product_prod_nat_nat,Xs: list_P6011104703257516679at_nat,I: set_nat] :
      ( ~ ( member8440522571783428010at_nat @ X2 @ ( set_Pr5648618587558075414at_nat @ Xs ) )
     => ~ ( member8440522571783428010at_nat @ X2 @ ( set_Pr5648618587558075414at_nat @ ( nths_P6079298444859966469at_nat @ Xs @ I ) ) ) ) ).

% notin_set_nthsI
thf(fact_61_notin__set__nthsI,axiom,
    ! [X2: nat,Xs: list_nat,I: set_nat] :
      ( ~ ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) )
     => ~ ( member_nat2 @ X2 @ ( set_nat2 @ ( nths_nat @ Xs @ I ) ) ) ) ).

% notin_set_nthsI
thf(fact_62_list__ex1__iff,axiom,
    ( list_ex1_real
    = ( ^ [P2: real > $o,Xs2: list_real] :
        ? [X: real] :
          ( ( member_real2 @ X @ ( set_real2 @ Xs2 ) )
          & ( P2 @ X )
          & ! [Y3: real] :
              ( ( ( member_real2 @ Y3 @ ( set_real2 @ Xs2 ) )
                & ( P2 @ Y3 ) )
             => ( Y3 = X ) ) ) ) ) ).

% list_ex1_iff
thf(fact_63_list__ex1__iff,axiom,
    ( list_e8644085759156585930at_nat
    = ( ^ [P2: product_prod_nat_nat > $o,Xs2: list_P6011104703257516679at_nat] :
        ? [X: product_prod_nat_nat] :
          ( ( member8440522571783428010at_nat @ X @ ( set_Pr5648618587558075414at_nat @ Xs2 ) )
          & ( P2 @ X )
          & ! [Y3: product_prod_nat_nat] :
              ( ( ( member8440522571783428010at_nat @ Y3 @ ( set_Pr5648618587558075414at_nat @ Xs2 ) )
                & ( P2 @ Y3 ) )
             => ( Y3 = X ) ) ) ) ) ).

% list_ex1_iff
thf(fact_64_list__ex1__iff,axiom,
    ( list_ex1_nat
    = ( ^ [P2: nat > $o,Xs2: list_nat] :
        ? [X: nat] :
          ( ( member_nat2 @ X @ ( set_nat2 @ Xs2 ) )
          & ( P2 @ X )
          & ! [Y3: nat] :
              ( ( ( member_nat2 @ Y3 @ ( set_nat2 @ Xs2 ) )
                & ( P2 @ Y3 ) )
             => ( Y3 = X ) ) ) ) ) ).

% list_ex1_iff
thf(fact_65_fin__space,axiom,
    ( ( as != nil_nat )
   => ( finite6177210948735845034at_nat @ ( frequency_Moment_M_1 @ as ) ) ) ).

% fin_space
thf(fact_66_can__select__set__list__ex1,axiom,
    ! [P: nat > $o,A: list_nat] :
      ( ( can_select_nat @ P @ ( set_nat2 @ A ) )
      = ( list_ex1_nat @ P @ A ) ) ).

% can_select_set_list_ex1
thf(fact_67_is__empty__set,axiom,
    ! [Xs: list_nat] :
      ( ( is_empty_nat @ ( set_nat2 @ Xs ) )
      = ( null_nat @ Xs ) ) ).

% is_empty_set
thf(fact_68_Id__on__empty,axiom,
    ( ( id_on_nat @ bot_bot_set_nat )
    = bot_bo2099793752762293965at_nat ) ).

% Id_on_empty
thf(fact_69_Id__on__empty,axiom,
    ( ( id_on_2554058798563519774at_nat @ bot_bo2099793752762293965at_nat )
    = bot_bo5327735625951526323at_nat ) ).

% Id_on_empty
thf(fact_70_Id__on__empty,axiom,
    ( ( id_on_real @ bot_bot_set_real )
    = bot_bo3948376660626123781l_real ) ).

% Id_on_empty
thf(fact_71_Range__empty,axiom,
    ( ( range_nat_nat @ bot_bo2099793752762293965at_nat )
    = bot_bot_set_nat ) ).

% Range_empty
thf(fact_72_Domain__empty,axiom,
    ( ( domain_nat_nat @ bot_bo2099793752762293965at_nat )
    = bot_bot_set_nat ) ).

% Domain_empty
thf(fact_73_bind__simps_I1_J,axiom,
    ! [F: nat > list_nat] :
      ( ( bind_nat_nat @ nil_nat @ F )
      = nil_nat ) ).

% bind_simps(1)
thf(fact_74_card__space,axiom,
    ( ( as != nil_nat )
   => ( ( finite711546835091564841at_nat @ ( frequency_Moment_M_1 @ as ) )
      = ( size_size_list_nat @ as ) ) ) ).

% card_space
thf(fact_75_mem__Collect__eq,axiom,
    ! [A2: real,P: real > $o] :
      ( ( member_real2 @ A2 @ ( collect_real @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_76_mem__Collect__eq,axiom,
    ! [A2: product_prod_nat_nat,P: product_prod_nat_nat > $o] :
      ( ( member8440522571783428010at_nat @ A2 @ ( collec3392354462482085612at_nat @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_77_mem__Collect__eq,axiom,
    ! [A2: nat,P: nat > $o] :
      ( ( member_nat2 @ A2 @ ( collect_nat @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_78_Collect__mem__eq,axiom,
    ! [A: set_real] :
      ( ( collect_real
        @ ^ [X: real] : ( member_real2 @ X @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_79_Collect__mem__eq,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( collec3392354462482085612at_nat
        @ ^ [X: product_prod_nat_nat] : ( member8440522571783428010at_nat @ X @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_80_Collect__mem__eq,axiom,
    ! [A: set_nat] :
      ( ( collect_nat
        @ ^ [X: nat] : ( member_nat2 @ X @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_81_Collect__cong,axiom,
    ! [P: product_prod_nat_nat > $o,Q: product_prod_nat_nat > $o] :
      ( ! [X3: product_prod_nat_nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collec3392354462482085612at_nat @ P )
        = ( collec3392354462482085612at_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_82_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_83_maps__simps_I2_J,axiom,
    ! [F: nat > list_nat] :
      ( ( maps_nat_nat @ F @ nil_nat )
      = nil_nat ) ).

% maps_simps(2)
thf(fact_84_in__set__insert,axiom,
    ! [X2: real,Xs: list_real] :
      ( ( member_real2 @ X2 @ ( set_real2 @ Xs ) )
     => ( ( insert_real @ X2 @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_85_in__set__insert,axiom,
    ! [X2: product_prod_nat_nat,Xs: list_P6011104703257516679at_nat] :
      ( ( member8440522571783428010at_nat @ X2 @ ( set_Pr5648618587558075414at_nat @ Xs ) )
     => ( ( insert8944034826898310173at_nat @ X2 @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_86_in__set__insert,axiom,
    ! [X2: nat,Xs: list_nat] :
      ( ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) )
     => ( ( insert_nat @ X2 @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_87_List_Ofinite__set,axiom,
    ! [Xs: list_P6011104703257516679at_nat] : ( finite6177210948735845034at_nat @ ( set_Pr5648618587558075414at_nat @ Xs ) ) ).

% List.finite_set
thf(fact_88_List_Ofinite__set,axiom,
    ! [Xs: list_nat] : ( finite_finite_nat @ ( set_nat2 @ Xs ) ) ).

% List.finite_set
thf(fact_89_finite__Domain,axiom,
    ! [R: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ R )
     => ( finite_finite_nat @ ( domain_nat_nat @ R ) ) ) ).

% finite_Domain
thf(fact_90_finite__Range,axiom,
    ! [R: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ R )
     => ( finite_finite_nat @ ( range_nat_nat @ R ) ) ) ).

% finite_Range
thf(fact_91_neq__if__length__neq,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
       != ( size_size_list_nat @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_92_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_nat] :
      ( ( size_size_list_nat @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_93_can__select__def,axiom,
    ( can_select_nat
    = ( ^ [P2: nat > $o,A3: set_nat] :
        ? [X: nat] :
          ( ( member_nat2 @ X @ A3 )
          & ( P2 @ X )
          & ! [Y3: nat] :
              ( ( ( member_nat2 @ Y3 @ A3 )
                & ( P2 @ Y3 ) )
             => ( Y3 = X ) ) ) ) ) ).

% can_select_def
thf(fact_94_can__select__def,axiom,
    ( can_select_real
    = ( ^ [P2: real > $o,A3: set_real] :
        ? [X: real] :
          ( ( member_real2 @ X @ A3 )
          & ( P2 @ X )
          & ! [Y3: real] :
              ( ( ( member_real2 @ Y3 @ A3 )
                & ( P2 @ Y3 ) )
             => ( Y3 = X ) ) ) ) ) ).

% can_select_def
thf(fact_95_can__select__def,axiom,
    ( can_se4754832747099445502at_nat
    = ( ^ [P2: product_prod_nat_nat > $o,A3: set_Pr1261947904930325089at_nat] :
        ? [X: product_prod_nat_nat] :
          ( ( member8440522571783428010at_nat @ X @ A3 )
          & ( P2 @ X )
          & ! [Y3: product_prod_nat_nat] :
              ( ( ( member8440522571783428010at_nat @ Y3 @ A3 )
                & ( P2 @ Y3 ) )
             => ( Y3 = X ) ) ) ) ) ).

% can_select_def
thf(fact_96_finite__list,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ? [Xs3: list_P6011104703257516679at_nat] :
          ( ( set_Pr5648618587558075414at_nat @ Xs3 )
          = A ) ) ).

% finite_list
thf(fact_97_finite__list,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ? [Xs3: list_nat] :
          ( ( set_nat2 @ Xs3 )
          = A ) ) ).

% finite_list
thf(fact_98_Domain__empty__iff,axiom,
    ! [R: set_Pr1261947904930325089at_nat] :
      ( ( ( domain_nat_nat @ R )
        = bot_bot_set_nat )
      = ( R = bot_bo2099793752762293965at_nat ) ) ).

% Domain_empty_iff
thf(fact_99_Range__empty__iff,axiom,
    ! [R: set_Pr1261947904930325089at_nat] :
      ( ( ( range_nat_nat @ R )
        = bot_bot_set_nat )
      = ( R = bot_bo2099793752762293965at_nat ) ) ).

% Range_empty_iff
thf(fact_100_null__rec_I2_J,axiom,
    null_nat @ nil_nat ).

% null_rec(2)
thf(fact_101_null__def,axiom,
    ( null_nat
    = ( ^ [Xs2: list_nat] : ( Xs2 = nil_nat ) ) ) ).

% null_def
thf(fact_102_finite__transitivity__chain,axiom,
    ! [A: set_nat,R2: nat > nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ! [X3: nat] :
            ~ ( R2 @ X3 @ X3 )
       => ( ! [X3: nat,Y: nat,Z: nat] :
              ( ( R2 @ X3 @ Y )
             => ( ( R2 @ Y @ Z )
               => ( R2 @ X3 @ Z ) ) )
         => ( ! [X3: nat] :
                ( ( member_nat2 @ X3 @ A )
               => ? [Y4: nat] :
                    ( ( member_nat2 @ Y4 @ A )
                    & ( R2 @ X3 @ Y4 ) ) )
           => ( A = bot_bot_set_nat ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_103_finite__transitivity__chain,axiom,
    ! [A: set_Pr1261947904930325089at_nat,R2: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ! [X3: product_prod_nat_nat] :
            ~ ( R2 @ X3 @ X3 )
       => ( ! [X3: product_prod_nat_nat,Y: product_prod_nat_nat,Z: product_prod_nat_nat] :
              ( ( R2 @ X3 @ Y )
             => ( ( R2 @ Y @ Z )
               => ( R2 @ X3 @ Z ) ) )
         => ( ! [X3: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ X3 @ A )
               => ? [Y4: product_prod_nat_nat] :
                    ( ( member8440522571783428010at_nat @ Y4 @ A )
                    & ( R2 @ X3 @ Y4 ) ) )
           => ( A = bot_bo2099793752762293965at_nat ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_104_finite__transitivity__chain,axiom,
    ! [A: set_real,R2: real > real > $o] :
      ( ( finite_finite_real @ A )
     => ( ! [X3: real] :
            ~ ( R2 @ X3 @ X3 )
       => ( ! [X3: real,Y: real,Z: real] :
              ( ( R2 @ X3 @ Y )
             => ( ( R2 @ Y @ Z )
               => ( R2 @ X3 @ Z ) ) )
         => ( ! [X3: real] :
                ( ( member_real2 @ X3 @ A )
               => ? [Y4: real] :
                    ( ( member_real2 @ Y4 @ A )
                    & ( R2 @ X3 @ Y4 ) ) )
           => ( A = bot_bot_set_real ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_105_infinite__imp__nonempty,axiom,
    ! [S: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( S != bot_bot_set_nat ) ) ).

% infinite_imp_nonempty
thf(fact_106_infinite__imp__nonempty,axiom,
    ! [S: set_Pr1261947904930325089at_nat] :
      ( ~ ( finite6177210948735845034at_nat @ S )
     => ( S != bot_bo2099793752762293965at_nat ) ) ).

% infinite_imp_nonempty
thf(fact_107_infinite__imp__nonempty,axiom,
    ! [S: set_real] :
      ( ~ ( finite_finite_real @ S )
     => ( S != bot_bot_set_real ) ) ).

% infinite_imp_nonempty
thf(fact_108_finite_OemptyI,axiom,
    finite_finite_nat @ bot_bot_set_nat ).

% finite.emptyI
thf(fact_109_finite_OemptyI,axiom,
    finite6177210948735845034at_nat @ bot_bo2099793752762293965at_nat ).

% finite.emptyI
thf(fact_110_finite_OemptyI,axiom,
    finite_finite_real @ bot_bot_set_real ).

% finite.emptyI
thf(fact_111_sorted__list__of__set__eq__Nil__iff,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( ( linord2614967742042102400et_nat @ A )
          = nil_nat )
        = ( A = bot_bot_set_nat ) ) ) ).

% sorted_list_of_set_eq_Nil_iff
thf(fact_112_sorted__list__of__set__eq__Nil__iff,axiom,
    ! [A: set_real] :
      ( ( finite_finite_real @ A )
     => ( ( ( linord4252657396651189596t_real @ A )
          = nil_real )
        = ( A = bot_bot_set_real ) ) ) ).

% sorted_list_of_set_eq_Nil_iff
thf(fact_113_size__neq__size__imp__neq,axiom,
    ! [X2: list_nat,Y2: list_nat] :
      ( ( ( size_size_list_nat @ X2 )
       != ( size_size_list_nat @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_114_size__neq__size__imp__neq,axiom,
    ! [X2: char,Y2: char] :
      ( ( ( size_size_char @ X2 )
       != ( size_size_char @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_115_card__length,axiom,
    ! [Xs: list_P6011104703257516679at_nat] : ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ ( set_Pr5648618587558075414at_nat @ Xs ) ) @ ( size_s5460976970255530739at_nat @ Xs ) ) ).

% card_length
thf(fact_116_card__length,axiom,
    ! [Xs: list_nat] : ( ord_less_eq_nat @ ( finite_card_nat @ ( set_nat2 @ Xs ) ) @ ( size_size_list_nat @ Xs ) ) ).

% card_length
thf(fact_117_order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% order.refl
thf(fact_118_order_Orefl,axiom,
    ! [A2: real] : ( ord_less_eq_real @ A2 @ A2 ) ).

% order.refl
thf(fact_119_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_120_order__refl,axiom,
    ! [X2: real] : ( ord_less_eq_real @ X2 @ X2 ) ).

% order_refl
thf(fact_121_sorted__list__of__set_Osorted__key__list__of__set__empty,axiom,
    ( ( linord2614967742042102400et_nat @ bot_bot_set_nat )
    = nil_nat ) ).

% sorted_list_of_set.sorted_key_list_of_set_empty
thf(fact_122_sorted__list__of__set_Osorted__key__list__of__set__empty,axiom,
    ( ( linord4252657396651189596t_real @ bot_bot_set_real )
    = nil_real ) ).

% sorted_list_of_set.sorted_key_list_of_set_empty
thf(fact_123_sorted__list__of__set_Ofold__insort__key_Oinfinite,axiom,
    ! [A: set_nat] :
      ( ~ ( finite_finite_nat @ A )
     => ( ( linord2614967742042102400et_nat @ A )
        = nil_nat ) ) ).

% sorted_list_of_set.fold_insort_key.infinite
thf(fact_124_sorted__list__of__set_Oset__sorted__key__list__of__set,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( set_nat2 @ ( linord2614967742042102400et_nat @ A ) )
        = A ) ) ).

% sorted_list_of_set.set_sorted_key_list_of_set
thf(fact_125_length__sorted__list__of__set,axiom,
    ! [A: set_nat] :
      ( ( size_size_list_nat @ ( linord2614967742042102400et_nat @ A ) )
      = ( finite_card_nat @ A ) ) ).

% length_sorted_list_of_set
thf(fact_126_infinite__nat__iff__unbounded__le,axiom,
    ! [S: set_nat] :
      ( ( ~ ( finite_finite_nat @ S ) )
      = ( ! [M: nat] :
          ? [N2: nat] :
            ( ( ord_less_eq_nat @ M @ N2 )
            & ( member_nat2 @ N2 @ S ) ) ) ) ).

% infinite_nat_iff_unbounded_le
thf(fact_127_basic__trans__rules_I26_J,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( A2 = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% basic_trans_rules(26)
thf(fact_128_basic__trans__rules_I26_J,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( A2 = B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% basic_trans_rules(26)
thf(fact_129_basic__trans__rules_I25_J,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% basic_trans_rules(25)
thf(fact_130_basic__trans__rules_I25_J,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( B = C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% basic_trans_rules(25)
thf(fact_131_basic__trans__rules_I24_J,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ B @ A2 )
       => ( A2 = B ) ) ) ).

% basic_trans_rules(24)
thf(fact_132_basic__trans__rules_I24_J,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ B @ A2 )
       => ( A2 = B ) ) ) ).

% basic_trans_rules(24)
thf(fact_133_basic__trans__rules_I23_J,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_eq_nat @ X2 @ Z2 ) ) ) ).

% basic_trans_rules(23)
thf(fact_134_basic__trans__rules_I23_J,axiom,
    ! [X2: real,Y2: real,Z2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ Z2 )
       => ( ord_less_eq_real @ X2 @ Z2 ) ) ) ).

% basic_trans_rules(23)
thf(fact_135_basic__trans__rules_I10_J,axiom,
    ! [A2: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% basic_trans_rules(10)
thf(fact_136_basic__trans__rules_I10_J,axiom,
    ! [A2: real,F: nat > real,B: nat,C: nat] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% basic_trans_rules(10)
thf(fact_137_basic__trans__rules_I10_J,axiom,
    ! [A2: nat,F: real > nat,B: real,C: real] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% basic_trans_rules(10)
thf(fact_138_basic__trans__rules_I10_J,axiom,
    ! [A2: real,F: real > real,B: real,C: real] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% basic_trans_rules(10)
thf(fact_139_basic__trans__rules_I9_J,axiom,
    ! [A2: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% basic_trans_rules(9)
thf(fact_140_basic__trans__rules_I9_J,axiom,
    ! [A2: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% basic_trans_rules(9)
thf(fact_141_basic__trans__rules_I9_J,axiom,
    ! [A2: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% basic_trans_rules(9)
thf(fact_142_basic__trans__rules_I9_J,axiom,
    ! [A2: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% basic_trans_rules(9)
thf(fact_143_basic__trans__rules_I8_J,axiom,
    ! [A2: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% basic_trans_rules(8)
thf(fact_144_basic__trans__rules_I8_J,axiom,
    ! [A2: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% basic_trans_rules(8)
thf(fact_145_basic__trans__rules_I8_J,axiom,
    ! [A2: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% basic_trans_rules(8)
thf(fact_146_basic__trans__rules_I8_J,axiom,
    ! [A2: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% basic_trans_rules(8)
thf(fact_147_basic__trans__rules_I7_J,axiom,
    ! [A2: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% basic_trans_rules(7)
thf(fact_148_basic__trans__rules_I7_J,axiom,
    ! [A2: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% basic_trans_rules(7)
thf(fact_149_basic__trans__rules_I7_J,axiom,
    ! [A2: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% basic_trans_rules(7)
thf(fact_150_basic__trans__rules_I7_J,axiom,
    ! [A2: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% basic_trans_rules(7)
thf(fact_151_linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linear
thf(fact_152_linear,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
      | ( ord_less_eq_real @ Y2 @ X2 ) ) ).

% linear
thf(fact_153_nle__le,axiom,
    ! [A2: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B ) )
      = ( ( ord_less_eq_nat @ B @ A2 )
        & ( B != A2 ) ) ) ).

% nle_le
thf(fact_154_nle__le,axiom,
    ! [A2: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A2 @ B ) )
      = ( ( ord_less_eq_real @ B @ A2 )
        & ( B != A2 ) ) ) ).

% nle_le
thf(fact_155_eq__refl,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% eq_refl
thf(fact_156_eq__refl,axiom,
    ! [X2: real,Y2: real] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% eq_refl
thf(fact_157_le__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% le_cases
thf(fact_158_le__cases,axiom,
    ! [X2: real,Y2: real] :
      ( ~ ( ord_less_eq_real @ X2 @ Y2 )
     => ( ord_less_eq_real @ Y2 @ X2 ) ) ).

% le_cases
thf(fact_159_le__cases3,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_160_le__cases3,axiom,
    ! [X2: real,Y2: real,Z2: real] :
      ( ( ( ord_less_eq_real @ X2 @ Y2 )
       => ~ ( ord_less_eq_real @ Y2 @ Z2 ) )
     => ( ( ( ord_less_eq_real @ Y2 @ X2 )
         => ~ ( ord_less_eq_real @ X2 @ Z2 ) )
       => ( ( ( ord_less_eq_real @ X2 @ Z2 )
           => ~ ( ord_less_eq_real @ Z2 @ Y2 ) )
         => ( ( ( ord_less_eq_real @ Z2 @ Y2 )
             => ~ ( ord_less_eq_real @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_real @ Y2 @ Z2 )
               => ~ ( ord_less_eq_real @ Z2 @ X2 ) )
             => ~ ( ( ord_less_eq_real @ Z2 @ X2 )
                 => ~ ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_161_antisym__conv,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv
thf(fact_162_antisym__conv,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ Y2 @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv
thf(fact_163_order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A4 @ B2 )
          & ( ord_less_eq_nat @ B2 @ A4 ) ) ) ) ).

% order.eq_iff
thf(fact_164_order_Oeq__iff,axiom,
    ( ( ^ [Y5: real,Z3: real] : ( Y5 = Z3 ) )
    = ( ^ [A4: real,B2: real] :
          ( ( ord_less_eq_real @ A4 @ B2 )
          & ( ord_less_eq_real @ B2 @ A4 ) ) ) ) ).

% order.eq_iff
thf(fact_165_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [X: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_166_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: real,Z3: real] : ( Y5 = Z3 ) )
    = ( ^ [X: real,Y3: real] :
          ( ( ord_less_eq_real @ X @ Y3 )
          & ( ord_less_eq_real @ Y3 @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_167_order__antisym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_168_order__antisym,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_169_order_Otrans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_170_order_Otrans,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% order.trans
thf(fact_171_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B: nat] :
      ( ! [A5: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A5 @ B3 )
         => ( P @ A5 @ B3 ) )
     => ( ! [A5: nat,B3: nat] :
            ( ( P @ B3 @ A5 )
           => ( P @ A5 @ B3 ) )
       => ( P @ A2 @ B ) ) ) ).

% linorder_wlog
thf(fact_172_linorder__wlog,axiom,
    ! [P: real > real > $o,A2: real,B: real] :
      ( ! [A5: real,B3: real] :
          ( ( ord_less_eq_real @ A5 @ B3 )
         => ( P @ A5 @ B3 ) )
     => ( ! [A5: real,B3: real] :
            ( ( P @ B3 @ A5 )
           => ( P @ A5 @ B3 ) )
       => ( P @ A2 @ B ) ) ) ).

% linorder_wlog
thf(fact_173_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_174_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: real,Z3: real] : ( Y5 = Z3 ) )
    = ( ^ [A4: real,B2: real] :
          ( ( ord_less_eq_real @ B2 @ A4 )
          & ( ord_less_eq_real @ A4 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_175_dual__order_Oantisym,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B )
       => ( A2 = B ) ) ) ).

% dual_order.antisym
thf(fact_176_dual__order_Oantisym,axiom,
    ! [B: real,A2: real] :
      ( ( ord_less_eq_real @ B @ A2 )
     => ( ( ord_less_eq_real @ A2 @ B )
       => ( A2 = B ) ) ) ).

% dual_order.antisym
thf(fact_177_dual__order_Otrans,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_178_dual__order_Otrans,axiom,
    ! [B: real,A2: real,C: real] :
      ( ( ord_less_eq_real @ B @ A2 )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_179_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y4: nat] :
                ( ( P @ Y4 )
               => ( ord_less_eq_nat @ Y4 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_180_nat__le__linear,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
      | ( ord_less_eq_nat @ N @ M2 ) ) ).

% nat_le_linear
thf(fact_181_le__antisym,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( ord_less_eq_nat @ N @ M2 )
       => ( M2 = N ) ) ) ).

% le_antisym
thf(fact_182_eq__imp__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 = N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% eq_imp_le
thf(fact_183_le__trans,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_184_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_185_finite__has__minimal2,axiom,
    ! [A: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( member8440522571783428010at_nat @ A2 @ A )
       => ? [X3: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X3 @ A )
            & ( ord_le8460144461188290721at_nat @ X3 @ A2 )
            & ! [Xa: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ Xa @ A )
               => ( ( ord_le8460144461188290721at_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_186_finite__has__minimal2,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( member_nat2 @ A2 @ A )
       => ? [X3: nat] :
            ( ( member_nat2 @ X3 @ A )
            & ( ord_less_eq_nat @ X3 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat2 @ Xa @ A )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_187_finite__has__minimal2,axiom,
    ! [A: set_real,A2: real] :
      ( ( finite_finite_real @ A )
     => ( ( member_real2 @ A2 @ A )
       => ? [X3: real] :
            ( ( member_real2 @ X3 @ A )
            & ( ord_less_eq_real @ X3 @ A2 )
            & ! [Xa: real] :
                ( ( member_real2 @ Xa @ A )
               => ( ( ord_less_eq_real @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_188_finite__has__maximal2,axiom,
    ! [A: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( member8440522571783428010at_nat @ A2 @ A )
       => ? [X3: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X3 @ A )
            & ( ord_le8460144461188290721at_nat @ A2 @ X3 )
            & ! [Xa: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ Xa @ A )
               => ( ( ord_le8460144461188290721at_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_189_finite__has__maximal2,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( member_nat2 @ A2 @ A )
       => ? [X3: nat] :
            ( ( member_nat2 @ X3 @ A )
            & ( ord_less_eq_nat @ A2 @ X3 )
            & ! [Xa: nat] :
                ( ( member_nat2 @ Xa @ A )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_190_finite__has__maximal2,axiom,
    ! [A: set_real,A2: real] :
      ( ( finite_finite_real @ A )
     => ( ( member_real2 @ A2 @ A )
       => ? [X3: real] :
            ( ( member_real2 @ X3 @ A )
            & ( ord_less_eq_real @ A2 @ X3 )
            & ! [Xa: real] :
                ( ( member_real2 @ Xa @ A )
               => ( ( ord_less_eq_real @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_191_sorted__list__of__set__inject,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( ( linord2614967742042102400et_nat @ A )
        = ( linord2614967742042102400et_nat @ B4 ) )
     => ( ( finite_finite_nat @ A )
       => ( ( finite_finite_nat @ B4 )
         => ( A = B4 ) ) ) ) ).

% sorted_list_of_set_inject
thf(fact_192_le__bot,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
     => ( A2 = bot_bot_set_nat ) ) ).

% le_bot
thf(fact_193_le__bot,axiom,
    ! [A2: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ A2 @ bot_bo2099793752762293965at_nat )
     => ( A2 = bot_bo2099793752762293965at_nat ) ) ).

% le_bot
thf(fact_194_le__bot,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ bot_bot_set_real )
     => ( A2 = bot_bot_set_real ) ) ).

% le_bot
thf(fact_195_le__bot,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
     => ( A2 = bot_bot_nat ) ) ).

% le_bot
thf(fact_196_bot__least,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A2 ) ).

% bot_least
thf(fact_197_bot__least,axiom,
    ! [A2: set_Pr1261947904930325089at_nat] : ( ord_le3146513528884898305at_nat @ bot_bo2099793752762293965at_nat @ A2 ) ).

% bot_least
thf(fact_198_bot__least,axiom,
    ! [A2: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A2 ) ).

% bot_least
thf(fact_199_bot__least,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A2 ) ).

% bot_least
thf(fact_200_bot__unique,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% bot_unique
thf(fact_201_bot__unique,axiom,
    ! [A2: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ A2 @ bot_bo2099793752762293965at_nat )
      = ( A2 = bot_bo2099793752762293965at_nat ) ) ).

% bot_unique
thf(fact_202_bot__unique,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ bot_bot_set_real )
      = ( A2 = bot_bot_set_real ) ) ).

% bot_unique
thf(fact_203_bot__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
      = ( A2 = bot_bot_nat ) ) ).

% bot_unique
thf(fact_204_finite__has__minimal,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( A != bot_bo2099793752762293965at_nat )
       => ? [X3: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X3 @ A )
            & ! [Xa: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ Xa @ A )
               => ( ( ord_le8460144461188290721at_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_205_finite__has__minimal,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat2 @ X3 @ A )
            & ! [Xa: nat] :
                ( ( member_nat2 @ Xa @ A )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_206_finite__has__minimal,axiom,
    ! [A: set_real] :
      ( ( finite_finite_real @ A )
     => ( ( A != bot_bot_set_real )
       => ? [X3: real] :
            ( ( member_real2 @ X3 @ A )
            & ! [Xa: real] :
                ( ( member_real2 @ Xa @ A )
               => ( ( ord_less_eq_real @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_207_finite__has__maximal,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( A != bot_bo2099793752762293965at_nat )
       => ? [X3: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X3 @ A )
            & ! [Xa: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ Xa @ A )
               => ( ( ord_le8460144461188290721at_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_208_finite__has__maximal,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat2 @ X3 @ A )
            & ! [Xa: nat] :
                ( ( member_nat2 @ Xa @ A )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_209_finite__has__maximal,axiom,
    ! [A: set_real] :
      ( ( finite_finite_real @ A )
     => ( ( A != bot_bot_set_real )
       => ? [X3: real] :
            ( ( member_real2 @ X3 @ A )
            & ! [Xa: real] :
                ( ( member_real2 @ Xa @ A )
               => ( ( ord_less_eq_real @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_210_card__le__if__inj__on__rel,axiom,
    ! [B4: set_real,A: set_real,R: real > real > $o] :
      ( ( finite_finite_real @ B4 )
     => ( ! [A5: real] :
            ( ( member_real2 @ A5 @ A )
           => ? [B5: real] :
                ( ( member_real2 @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: real,A22: real,B3: real] :
              ( ( member_real2 @ A1 @ A )
             => ( ( member_real2 @ A22 @ A )
               => ( ( member_real2 @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_real @ A ) @ ( finite_card_real @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_211_card__le__if__inj__on__rel,axiom,
    ! [B4: set_real,A: set_Pr1261947904930325089at_nat,R: product_prod_nat_nat > real > $o] :
      ( ( finite_finite_real @ B4 )
     => ( ! [A5: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ A5 @ A )
           => ? [B5: real] :
                ( ( member_real2 @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: product_prod_nat_nat,A22: product_prod_nat_nat,B3: real] :
              ( ( member8440522571783428010at_nat @ A1 @ A )
             => ( ( member8440522571783428010at_nat @ A22 @ A )
               => ( ( member_real2 @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite_card_real @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_212_card__le__if__inj__on__rel,axiom,
    ! [B4: set_real,A: set_nat,R: nat > real > $o] :
      ( ( finite_finite_real @ B4 )
     => ( ! [A5: nat] :
            ( ( member_nat2 @ A5 @ A )
           => ? [B5: real] :
                ( ( member_real2 @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: nat,A22: nat,B3: real] :
              ( ( member_nat2 @ A1 @ A )
             => ( ( member_nat2 @ A22 @ A )
               => ( ( member_real2 @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( finite_card_real @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_213_card__le__if__inj__on__rel,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_real,R: real > product_prod_nat_nat > $o] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ! [A5: real] :
            ( ( member_real2 @ A5 @ A )
           => ? [B5: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: real,A22: real,B3: product_prod_nat_nat] :
              ( ( member_real2 @ A1 @ A )
             => ( ( member_real2 @ A22 @ A )
               => ( ( member8440522571783428010at_nat @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_real @ A ) @ ( finite711546835091564841at_nat @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_214_card__le__if__inj__on__rel,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat,R: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ! [A5: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ A5 @ A )
           => ? [B5: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: product_prod_nat_nat,A22: product_prod_nat_nat,B3: product_prod_nat_nat] :
              ( ( member8440522571783428010at_nat @ A1 @ A )
             => ( ( member8440522571783428010at_nat @ A22 @ A )
               => ( ( member8440522571783428010at_nat @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite711546835091564841at_nat @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_215_card__le__if__inj__on__rel,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_nat,R: nat > product_prod_nat_nat > $o] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ! [A5: nat] :
            ( ( member_nat2 @ A5 @ A )
           => ? [B5: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: nat,A22: nat,B3: product_prod_nat_nat] :
              ( ( member_nat2 @ A1 @ A )
             => ( ( member_nat2 @ A22 @ A )
               => ( ( member8440522571783428010at_nat @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( finite711546835091564841at_nat @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_216_card__le__if__inj__on__rel,axiom,
    ! [B4: set_nat,A: set_real,R: real > nat > $o] :
      ( ( finite_finite_nat @ B4 )
     => ( ! [A5: real] :
            ( ( member_real2 @ A5 @ A )
           => ? [B5: nat] :
                ( ( member_nat2 @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: real,A22: real,B3: nat] :
              ( ( member_real2 @ A1 @ A )
             => ( ( member_real2 @ A22 @ A )
               => ( ( member_nat2 @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_real @ A ) @ ( finite_card_nat @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_217_card__le__if__inj__on__rel,axiom,
    ! [B4: set_nat,A: set_Pr1261947904930325089at_nat,R: product_prod_nat_nat > nat > $o] :
      ( ( finite_finite_nat @ B4 )
     => ( ! [A5: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ A5 @ A )
           => ? [B5: nat] :
                ( ( member_nat2 @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: product_prod_nat_nat,A22: product_prod_nat_nat,B3: nat] :
              ( ( member8440522571783428010at_nat @ A1 @ A )
             => ( ( member8440522571783428010at_nat @ A22 @ A )
               => ( ( member_nat2 @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite_card_nat @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_218_card__le__if__inj__on__rel,axiom,
    ! [B4: set_nat,A: set_nat,R: nat > nat > $o] :
      ( ( finite_finite_nat @ B4 )
     => ( ! [A5: nat] :
            ( ( member_nat2 @ A5 @ A )
           => ? [B5: nat] :
                ( ( member_nat2 @ B5 @ B4 )
                & ( R @ A5 @ B5 ) ) )
       => ( ! [A1: nat,A22: nat,B3: nat] :
              ( ( member_nat2 @ A1 @ A )
             => ( ( member_nat2 @ A22 @ A )
               => ( ( member_nat2 @ B3 @ B4 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B4 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_219_finite__indexed__bound,axiom,
    ! [A: set_real,P: real > nat > $o] :
      ( ( finite_finite_real @ A )
     => ( ! [X3: real] :
            ( ( member_real2 @ X3 @ A )
           => ? [X_1: nat] : ( P @ X3 @ X_1 ) )
       => ? [M3: nat] :
          ! [X4: real] :
            ( ( member_real2 @ X4 @ A )
           => ? [K2: nat] :
                ( ( ord_less_eq_nat @ K2 @ M3 )
                & ( P @ X4 @ K2 ) ) ) ) ) ).

% finite_indexed_bound
thf(fact_220_finite__indexed__bound,axiom,
    ! [A: set_Pr1261947904930325089at_nat,P: product_prod_nat_nat > nat > $o] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ! [X3: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X3 @ A )
           => ? [X_1: nat] : ( P @ X3 @ X_1 ) )
       => ? [M3: nat] :
          ! [X4: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X4 @ A )
           => ? [K2: nat] :
                ( ( ord_less_eq_nat @ K2 @ M3 )
                & ( P @ X4 @ K2 ) ) ) ) ) ).

% finite_indexed_bound
thf(fact_221_finite__indexed__bound,axiom,
    ! [A: set_nat,P: nat > nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ! [X3: nat] :
            ( ( member_nat2 @ X3 @ A )
           => ? [X_1: nat] : ( P @ X3 @ X_1 ) )
       => ? [M3: nat] :
          ! [X4: nat] :
            ( ( member_nat2 @ X4 @ A )
           => ? [K2: nat] :
                ( ( ord_less_eq_nat @ K2 @ M3 )
                & ( P @ X4 @ K2 ) ) ) ) ) ).

% finite_indexed_bound
thf(fact_222_finite__indexed__bound,axiom,
    ! [A: set_real,P: real > real > $o] :
      ( ( finite_finite_real @ A )
     => ( ! [X3: real] :
            ( ( member_real2 @ X3 @ A )
           => ? [X_1: real] : ( P @ X3 @ X_1 ) )
       => ? [M3: real] :
          ! [X4: real] :
            ( ( member_real2 @ X4 @ A )
           => ? [K2: real] :
                ( ( ord_less_eq_real @ K2 @ M3 )
                & ( P @ X4 @ K2 ) ) ) ) ) ).

% finite_indexed_bound
thf(fact_223_finite__indexed__bound,axiom,
    ! [A: set_Pr1261947904930325089at_nat,P: product_prod_nat_nat > real > $o] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ! [X3: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X3 @ A )
           => ? [X_1: real] : ( P @ X3 @ X_1 ) )
       => ? [M3: real] :
          ! [X4: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X4 @ A )
           => ? [K2: real] :
                ( ( ord_less_eq_real @ K2 @ M3 )
                & ( P @ X4 @ K2 ) ) ) ) ) ).

% finite_indexed_bound
thf(fact_224_finite__indexed__bound,axiom,
    ! [A: set_nat,P: nat > real > $o] :
      ( ( finite_finite_nat @ A )
     => ( ! [X3: nat] :
            ( ( member_nat2 @ X3 @ A )
           => ? [X_1: real] : ( P @ X3 @ X_1 ) )
       => ? [M3: real] :
          ! [X4: nat] :
            ( ( member_nat2 @ X4 @ A )
           => ? [K2: real] :
                ( ( ord_less_eq_real @ K2 @ M3 )
                & ( P @ X4 @ K2 ) ) ) ) ) ).

% finite_indexed_bound
thf(fact_225_enumerate__mono__le__iff,axiom,
    ! [S: set_nat,M2: nat,N: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( ( ord_less_eq_nat @ ( infini8530281810654367211te_nat @ S @ M2 ) @ ( infini8530281810654367211te_nat @ S @ N ) )
        = ( ord_less_eq_nat @ M2 @ N ) ) ) ).

% enumerate_mono_le_iff
thf(fact_226_card__0__eq,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( ( finite_card_nat @ A )
          = zero_zero_nat )
        = ( A = bot_bot_set_nat ) ) ) ).

% card_0_eq
thf(fact_227_card__0__eq,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( ( finite711546835091564841at_nat @ A )
          = zero_zero_nat )
        = ( A = bot_bo2099793752762293965at_nat ) ) ) ).

% card_0_eq
thf(fact_228_card__0__eq,axiom,
    ! [A: set_real] :
      ( ( finite_finite_real @ A )
     => ( ( ( finite_card_real @ A )
          = zero_zero_nat )
        = ( A = bot_bot_set_real ) ) ) ).

% card_0_eq
thf(fact_229_arg__min__least,axiom,
    ! [S: set_nat,Y2: nat,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ( ( member_nat2 @ Y2 @ S )
         => ( ord_less_eq_nat @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) @ ( F @ Y2 ) ) ) ) ) ).

% arg_min_least
thf(fact_230_arg__min__least,axiom,
    ! [S: set_Pr1261947904930325089at_nat,Y2: product_prod_nat_nat,F: product_prod_nat_nat > nat] :
      ( ( finite6177210948735845034at_nat @ S )
     => ( ( S != bot_bo2099793752762293965at_nat )
       => ( ( member8440522571783428010at_nat @ Y2 @ S )
         => ( ord_less_eq_nat @ ( F @ ( lattic4984276347100956536at_nat @ F @ S ) ) @ ( F @ Y2 ) ) ) ) ) ).

% arg_min_least
thf(fact_231_arg__min__least,axiom,
    ! [S: set_real,Y2: real,F: real > nat] :
      ( ( finite_finite_real @ S )
     => ( ( S != bot_bot_set_real )
       => ( ( member_real2 @ Y2 @ S )
         => ( ord_less_eq_nat @ ( F @ ( lattic5055836439445974935al_nat @ F @ S ) ) @ ( F @ Y2 ) ) ) ) ) ).

% arg_min_least
thf(fact_232_arg__min__least,axiom,
    ! [S: set_nat,Y2: nat,F: nat > real] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ( ( member_nat2 @ Y2 @ S )
         => ( ord_less_eq_real @ ( F @ ( lattic488527866317076247t_real @ F @ S ) ) @ ( F @ Y2 ) ) ) ) ) ).

% arg_min_least
thf(fact_233_arg__min__least,axiom,
    ! [S: set_Pr1261947904930325089at_nat,Y2: product_prod_nat_nat,F: product_prod_nat_nat > real] :
      ( ( finite6177210948735845034at_nat @ S )
     => ( ( S != bot_bo2099793752762293965at_nat )
       => ( ( member8440522571783428010at_nat @ Y2 @ S )
         => ( ord_less_eq_real @ ( F @ ( lattic7428442014618555988t_real @ F @ S ) ) @ ( F @ Y2 ) ) ) ) ) ).

% arg_min_least
thf(fact_234_arg__min__least,axiom,
    ! [S: set_real,Y2: real,F: real > real] :
      ( ( finite_finite_real @ S )
     => ( ( S != bot_bot_set_real )
       => ( ( member_real2 @ Y2 @ S )
         => ( ord_less_eq_real @ ( F @ ( lattic8440615504127631091l_real @ F @ S ) ) @ ( F @ Y2 ) ) ) ) ) ).

% arg_min_least
thf(fact_235_class__dense__linordered__field_Osorted__list__of__set_Ofold__insort__key_Oinfinite,axiom,
    ! [A: set_real] :
      ( ~ ( finite_finite_real @ A )
     => ( ( sorted6366500744023230182t_real @ ord_less_eq_real @ A )
        = nil_real ) ) ).

% class_dense_linordered_field.sorted_list_of_set.fold_insort_key.infinite
thf(fact_236_class__dense__linordered__field_Osorted__list__of__set_Ofold__insort__key_Oempty,axiom,
    ( ( sorted6366500744023230182t_real @ ord_less_eq_real @ bot_bot_set_real )
    = nil_real ) ).

% class_dense_linordered_field.sorted_list_of_set.fold_insort_key.empty
thf(fact_237_GreatestI2__order,axiom,
    ! [P: real > $o,X2: real,Q: real > $o] :
      ( ( P @ X2 )
     => ( ! [Y: real] :
            ( ( P @ Y )
           => ( ord_less_eq_real @ Y @ X2 ) )
       => ( ! [X3: real] :
              ( ( P @ X3 )
             => ( ! [Y4: real] :
                    ( ( P @ Y4 )
                   => ( ord_less_eq_real @ Y4 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_real @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_238_GreatestI2__order,axiom,
    ! [P: nat > $o,X2: nat,Q: nat > $o] :
      ( ( P @ X2 )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ X2 ) )
       => ( ! [X3: nat] :
              ( ( P @ X3 )
             => ( ! [Y4: nat] :
                    ( ( P @ Y4 )
                   => ( ord_less_eq_nat @ Y4 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_nat @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_239_Greatest__equality,axiom,
    ! [P: real > $o,X2: real] :
      ( ( P @ X2 )
     => ( ! [Y: real] :
            ( ( P @ Y )
           => ( ord_less_eq_real @ Y @ X2 ) )
       => ( ( order_Greatest_real @ P )
          = X2 ) ) ) ).

% Greatest_equality
thf(fact_240_Greatest__equality,axiom,
    ! [P: nat > $o,X2: nat] :
      ( ( P @ X2 )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ X2 ) )
       => ( ( order_Greatest_nat @ P )
          = X2 ) ) ) ).

% Greatest_equality
thf(fact_241_card__eq__0__iff,axiom,
    ! [A: set_nat] :
      ( ( ( finite_card_nat @ A )
        = zero_zero_nat )
      = ( ( A = bot_bot_set_nat )
        | ~ ( finite_finite_nat @ A ) ) ) ).

% card_eq_0_iff
thf(fact_242_card__eq__0__iff,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( ( finite711546835091564841at_nat @ A )
        = zero_zero_nat )
      = ( ( A = bot_bo2099793752762293965at_nat )
        | ~ ( finite6177210948735845034at_nat @ A ) ) ) ).

% card_eq_0_iff
thf(fact_243_card__eq__0__iff,axiom,
    ! [A: set_real] :
      ( ( ( finite_card_real @ A )
        = zero_zero_nat )
      = ( ( A = bot_bot_set_real )
        | ~ ( finite_finite_real @ A ) ) ) ).

% card_eq_0_iff
thf(fact_244_empty__subsetI,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).

% empty_subsetI
thf(fact_245_empty__subsetI,axiom,
    ! [A: set_Pr1261947904930325089at_nat] : ( ord_le3146513528884898305at_nat @ bot_bo2099793752762293965at_nat @ A ) ).

% empty_subsetI
thf(fact_246_empty__subsetI,axiom,
    ! [A: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A ) ).

% empty_subsetI
thf(fact_247_subset__empty,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
      = ( A = bot_bot_set_nat ) ) ).

% subset_empty
thf(fact_248_subset__empty,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ A @ bot_bo2099793752762293965at_nat )
      = ( A = bot_bo2099793752762293965at_nat ) ) ).

% subset_empty
thf(fact_249_subset__empty,axiom,
    ! [A: set_real] :
      ( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
      = ( A = bot_bot_set_real ) ) ).

% subset_empty
thf(fact_250_le__Nil,axiom,
    ! [X2: list_nat] :
      ( ( ord_less_eq_list_nat @ X2 @ nil_nat )
      = ( X2 = nil_nat ) ) ).

% le_Nil
thf(fact_251_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_252_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_253_card_Oempty,axiom,
    ( ( finite_card_nat @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% card.empty
thf(fact_254_card_Oempty,axiom,
    ( ( finite711546835091564841at_nat @ bot_bo2099793752762293965at_nat )
    = zero_zero_nat ) ).

% card.empty
thf(fact_255_card_Oempty,axiom,
    ( ( finite_card_real @ bot_bot_set_real )
    = zero_zero_nat ) ).

% card.empty
thf(fact_256_card_Oinfinite,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ~ ( finite6177210948735845034at_nat @ A )
     => ( ( finite711546835091564841at_nat @ A )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_257_card_Oinfinite,axiom,
    ! [A: set_nat] :
      ( ~ ( finite_finite_nat @ A )
     => ( ( finite_card_nat @ A )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_258_length__0__conv,axiom,
    ! [Xs: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_nat ) ) ).

% length_0_conv
thf(fact_259_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_260_enumerate__Ex,axiom,
    ! [S: set_nat,S2: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( ( member_nat2 @ S2 @ S )
       => ? [N3: nat] :
            ( ( infini8530281810654367211te_nat @ S @ N3 )
            = S2 ) ) ) ).

% enumerate_Ex
thf(fact_261_less__eq__list__code_I2_J,axiom,
    ! [Xs: list_nat] : ( ord_less_eq_list_nat @ nil_nat @ Xs ) ).

% less_eq_list_code(2)
thf(fact_262_Nil__le__Cons,axiom,
    ! [X2: list_nat] : ( ord_less_eq_list_nat @ nil_nat @ X2 ) ).

% Nil_le_Cons
thf(fact_263_finite__subset,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ A @ B4 )
     => ( ( finite6177210948735845034at_nat @ B4 )
       => ( finite6177210948735845034at_nat @ A ) ) ) ).

% finite_subset
thf(fact_264_finite__subset,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B4 )
     => ( ( finite_finite_nat @ B4 )
       => ( finite_finite_nat @ A ) ) ) ).

% finite_subset
thf(fact_265_infinite__super,axiom,
    ! [S: set_Pr1261947904930325089at_nat,T: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ S @ T )
     => ( ~ ( finite6177210948735845034at_nat @ S )
       => ~ ( finite6177210948735845034at_nat @ T ) ) ) ).

% infinite_super
thf(fact_266_infinite__super,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ( ord_less_eq_set_nat @ S @ T )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ T ) ) ) ).

% infinite_super
thf(fact_267_rev__finite__subset,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ( ord_le3146513528884898305at_nat @ A @ B4 )
       => ( finite6177210948735845034at_nat @ A ) ) ) ).

% rev_finite_subset
thf(fact_268_rev__finite__subset,axiom,
    ! [B4: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B4 )
     => ( ( ord_less_eq_set_nat @ A @ B4 )
       => ( finite_finite_nat @ A ) ) ) ).

% rev_finite_subset
thf(fact_269_subset__code_I1_J,axiom,
    ! [Xs: list_real,B4: set_real] :
      ( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ B4 )
      = ( ! [X: real] :
            ( ( member_real2 @ X @ ( set_real2 @ Xs ) )
           => ( member_real2 @ X @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_270_subset__code_I1_J,axiom,
    ! [Xs: list_P6011104703257516679at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ ( set_Pr5648618587558075414at_nat @ Xs ) @ B4 )
      = ( ! [X: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X @ ( set_Pr5648618587558075414at_nat @ Xs ) )
           => ( member8440522571783428010at_nat @ X @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_271_subset__code_I1_J,axiom,
    ! [Xs: list_nat,B4: set_nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ B4 )
      = ( ! [X: nat] :
            ( ( member_nat2 @ X @ ( set_nat2 @ Xs ) )
           => ( member_nat2 @ X @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_272_le__enumerate,axiom,
    ! [S: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( ord_less_eq_nat @ N @ ( infini8530281810654367211te_nat @ S @ N ) ) ) ).

% le_enumerate
thf(fact_273_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_274_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_275_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_276_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_277_enumerate__in__set,axiom,
    ! [S: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( member_nat2 @ ( infini8530281810654367211te_nat @ S @ N ) @ S ) ) ).

% enumerate_in_set
thf(fact_278_GreatestI__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_nat
thf(fact_279_Greatest__le__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).

% Greatest_le_nat
thf(fact_280_GreatestI__ex__nat,axiom,
    ! [P: nat > $o,B: nat] :
      ( ? [X_1: nat] : ( P @ X_1 )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_281_card__subset__eq,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ( ord_le3146513528884898305at_nat @ A @ B4 )
       => ( ( ( finite711546835091564841at_nat @ A )
            = ( finite711546835091564841at_nat @ B4 ) )
         => ( A = B4 ) ) ) ) ).

% card_subset_eq
thf(fact_282_card__subset__eq,axiom,
    ! [B4: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B4 )
     => ( ( ord_less_eq_set_nat @ A @ B4 )
       => ( ( ( finite_card_nat @ A )
            = ( finite_card_nat @ B4 ) )
         => ( A = B4 ) ) ) ) ).

% card_subset_eq
thf(fact_283_infinite__arbitrarily__large,axiom,
    ! [A: set_Pr1261947904930325089at_nat,N: nat] :
      ( ~ ( finite6177210948735845034at_nat @ A )
     => ? [B6: set_Pr1261947904930325089at_nat] :
          ( ( finite6177210948735845034at_nat @ B6 )
          & ( ( finite711546835091564841at_nat @ B6 )
            = N )
          & ( ord_le3146513528884898305at_nat @ B6 @ A ) ) ) ).

% infinite_arbitrarily_large
thf(fact_284_infinite__arbitrarily__large,axiom,
    ! [A: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ A )
     => ? [B6: set_nat] :
          ( ( finite_finite_nat @ B6 )
          & ( ( finite_card_nat @ B6 )
            = N )
          & ( ord_less_eq_set_nat @ B6 @ A ) ) ) ).

% infinite_arbitrarily_large
thf(fact_285_list_Osize_I3_J,axiom,
    ( ( size_size_list_nat @ nil_nat )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_286_set__nths__subset,axiom,
    ! [Xs: list_nat,I: set_nat] : ( ord_less_eq_set_nat @ ( set_nat2 @ ( nths_nat @ Xs @ I ) ) @ ( set_nat2 @ Xs ) ) ).

% set_nths_subset
thf(fact_287_length__code,axiom,
    ( size_size_list_nat
    = ( gen_length_nat @ zero_zero_nat ) ) ).

% length_code
thf(fact_288_card__mono,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ( ord_le3146513528884898305at_nat @ A @ B4 )
       => ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite711546835091564841at_nat @ B4 ) ) ) ) ).

% card_mono
thf(fact_289_card__mono,axiom,
    ! [B4: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B4 )
     => ( ( ord_less_eq_set_nat @ A @ B4 )
       => ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B4 ) ) ) ) ).

% card_mono
thf(fact_290_card__seteq,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ( ord_le3146513528884898305at_nat @ A @ B4 )
       => ( ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ B4 ) @ ( finite711546835091564841at_nat @ A ) )
         => ( A = B4 ) ) ) ) ).

% card_seteq
thf(fact_291_card__seteq,axiom,
    ! [B4: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B4 )
     => ( ( ord_less_eq_set_nat @ A @ B4 )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ B4 ) @ ( finite_card_nat @ A ) )
         => ( A = B4 ) ) ) ) ).

% card_seteq
thf(fact_292_exists__subset__between,axiom,
    ! [A: set_Pr1261947904930325089at_nat,N: nat,C2: set_Pr1261947904930325089at_nat] :
      ( ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ A ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( finite711546835091564841at_nat @ C2 ) )
       => ( ( ord_le3146513528884898305at_nat @ A @ C2 )
         => ( ( finite6177210948735845034at_nat @ C2 )
           => ? [B6: set_Pr1261947904930325089at_nat] :
                ( ( ord_le3146513528884898305at_nat @ A @ B6 )
                & ( ord_le3146513528884898305at_nat @ B6 @ C2 )
                & ( ( finite711546835091564841at_nat @ B6 )
                  = N ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_293_exists__subset__between,axiom,
    ! [A: set_nat,N: nat,C2: set_nat] :
      ( ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( finite_card_nat @ C2 ) )
       => ( ( ord_less_eq_set_nat @ A @ C2 )
         => ( ( finite_finite_nat @ C2 )
           => ? [B6: set_nat] :
                ( ( ord_less_eq_set_nat @ A @ B6 )
                & ( ord_less_eq_set_nat @ B6 @ C2 )
                & ( ( finite_card_nat @ B6 )
                  = N ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_294_obtain__subset__with__card__n,axiom,
    ! [N: nat,S: set_Pr1261947904930325089at_nat] :
      ( ( ord_less_eq_nat @ N @ ( finite711546835091564841at_nat @ S ) )
     => ~ ! [T2: set_Pr1261947904930325089at_nat] :
            ( ( ord_le3146513528884898305at_nat @ T2 @ S )
           => ( ( ( finite711546835091564841at_nat @ T2 )
                = N )
             => ~ ( finite6177210948735845034at_nat @ T2 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_295_obtain__subset__with__card__n,axiom,
    ! [N: nat,S: set_nat] :
      ( ( ord_less_eq_nat @ N @ ( finite_card_nat @ S ) )
     => ~ ! [T2: set_nat] :
            ( ( ord_less_eq_set_nat @ T2 @ S )
           => ( ( ( finite_card_nat @ T2 )
                = N )
             => ~ ( finite_finite_nat @ T2 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_296_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_Pr1261947904930325089at_nat,C2: nat] :
      ( ! [G: set_Pr1261947904930325089at_nat] :
          ( ( ord_le3146513528884898305at_nat @ G @ F2 )
         => ( ( finite6177210948735845034at_nat @ G )
           => ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ G ) @ C2 ) ) )
     => ( ( finite6177210948735845034at_nat @ F2 )
        & ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ F2 ) @ C2 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_297_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_nat,C2: nat] :
      ( ! [G: set_nat] :
          ( ( ord_less_eq_set_nat @ G @ F2 )
         => ( ( finite_finite_nat @ G )
           => ( ord_less_eq_nat @ ( finite_card_nat @ G ) @ C2 ) ) )
     => ( ( finite_finite_nat @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_nat @ F2 ) @ C2 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_298_bounded__Max__nat,axiom,
    ! [P: nat > $o,X2: nat,M4: nat] :
      ( ( P @ X2 )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M4 ) )
       => ~ ! [M3: nat] :
              ( ( P @ M3 )
             => ~ ! [X4: nat] :
                    ( ( P @ X4 )
                   => ( ord_less_eq_nat @ X4 @ M3 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_299_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N4: set_nat] :
        ? [M: nat] :
        ! [X: nat] :
          ( ( member_nat2 @ X @ N4 )
         => ( ord_less_eq_nat @ X @ M ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_300_zero__order_I2_J,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% zero_order(2)
thf(fact_301_size__char__eq__0,axiom,
    ( size_size_char
    = ( ^ [C3: char] : zero_zero_nat ) ) ).

% size_char_eq_0
thf(fact_302_ex__card,axiom,
    ! [N: nat,A: set_Pr1261947904930325089at_nat] :
      ( ( ord_less_eq_nat @ N @ ( finite711546835091564841at_nat @ A ) )
     => ? [S3: set_Pr1261947904930325089at_nat] :
          ( ( ord_le3146513528884898305at_nat @ S3 @ A )
          & ( ( finite711546835091564841at_nat @ S3 )
            = N ) ) ) ).

% ex_card
thf(fact_303_ex__card,axiom,
    ! [N: nat,A: set_nat] :
      ( ( ord_less_eq_nat @ N @ ( finite_card_nat @ A ) )
     => ? [S3: set_nat] :
          ( ( ord_less_eq_set_nat @ S3 @ A )
          & ( ( finite_card_nat @ S3 )
            = N ) ) ) ).

% ex_card
thf(fact_304_rel__simps_I46_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% rel_simps(46)
thf(fact_305_rel__simps_I46_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% rel_simps(46)
thf(fact_306_subsetI,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat2 @ X3 @ A )
         => ( member_nat2 @ X3 @ B4 ) )
     => ( ord_less_eq_set_nat @ A @ B4 ) ) ).

% subsetI
thf(fact_307_subsetI,axiom,
    ! [A: set_real,B4: set_real] :
      ( ! [X3: real] :
          ( ( member_real2 @ X3 @ A )
         => ( member_real2 @ X3 @ B4 ) )
     => ( ord_less_eq_set_real @ A @ B4 ) ) ).

% subsetI
thf(fact_308_subsetI,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ! [X3: product_prod_nat_nat] :
          ( ( member8440522571783428010at_nat @ X3 @ A )
         => ( member8440522571783428010at_nat @ X3 @ B4 ) )
     => ( ord_le3146513528884898305at_nat @ A @ B4 ) ) ).

% subsetI
thf(fact_309_Set_Obasic__monos_I7_J,axiom,
    ! [A: set_nat,B4: set_nat,X2: nat] :
      ( ( ord_less_eq_set_nat @ A @ B4 )
     => ( ( member_nat2 @ X2 @ A )
       => ( member_nat2 @ X2 @ B4 ) ) ) ).

% Set.basic_monos(7)
thf(fact_310_Set_Obasic__monos_I7_J,axiom,
    ! [A: set_real,B4: set_real,X2: real] :
      ( ( ord_less_eq_set_real @ A @ B4 )
     => ( ( member_real2 @ X2 @ A )
       => ( member_real2 @ X2 @ B4 ) ) ) ).

% Set.basic_monos(7)
thf(fact_311_Set_Obasic__monos_I7_J,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] :
      ( ( ord_le3146513528884898305at_nat @ A @ B4 )
     => ( ( member8440522571783428010at_nat @ X2 @ A )
       => ( member8440522571783428010at_nat @ X2 @ B4 ) ) ) ).

% Set.basic_monos(7)
thf(fact_312_Set_Obasic__monos_I6_J,axiom,
    ! [P: product_prod_nat_nat > $o,Q: product_prod_nat_nat > $o] :
      ( ! [X3: product_prod_nat_nat] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_le3146513528884898305at_nat @ ( collec3392354462482085612at_nat @ P ) @ ( collec3392354462482085612at_nat @ Q ) ) ) ).

% Set.basic_monos(6)
thf(fact_313_Set_Obasic__monos_I6_J,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Set.basic_monos(6)
thf(fact_314_basic__trans__rules_I31_J,axiom,
    ! [A: set_nat,B4: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ B4 )
     => ( ( member_nat2 @ C @ A )
       => ( member_nat2 @ C @ B4 ) ) ) ).

% basic_trans_rules(31)
thf(fact_315_basic__trans__rules_I31_J,axiom,
    ! [A: set_real,B4: set_real,C: real] :
      ( ( ord_less_eq_set_real @ A @ B4 )
     => ( ( member_real2 @ C @ A )
       => ( member_real2 @ C @ B4 ) ) ) ).

% basic_trans_rules(31)
thf(fact_316_basic__trans__rules_I31_J,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat,C: product_prod_nat_nat] :
      ( ( ord_le3146513528884898305at_nat @ A @ B4 )
     => ( ( member8440522571783428010at_nat @ C @ A )
       => ( member8440522571783428010at_nat @ C @ B4 ) ) ) ).

% basic_trans_rules(31)
thf(fact_317_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B7: set_nat] :
        ! [X: nat] :
          ( ( member_nat2 @ X @ A3 )
         => ( member_nat2 @ X @ B7 ) ) ) ) ).

% subset_eq
thf(fact_318_subset__eq,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A3: set_real,B7: set_real] :
        ! [X: real] :
          ( ( member_real2 @ X @ A3 )
         => ( member_real2 @ X @ B7 ) ) ) ) ).

% subset_eq
thf(fact_319_subset__eq,axiom,
    ( ord_le3146513528884898305at_nat
    = ( ^ [A3: set_Pr1261947904930325089at_nat,B7: set_Pr1261947904930325089at_nat] :
        ! [X: product_prod_nat_nat] :
          ( ( member8440522571783428010at_nat @ X @ A3 )
         => ( member8440522571783428010at_nat @ X @ B7 ) ) ) ) ).

% subset_eq
thf(fact_320_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B7: set_nat] :
        ! [T3: nat] :
          ( ( member_nat2 @ T3 @ A3 )
         => ( member_nat2 @ T3 @ B7 ) ) ) ) ).

% subset_iff
thf(fact_321_subset__iff,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A3: set_real,B7: set_real] :
        ! [T3: real] :
          ( ( member_real2 @ T3 @ A3 )
         => ( member_real2 @ T3 @ B7 ) ) ) ) ).

% subset_iff
thf(fact_322_subset__iff,axiom,
    ( ord_le3146513528884898305at_nat
    = ( ^ [A3: set_Pr1261947904930325089at_nat,B7: set_Pr1261947904930325089at_nat] :
        ! [T3: product_prod_nat_nat] :
          ( ( member8440522571783428010at_nat @ T3 @ A3 )
         => ( member8440522571783428010at_nat @ T3 @ B7 ) ) ) ) ).

% subset_iff
thf(fact_323_Collect__mono__iff,axiom,
    ! [P: product_prod_nat_nat > $o,Q: product_prod_nat_nat > $o] :
      ( ( ord_le3146513528884898305at_nat @ ( collec3392354462482085612at_nat @ P ) @ ( collec3392354462482085612at_nat @ Q ) )
      = ( ! [X: product_prod_nat_nat] :
            ( ( P @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_324_Collect__mono__iff,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
      = ( ! [X: nat] :
            ( ( P @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_325_zero__reorient,axiom,
    ! [X2: nat] :
      ( ( zero_zero_nat = X2 )
      = ( X2 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_326_zero__reorient,axiom,
    ! [X2: real] :
      ( ( zero_zero_real = X2 )
      = ( X2 = zero_zero_real ) ) ).

% zero_reorient
thf(fact_327_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_328_size_H__char__eq__0,axiom,
    ( size_char
    = ( ^ [C3: char] : zero_zero_nat ) ) ).

% size'_char_eq_0
thf(fact_329_less__by__empty,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( A = bot_bo2099793752762293965at_nat )
     => ( ord_le3146513528884898305at_nat @ A @ B4 ) ) ).

% less_by_empty
thf(fact_330_subset__emptyI,axiom,
    ! [A: set_nat] :
      ( ! [X3: nat] :
          ~ ( member_nat2 @ X3 @ A )
     => ( ord_less_eq_set_nat @ A @ bot_bot_set_nat ) ) ).

% subset_emptyI
thf(fact_331_subset__emptyI,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ! [X3: product_prod_nat_nat] :
          ~ ( member8440522571783428010at_nat @ X3 @ A )
     => ( ord_le3146513528884898305at_nat @ A @ bot_bo2099793752762293965at_nat ) ) ).

% subset_emptyI
thf(fact_332_subset__emptyI,axiom,
    ! [A: set_real] :
      ( ! [X3: real] :
          ~ ( member_real2 @ X3 @ A )
     => ( ord_less_eq_set_real @ A @ bot_bot_set_real ) ) ).

% subset_emptyI
thf(fact_333_finite__enum__subset,axiom,
    ! [X5: set_nat,Y6: set_nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( finite_card_nat @ X5 ) )
         => ( ( infini8530281810654367211te_nat @ X5 @ I3 )
            = ( infini8530281810654367211te_nat @ Y6 @ I3 ) ) )
     => ( ( finite_finite_nat @ X5 )
       => ( ( finite_finite_nat @ Y6 )
         => ( ( ord_less_eq_nat @ ( finite_card_nat @ X5 ) @ ( finite_card_nat @ Y6 ) )
           => ( ord_less_eq_set_nat @ X5 @ Y6 ) ) ) ) ) ).

% finite_enum_subset
thf(fact_334_zero__order_I5_J,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% zero_order(5)
thf(fact_335_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_336_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_337_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_338_length__greater__0__conv,axiom,
    ! [Xs: list_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) )
      = ( Xs != nil_nat ) ) ).

% length_greater_0_conv
thf(fact_339_enumerate__mono__iff,axiom,
    ! [S: set_nat,M2: nat,N: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( ( ord_less_nat @ ( infini8530281810654367211te_nat @ S @ M2 ) @ ( infini8530281810654367211te_nat @ S @ N ) )
        = ( ord_less_nat @ M2 @ N ) ) ) ).

% enumerate_mono_iff
thf(fact_340_finite__enumerate__mono__iff,axiom,
    ! [S: set_nat,M2: nat,N: nat] :
      ( ( finite_finite_nat @ S )
     => ( ( ord_less_nat @ M2 @ ( finite_card_nat @ S ) )
       => ( ( ord_less_nat @ N @ ( finite_card_nat @ S ) )
         => ( ( ord_less_nat @ ( infini8530281810654367211te_nat @ S @ M2 ) @ ( infini8530281810654367211te_nat @ S @ N ) )
            = ( ord_less_nat @ M2 @ N ) ) ) ) ) ).

% finite_enumerate_mono_iff
thf(fact_341_semiring__norm_I137_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% semiring_norm(137)
thf(fact_342_semiring__norm_I137_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% semiring_norm(137)
thf(fact_343_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M2: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K2 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K2 ) ) )
       => ( P @ M2 ) ) ) ).

% nat_descend_induct
thf(fact_344_linorder__neqE__nat,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_345_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M5: nat] :
              ( ( ord_less_nat @ M5 @ N3 )
              & ~ ( P @ M5 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_346_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_nat @ M5 @ N3 )
             => ( P @ M5 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_347_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_348_less__not__refl3,axiom,
    ! [S2: nat,T4: nat] :
      ( ( ord_less_nat @ S2 @ T4 )
     => ( S2 != T4 ) ) ).

% less_not_refl3
thf(fact_349_less__not__refl2,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ N @ M2 )
     => ( M2 != N ) ) ).

% less_not_refl2
thf(fact_350_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_351_nat__neq__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != N )
      = ( ( ord_less_nat @ M2 @ N )
        | ( ord_less_nat @ N @ M2 ) ) ) ).

% nat_neq_iff
thf(fact_352_order__less__imp__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_353_order__less__imp__not__less,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_354_order__less__imp__not__eq2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_355_order__less__imp__not__eq2,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_356_order__less__imp__not__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_357_order__less__imp__not__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_358_linorder__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_359_linorder__less__linear,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_real @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_360_order__less__imp__triv,axiom,
    ! [X2: nat,Y2: nat,P: $o] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_361_order__less__imp__triv,axiom,
    ! [X2: real,Y2: real,P: $o] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ( ord_less_real @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_362_order__less__not__sym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_363_order__less__not__sym,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_364_order__less__subst2,axiom,
    ! [A2: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_365_order__less__subst2,axiom,
    ! [A2: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_366_order__less__subst2,axiom,
    ! [A2: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_367_order__less__subst2,axiom,
    ! [A2: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_368_order__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_369_order__less__subst1,axiom,
    ! [A2: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A2 @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_370_order__less__subst1,axiom,
    ! [A2: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_371_order__less__subst1,axiom,
    ! [A2: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_372_order__less__irrefl,axiom,
    ! [X2: nat] :
      ~ ( ord_less_nat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_373_order__less__irrefl,axiom,
    ! [X2: real] :
      ~ ( ord_less_real @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_374_ord__less__eq__subst,axiom,
    ! [A2: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_375_ord__less__eq__subst,axiom,
    ! [A2: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_376_ord__less__eq__subst,axiom,
    ! [A2: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_377_ord__less__eq__subst,axiom,
    ! [A2: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_378_ord__eq__less__subst,axiom,
    ! [A2: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_379_ord__eq__less__subst,axiom,
    ! [A2: real,F: nat > real,B: nat,C: nat] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_380_ord__eq__less__subst,axiom,
    ! [A2: nat,F: real > nat,B: real,C: real] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_381_ord__eq__less__subst,axiom,
    ! [A2: real,F: real > real,B: real,C: real] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_382_order__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% order_less_trans
thf(fact_383_order__less__trans,axiom,
    ! [X2: real,Y2: real,Z2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z2 )
       => ( ord_less_real @ X2 @ Z2 ) ) ) ).

% order_less_trans
thf(fact_384_order__less__asym_H,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ~ ( ord_less_nat @ B @ A2 ) ) ).

% order_less_asym'
thf(fact_385_order__less__asym_H,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_real @ A2 @ B )
     => ~ ( ord_less_real @ B @ A2 ) ) ).

% order_less_asym'
thf(fact_386_linorder__neq__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
      = ( ( ord_less_nat @ X2 @ Y2 )
        | ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_387_linorder__neq__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( X2 != Y2 )
      = ( ( ord_less_real @ X2 @ Y2 )
        | ( ord_less_real @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_388_order__less__asym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_389_order__less__asym,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_390_linorder__neqE,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_391_linorder__neqE,axiom,
    ! [X2: real,Y2: real] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_real @ X2 @ Y2 )
       => ( ord_less_real @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_392_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( A2 != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_393_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A2: real] :
      ( ( ord_less_real @ B @ A2 )
     => ( A2 != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_394_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( A2 != B ) ) ).

% order.strict_implies_not_eq
thf(fact_395_order_Ostrict__implies__not__eq,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_real @ A2 @ B )
     => ( A2 != B ) ) ).

% order.strict_implies_not_eq
thf(fact_396_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_397_dual__order_Ostrict__trans,axiom,
    ! [B: real,A2: real,C: real] :
      ( ( ord_less_real @ B @ A2 )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_398_not__less__iff__gr__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_399_not__less__iff__gr__or__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X2 @ Y2 ) )
      = ( ( ord_less_real @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_400_order_Ostrict__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_401_order_Ostrict__trans,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_402_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B: nat] :
      ( ! [A5: nat,B3: nat] :
          ( ( ord_less_nat @ A5 @ B3 )
         => ( P @ A5 @ B3 ) )
     => ( ! [A5: nat] : ( P @ A5 @ A5 )
       => ( ! [A5: nat,B3: nat] :
              ( ( P @ B3 @ A5 )
             => ( P @ A5 @ B3 ) )
         => ( P @ A2 @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_403_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A2: real,B: real] :
      ( ! [A5: real,B3: real] :
          ( ( ord_less_real @ A5 @ B3 )
         => ( P @ A5 @ B3 ) )
     => ( ! [A5: real] : ( P @ A5 @ A5 )
       => ( ! [A5: real,B3: real] :
              ( ( P @ B3 @ A5 )
             => ( P @ A5 @ B3 ) )
         => ( P @ A2 @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_404_exists__least__iff,axiom,
    ( ( ^ [P3: nat > $o] :
        ? [X6: nat] : ( P3 @ X6 ) )
    = ( ^ [P2: nat > $o] :
        ? [N2: nat] :
          ( ( P2 @ N2 )
          & ! [M: nat] :
              ( ( ord_less_nat @ M @ N2 )
             => ~ ( P2 @ M ) ) ) ) ) ).

% exists_least_iff
thf(fact_405_dual__order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_406_dual__order_Oirrefl,axiom,
    ! [A2: real] :
      ~ ( ord_less_real @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_407_dual__order_Oasym,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ~ ( ord_less_nat @ A2 @ B ) ) ).

% dual_order.asym
thf(fact_408_dual__order_Oasym,axiom,
    ! [B: real,A2: real] :
      ( ( ord_less_real @ B @ A2 )
     => ~ ( ord_less_real @ A2 @ B ) ) ).

% dual_order.asym
thf(fact_409_linorder__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_410_linorder__cases,axiom,
    ! [X2: real,Y2: real] :
      ( ~ ( ord_less_real @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_real @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_411_antisym__conv3,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_412_antisym__conv3,axiom,
    ! [Y2: real,X2: real] :
      ( ~ ( ord_less_real @ Y2 @ X2 )
     => ( ( ~ ( ord_less_real @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_413_less__induct,axiom,
    ! [P: nat > $o,A2: nat] :
      ( ! [X3: nat] :
          ( ! [Y4: nat] :
              ( ( ord_less_nat @ Y4 @ X3 )
             => ( P @ Y4 ) )
         => ( P @ X3 ) )
     => ( P @ A2 ) ) ).

% less_induct
thf(fact_414_ord__less__eq__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_415_ord__less__eq__trans,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( B = C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_416_ord__eq__less__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( A2 = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_417_ord__eq__less__trans,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( A2 = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_418_order_Oasym,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ~ ( ord_less_nat @ B @ A2 ) ) ).

% order.asym
thf(fact_419_order_Oasym,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_real @ A2 @ B )
     => ~ ( ord_less_real @ B @ A2 ) ) ).

% order.asym
thf(fact_420_less__imp__neq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_421_less__imp__neq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_422_dense,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ? [Z: real] :
          ( ( ord_less_real @ X2 @ Z )
          & ( ord_less_real @ Z @ Y2 ) ) ) ).

% dense
thf(fact_423_gt__ex,axiom,
    ! [X2: nat] :
    ? [X_12: nat] : ( ord_less_nat @ X2 @ X_12 ) ).

% gt_ex
thf(fact_424_gt__ex,axiom,
    ! [X2: real] :
    ? [X_12: real] : ( ord_less_real @ X2 @ X_12 ) ).

% gt_ex
thf(fact_425_lt__ex,axiom,
    ! [X2: real] :
    ? [Y: real] : ( ord_less_real @ Y @ X2 ) ).

% lt_ex
thf(fact_426_class__dense__linordered__field_Olt__ex,axiom,
    ! [X2: real] :
    ? [Y: real] : ( ord_less_real @ Y @ X2 ) ).

% class_dense_linordered_field.lt_ex
thf(fact_427_class__dense__linordered__field_Ogt__ex,axiom,
    ! [X2: real] :
    ? [X_12: real] : ( ord_less_real @ X2 @ X_12 ) ).

% class_dense_linordered_field.gt_ex
thf(fact_428_enumerate__mono,axiom,
    ! [M2: nat,N: nat,S: set_nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ~ ( finite_finite_nat @ S )
       => ( ord_less_nat @ ( infini8530281810654367211te_nat @ S @ M2 ) @ ( infini8530281810654367211te_nat @ S @ N ) ) ) ) ).

% enumerate_mono
thf(fact_429_order__le__imp__less__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_430_order__le__imp__less__or__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ( ord_less_real @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_431_linorder__le__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_432_linorder__le__less__linear,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
      | ( ord_less_real @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_433_order__less__le__subst2,axiom,
    ! [A2: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_434_order__less__le__subst2,axiom,
    ! [A2: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_435_order__less__le__subst2,axiom,
    ! [A2: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_436_order__less__le__subst2,axiom,
    ! [A2: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_437_order__less__le__subst1,axiom,
    ! [A2: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_438_order__less__le__subst1,axiom,
    ! [A2: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_439_order__less__le__subst1,axiom,
    ! [A2: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_440_order__less__le__subst1,axiom,
    ! [A2: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_441_order__le__less__subst2,axiom,
    ! [A2: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_442_order__le__less__subst2,axiom,
    ! [A2: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_443_order__le__less__subst2,axiom,
    ! [A2: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_444_order__le__less__subst2,axiom,
    ! [A2: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_445_order__le__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_446_order__le__less__subst1,axiom,
    ! [A2: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_447_order__le__less__subst1,axiom,
    ! [A2: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_448_order__le__less__subst1,axiom,
    ! [A2: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_449_order__less__le__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_450_order__less__le__trans,axiom,
    ! [X2: real,Y2: real,Z2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ Z2 )
       => ( ord_less_real @ X2 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_451_order__le__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_452_order__le__less__trans,axiom,
    ! [X2: real,Y2: real,Z2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z2 )
       => ( ord_less_real @ X2 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_453_order__neq__le__trans,axiom,
    ! [A2: nat,B: nat] :
      ( ( A2 != B )
     => ( ( ord_less_eq_nat @ A2 @ B )
       => ( ord_less_nat @ A2 @ B ) ) ) ).

% order_neq_le_trans
thf(fact_454_order__neq__le__trans,axiom,
    ! [A2: real,B: real] :
      ( ( A2 != B )
     => ( ( ord_less_eq_real @ A2 @ B )
       => ( ord_less_real @ A2 @ B ) ) ) ).

% order_neq_le_trans
thf(fact_455_order__le__neq__trans,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( A2 != B )
       => ( ord_less_nat @ A2 @ B ) ) ) ).

% order_le_neq_trans
thf(fact_456_order__le__neq__trans,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( A2 != B )
       => ( ord_less_real @ A2 @ B ) ) ) ).

% order_le_neq_trans
thf(fact_457_order__less__imp__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_458_order__less__imp__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_459_linorder__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_460_linorder__not__less,axiom,
    ! [X2: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X2 @ Y2 ) )
      = ( ord_less_eq_real @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_461_linorder__not__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X2 @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_462_linorder__not__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ~ ( ord_less_eq_real @ X2 @ Y2 ) )
      = ( ord_less_real @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_463_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X @ Y3 )
          & ( X != Y3 ) ) ) ) ).

% order_less_le
thf(fact_464_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y3: real] :
          ( ( ord_less_eq_real @ X @ Y3 )
          & ( X != Y3 ) ) ) ) ).

% order_less_le
thf(fact_465_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y3: nat] :
          ( ( ord_less_nat @ X @ Y3 )
          | ( X = Y3 ) ) ) ) ).

% order_le_less
thf(fact_466_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y3: real] :
          ( ( ord_less_real @ X @ Y3 )
          | ( X = Y3 ) ) ) ) ).

% order_le_less
thf(fact_467_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( ord_less_eq_nat @ B @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_468_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A2: real] :
      ( ( ord_less_real @ B @ A2 )
     => ( ord_less_eq_real @ B @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_469_order_Ostrict__implies__order,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ord_less_eq_nat @ A2 @ B ) ) ).

% order.strict_implies_order
thf(fact_470_order_Ostrict__implies__order,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_real @ A2 @ B )
     => ( ord_less_eq_real @ A2 @ B ) ) ).

% order.strict_implies_order
thf(fact_471_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B2 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_472_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A4: real] :
          ( ( ord_less_eq_real @ B2 @ A4 )
          & ~ ( ord_less_eq_real @ A4 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_473_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_474_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A2: real,C: real] :
      ( ( ord_less_real @ B @ A2 )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_475_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_476_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A2: real,C: real] :
      ( ( ord_less_eq_real @ B @ A2 )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_477_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B2 @ A4 )
          & ( A4 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_478_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A4: real] :
          ( ( ord_less_eq_real @ B2 @ A4 )
          & ( A4 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_479_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A4: nat] :
          ( ( ord_less_nat @ B2 @ A4 )
          | ( A4 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_480_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B2: real,A4: real] :
          ( ( ord_less_real @ B2 @ A4 )
          | ( A4 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_481_dense__le__bounded,axiom,
    ! [X2: real,Y2: real,Z2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ! [W: real] :
            ( ( ord_less_real @ X2 @ W )
           => ( ( ord_less_real @ W @ Y2 )
             => ( ord_less_eq_real @ W @ Z2 ) ) )
       => ( ord_less_eq_real @ Y2 @ Z2 ) ) ) ).

% dense_le_bounded
thf(fact_482_dense__ge__bounded,axiom,
    ! [Z2: real,X2: real,Y2: real] :
      ( ( ord_less_real @ Z2 @ X2 )
     => ( ! [W: real] :
            ( ( ord_less_real @ Z2 @ W )
           => ( ( ord_less_real @ W @ X2 )
             => ( ord_less_eq_real @ Y2 @ W ) ) )
       => ( ord_less_eq_real @ Y2 @ Z2 ) ) ) ).

% dense_ge_bounded
thf(fact_483_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A4 @ B2 )
          & ~ ( ord_less_eq_nat @ B2 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_484_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B2: real] :
          ( ( ord_less_eq_real @ A4 @ B2 )
          & ~ ( ord_less_eq_real @ B2 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_485_order_Ostrict__trans2,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_486_order_Ostrict__trans2,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_487_order_Ostrict__trans1,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_488_order_Ostrict__trans1,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_489_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A4 @ B2 )
          & ( A4 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_490_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B2: real] :
          ( ( ord_less_eq_real @ A4 @ B2 )
          & ( A4 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_491_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B2: nat] :
          ( ( ord_less_nat @ A4 @ B2 )
          | ( A4 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_492_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B2: real] :
          ( ( ord_less_real @ A4 @ B2 )
          | ( A4 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_493_not__le__imp__less,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ord_less_nat @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_494_not__le__imp__less,axiom,
    ! [Y2: real,X2: real] :
      ( ~ ( ord_less_eq_real @ Y2 @ X2 )
     => ( ord_less_real @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_495_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X @ Y3 )
          & ~ ( ord_less_eq_nat @ Y3 @ X ) ) ) ) ).

% less_le_not_le
thf(fact_496_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y3: real] :
          ( ( ord_less_eq_real @ X @ Y3 )
          & ~ ( ord_less_eq_real @ Y3 @ X ) ) ) ) ).

% less_le_not_le
thf(fact_497_dense__le,axiom,
    ! [Y2: real,Z2: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ X3 @ Y2 )
         => ( ord_less_eq_real @ X3 @ Z2 ) )
     => ( ord_less_eq_real @ Y2 @ Z2 ) ) ).

% dense_le
thf(fact_498_dense__ge,axiom,
    ! [Z2: real,Y2: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ Z2 @ X3 )
         => ( ord_less_eq_real @ Y2 @ X3 ) )
     => ( ord_less_eq_real @ Y2 @ Z2 ) ) ).

% dense_ge
thf(fact_499_antisym__conv2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_500_antisym__conv2,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ( ~ ( ord_less_real @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_501_antisym__conv1,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_502_antisym__conv1,axiom,
    ! [X2: real,Y2: real] :
      ( ~ ( ord_less_real @ X2 @ Y2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_503_nless__le,axiom,
    ! [A2: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A2 @ B ) )
      = ( ~ ( ord_less_eq_nat @ A2 @ B )
        | ( A2 = B ) ) ) ).

% nless_le
thf(fact_504_nless__le,axiom,
    ! [A2: real,B: real] :
      ( ( ~ ( ord_less_real @ A2 @ B ) )
      = ( ~ ( ord_less_eq_real @ A2 @ B )
        | ( A2 = B ) ) ) ).

% nless_le
thf(fact_505_leI,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% leI
thf(fact_506_leI,axiom,
    ! [X2: real,Y2: real] :
      ( ~ ( ord_less_real @ X2 @ Y2 )
     => ( ord_less_eq_real @ Y2 @ X2 ) ) ).

% leI
thf(fact_507_leD,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ~ ( ord_less_nat @ X2 @ Y2 ) ) ).

% leD
thf(fact_508_leD,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ Y2 @ X2 )
     => ~ ( ord_less_real @ X2 @ Y2 ) ) ).

% leD
thf(fact_509_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_510_gr__implies__not__zero,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_511_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_512_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_513_bot_Onot__eq__extremum,axiom,
    ! [A2: set_nat] :
      ( ( A2 != bot_bot_set_nat )
      = ( ord_less_set_nat @ bot_bot_set_nat @ A2 ) ) ).

% bot.not_eq_extremum
thf(fact_514_bot_Onot__eq__extremum,axiom,
    ! [A2: set_Pr1261947904930325089at_nat] :
      ( ( A2 != bot_bo2099793752762293965at_nat )
      = ( ord_le7866589430770878221at_nat @ bot_bo2099793752762293965at_nat @ A2 ) ) ).

% bot.not_eq_extremum
thf(fact_515_bot_Onot__eq__extremum,axiom,
    ! [A2: set_real] :
      ( ( A2 != bot_bot_set_real )
      = ( ord_less_set_real @ bot_bot_set_real @ A2 ) ) ).

% bot.not_eq_extremum
thf(fact_516_bot_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A2 ) ) ).

% bot.not_eq_extremum
thf(fact_517_bot_Oextremum__strict,axiom,
    ! [A2: set_nat] :
      ~ ( ord_less_set_nat @ A2 @ bot_bot_set_nat ) ).

% bot.extremum_strict
thf(fact_518_bot_Oextremum__strict,axiom,
    ! [A2: set_Pr1261947904930325089at_nat] :
      ~ ( ord_le7866589430770878221at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ).

% bot.extremum_strict
thf(fact_519_bot_Oextremum__strict,axiom,
    ! [A2: set_real] :
      ~ ( ord_less_set_real @ A2 @ bot_bot_set_real ) ).

% bot.extremum_strict
thf(fact_520_bot_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_521_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M5: nat] :
                  ( ( ord_less_nat @ M5 @ N3 )
                  & ~ ( P @ M5 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_522_gr__implies__not0,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_523_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_524_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_525_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_526_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_527_bot__nat__0_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_528_le__simps_I1_J,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% le_simps(1)
thf(fact_529_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M @ N2 )
          & ( M != N2 ) ) ) ) ).

% nat_less_le
thf(fact_530_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N2: nat] :
          ( ( ord_less_nat @ M @ N2 )
          | ( M = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_531_less__or__eq__imp__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( ord_less_nat @ M2 @ N )
        | ( M2 = N ) )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_or_eq_imp_le
thf(fact_532_le__neq__implies__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( M2 != N )
       => ( ord_less_nat @ M2 @ N ) ) ) ).

% le_neq_implies_less
thf(fact_533_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I2: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I2 @ J )
       => ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_534_length__induct,axiom,
    ! [P: list_nat > $o,Xs: list_nat] :
      ( ! [Xs3: list_nat] :
          ( ! [Ys2: list_nat] :
              ( ( ord_less_nat @ ( size_size_list_nat @ Ys2 ) @ ( size_size_list_nat @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_535_finite__maxlen,axiom,
    ! [M4: set_list_nat] :
      ( ( finite8100373058378681591st_nat @ M4 )
     => ? [N3: nat] :
        ! [X4: list_nat] :
          ( ( member_list_nat @ X4 @ M4 )
         => ( ord_less_nat @ ( size_size_list_nat @ X4 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_536_unbounded__k__infinite,axiom,
    ! [K: nat,S: set_nat] :
      ( ! [M3: nat] :
          ( ( ord_less_nat @ K @ M3 )
         => ? [N5: nat] :
              ( ( ord_less_nat @ M3 @ N5 )
              & ( member_nat2 @ N5 @ S ) ) )
     => ~ ( finite_finite_nat @ S ) ) ).

% unbounded_k_infinite
thf(fact_537_bounded__nat__set__is__finite,axiom,
    ! [N6: set_nat,N: nat] :
      ( ! [X3: nat] :
          ( ( member_nat2 @ X3 @ N6 )
         => ( ord_less_nat @ X3 @ N ) )
     => ( finite_finite_nat @ N6 ) ) ).

% bounded_nat_set_is_finite
thf(fact_538_infinite__nat__iff__unbounded,axiom,
    ! [S: set_nat] :
      ( ( ~ ( finite_finite_nat @ S ) )
      = ( ! [M: nat] :
          ? [N2: nat] :
            ( ( ord_less_nat @ M @ N2 )
            & ( member_nat2 @ N2 @ S ) ) ) ) ).

% infinite_nat_iff_unbounded
thf(fact_539_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N4: set_nat] :
        ? [M: nat] :
        ! [X: nat] :
          ( ( member_nat2 @ X @ N4 )
         => ( ord_less_nat @ X @ M ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_540_finite__enumerate__mono,axiom,
    ! [M2: nat,N: nat,S: set_nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( finite_finite_nat @ S )
       => ( ( ord_less_nat @ N @ ( finite_card_nat @ S ) )
         => ( ord_less_nat @ ( infini8530281810654367211te_nat @ S @ M2 ) @ ( infini8530281810654367211te_nat @ S @ N ) ) ) ) ) ).

% finite_enumerate_mono
thf(fact_541_infinite__growing,axiom,
    ! [X5: set_nat] :
      ( ( X5 != bot_bot_set_nat )
     => ( ! [X3: nat] :
            ( ( member_nat2 @ X3 @ X5 )
           => ? [Xa: nat] :
                ( ( member_nat2 @ Xa @ X5 )
                & ( ord_less_nat @ X3 @ Xa ) ) )
       => ~ ( finite_finite_nat @ X5 ) ) ) ).

% infinite_growing
thf(fact_542_infinite__growing,axiom,
    ! [X5: set_real] :
      ( ( X5 != bot_bot_set_real )
     => ( ! [X3: real] :
            ( ( member_real2 @ X3 @ X5 )
           => ? [Xa: real] :
                ( ( member_real2 @ Xa @ X5 )
                & ( ord_less_real @ X3 @ Xa ) ) )
       => ~ ( finite_finite_real @ X5 ) ) ) ).

% infinite_growing
thf(fact_543_ex__min__if__finite,axiom,
    ! [S: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ S )
     => ( ( S != bot_bo2099793752762293965at_nat )
       => ? [X3: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X3 @ S )
            & ~ ? [Xa: product_prod_nat_nat] :
                  ( ( member8440522571783428010at_nat @ Xa @ S )
                  & ( ord_le1203424502768444845at_nat @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_544_ex__min__if__finite,axiom,
    ! [S: set_nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat2 @ X3 @ S )
            & ~ ? [Xa: nat] :
                  ( ( member_nat2 @ Xa @ S )
                  & ( ord_less_nat @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_545_ex__min__if__finite,axiom,
    ! [S: set_real] :
      ( ( finite_finite_real @ S )
     => ( ( S != bot_bot_set_real )
       => ? [X3: real] :
            ( ( member_real2 @ X3 @ S )
            & ~ ? [Xa: real] :
                  ( ( member_real2 @ Xa @ S )
                  & ( ord_less_real @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_546_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_547_nths__all,axiom,
    ! [Xs: list_nat,I: set_nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
         => ( member_nat2 @ I3 @ I ) )
     => ( ( nths_nat @ Xs @ I )
        = Xs ) ) ).

% nths_all
thf(fact_548_card__ge__0__finite,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite711546835091564841at_nat @ A ) )
     => ( finite6177210948735845034at_nat @ A ) ) ).

% card_ge_0_finite
thf(fact_549_card__ge__0__finite,axiom,
    ! [A: set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A ) )
     => ( finite_finite_nat @ A ) ) ).

% card_ge_0_finite
thf(fact_550_length__pos__if__in__set,axiom,
    ! [X2: real,Xs: list_real] :
      ( ( member_real2 @ X2 @ ( set_real2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_551_length__pos__if__in__set,axiom,
    ! [X2: product_prod_nat_nat,Xs: list_P6011104703257516679at_nat] :
      ( ( member8440522571783428010at_nat @ X2 @ ( set_Pr5648618587558075414at_nat @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s5460976970255530739at_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_552_length__pos__if__in__set,axiom,
    ! [X2: nat,Xs: list_nat] :
      ( ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_553_finite__enum__ext,axiom,
    ! [X5: set_nat,Y6: set_nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( finite_card_nat @ X5 ) )
         => ( ( infini8530281810654367211te_nat @ X5 @ I3 )
            = ( infini8530281810654367211te_nat @ Y6 @ I3 ) ) )
     => ( ( finite_finite_nat @ X5 )
       => ( ( finite_finite_nat @ Y6 )
         => ( ( ( finite_card_nat @ X5 )
              = ( finite_card_nat @ Y6 ) )
           => ( X5 = Y6 ) ) ) ) ) ).

% finite_enum_ext
thf(fact_554_finite__enumerate__Ex,axiom,
    ! [S: set_nat,S2: nat] :
      ( ( finite_finite_nat @ S )
     => ( ( member_nat2 @ S2 @ S )
       => ? [N3: nat] :
            ( ( ord_less_nat @ N3 @ ( finite_card_nat @ S ) )
            & ( ( infini8530281810654367211te_nat @ S @ N3 )
              = S2 ) ) ) ) ).

% finite_enumerate_Ex
thf(fact_555_finite__enumerate__in__set,axiom,
    ! [S: set_nat,N: nat] :
      ( ( finite_finite_nat @ S )
     => ( ( ord_less_nat @ N @ ( finite_card_nat @ S ) )
       => ( member_nat2 @ ( infini8530281810654367211te_nat @ S @ N ) @ S ) ) ) ).

% finite_enumerate_in_set
thf(fact_556_arg__min__if__finite_I2_J,axiom,
    ! [S: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ~ ? [X4: nat] :
              ( ( member_nat2 @ X4 @ S )
              & ( ord_less_nat @ ( F @ X4 ) @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_557_arg__min__if__finite_I2_J,axiom,
    ! [S: set_Pr1261947904930325089at_nat,F: product_prod_nat_nat > nat] :
      ( ( finite6177210948735845034at_nat @ S )
     => ( ( S != bot_bo2099793752762293965at_nat )
       => ~ ? [X4: product_prod_nat_nat] :
              ( ( member8440522571783428010at_nat @ X4 @ S )
              & ( ord_less_nat @ ( F @ X4 ) @ ( F @ ( lattic4984276347100956536at_nat @ F @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_558_arg__min__if__finite_I2_J,axiom,
    ! [S: set_real,F: real > nat] :
      ( ( finite_finite_real @ S )
     => ( ( S != bot_bot_set_real )
       => ~ ? [X4: real] :
              ( ( member_real2 @ X4 @ S )
              & ( ord_less_nat @ ( F @ X4 ) @ ( F @ ( lattic5055836439445974935al_nat @ F @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_559_arg__min__if__finite_I2_J,axiom,
    ! [S: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ~ ? [X4: nat] :
              ( ( member_nat2 @ X4 @ S )
              & ( ord_less_real @ ( F @ X4 ) @ ( F @ ( lattic488527866317076247t_real @ F @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_560_arg__min__if__finite_I2_J,axiom,
    ! [S: set_Pr1261947904930325089at_nat,F: product_prod_nat_nat > real] :
      ( ( finite6177210948735845034at_nat @ S )
     => ( ( S != bot_bo2099793752762293965at_nat )
       => ~ ? [X4: product_prod_nat_nat] :
              ( ( member8440522571783428010at_nat @ X4 @ S )
              & ( ord_less_real @ ( F @ X4 ) @ ( F @ ( lattic7428442014618555988t_real @ F @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_561_arg__min__if__finite_I2_J,axiom,
    ! [S: set_real,F: real > real] :
      ( ( finite_finite_real @ S )
     => ( ( S != bot_bot_set_real )
       => ~ ? [X4: real] :
              ( ( member_real2 @ X4 @ S )
              & ( ord_less_real @ ( F @ X4 ) @ ( F @ ( lattic8440615504127631091l_real @ F @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_562_finite__le__enumerate,axiom,
    ! [S: set_nat,N: nat] :
      ( ( finite_finite_nat @ S )
     => ( ( ord_less_nat @ N @ ( finite_card_nat @ S ) )
       => ( ord_less_eq_nat @ N @ ( infini8530281810654367211te_nat @ S @ N ) ) ) ) ).

% finite_le_enumerate
thf(fact_563_card__gt__0__iff,axiom,
    ! [A: set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A ) )
      = ( ( A != bot_bot_set_nat )
        & ( finite_finite_nat @ A ) ) ) ).

% card_gt_0_iff
thf(fact_564_card__gt__0__iff,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite711546835091564841at_nat @ A ) )
      = ( ( A != bot_bo2099793752762293965at_nat )
        & ( finite6177210948735845034at_nat @ A ) ) ) ).

% card_gt_0_iff
thf(fact_565_card__gt__0__iff,axiom,
    ! [A: set_real] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_real @ A ) )
      = ( ( A != bot_bot_set_real )
        & ( finite_finite_real @ A ) ) ) ).

% card_gt_0_iff
thf(fact_566_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_567_verit__comp__simplify_I3_J,axiom,
    ! [B8: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B8 @ A6 ) )
      = ( ord_less_nat @ A6 @ B8 ) ) ).

% verit_comp_simplify(3)
thf(fact_568_verit__comp__simplify_I3_J,axiom,
    ! [B8: real,A6: real] :
      ( ( ~ ( ord_less_eq_real @ B8 @ A6 ) )
      = ( ord_less_real @ A6 @ B8 ) ) ).

% verit_comp_simplify(3)
thf(fact_569_eucl__less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y3: real] :
          ( ( ord_less_eq_real @ X @ Y3 )
          & ~ ( ord_less_eq_real @ Y3 @ X ) ) ) ) ).

% eucl_less_le_not_le
thf(fact_570_not__psubset__empty,axiom,
    ! [A: set_nat] :
      ~ ( ord_less_set_nat @ A @ bot_bot_set_nat ) ).

% not_psubset_empty
thf(fact_571_not__psubset__empty,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ~ ( ord_le7866589430770878221at_nat @ A @ bot_bo2099793752762293965at_nat ) ).

% not_psubset_empty
thf(fact_572_not__psubset__empty,axiom,
    ! [A: set_real] :
      ~ ( ord_less_set_real @ A @ bot_bot_set_real ) ).

% not_psubset_empty
thf(fact_573_finite__psubset__induct,axiom,
    ! [A: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ! [A7: set_Pr1261947904930325089at_nat] :
            ( ( finite6177210948735845034at_nat @ A7 )
           => ( ! [B9: set_Pr1261947904930325089at_nat] :
                  ( ( ord_le7866589430770878221at_nat @ B9 @ A7 )
                 => ( P @ B9 ) )
             => ( P @ A7 ) ) )
       => ( P @ A ) ) ) ).

% finite_psubset_induct
thf(fact_574_finite__psubset__induct,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ! [A7: set_nat] :
            ( ( finite_finite_nat @ A7 )
           => ( ! [B9: set_nat] :
                  ( ( ord_less_set_nat @ B9 @ A7 )
                 => ( P @ B9 ) )
             => ( P @ A7 ) ) )
       => ( P @ A ) ) ) ).

% finite_psubset_induct
thf(fact_575_not__less__Nil,axiom,
    ! [X2: list_nat] :
      ~ ( ord_less_list_nat @ X2 @ nil_nat ) ).

% not_less_Nil
thf(fact_576_less__list__code_I1_J,axiom,
    ! [Xs: list_nat] :
      ~ ( ord_less_list_nat @ Xs @ nil_nat ) ).

% less_list_code(1)
thf(fact_577_verit__la__disequality,axiom,
    ! [A2: nat,B: nat] :
      ( ( A2 = B )
      | ~ ( ord_less_eq_nat @ A2 @ B )
      | ~ ( ord_less_eq_nat @ B @ A2 ) ) ).

% verit_la_disequality
thf(fact_578_verit__la__disequality,axiom,
    ! [A2: real,B: real] :
      ( ( A2 = B )
      | ~ ( ord_less_eq_real @ A2 @ B )
      | ~ ( ord_less_eq_real @ B @ A2 ) ) ).

% verit_la_disequality
thf(fact_579_verit__comp__simplify1_I2_J,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_580_verit__comp__simplify1_I2_J,axiom,
    ! [A2: real] : ( ord_less_eq_real @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_581_psubset__card__mono,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ( ord_le7866589430770878221at_nat @ A @ B4 )
       => ( ord_less_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite711546835091564841at_nat @ B4 ) ) ) ) ).

% psubset_card_mono
thf(fact_582_psubset__card__mono,axiom,
    ! [B4: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B4 )
     => ( ( ord_less_set_nat @ A @ B4 )
       => ( ord_less_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B4 ) ) ) ) ).

% psubset_card_mono
thf(fact_583_card__psubset,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ( ord_le3146513528884898305at_nat @ A @ B4 )
       => ( ( ord_less_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite711546835091564841at_nat @ B4 ) )
         => ( ord_le7866589430770878221at_nat @ A @ B4 ) ) ) ) ).

% card_psubset
thf(fact_584_card__psubset,axiom,
    ! [B4: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B4 )
     => ( ( ord_less_eq_set_nat @ A @ B4 )
       => ( ( ord_less_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B4 ) )
         => ( ord_less_set_nat @ A @ B4 ) ) ) ) ).

% card_psubset
thf(fact_585_complete__interval,axiom,
    ! [A2: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( P @ A2 )
       => ( ~ ( P @ B )
         => ? [C4: nat] :
              ( ( ord_less_eq_nat @ A2 @ C4 )
              & ( ord_less_eq_nat @ C4 @ B )
              & ! [X4: nat] :
                  ( ( ( ord_less_eq_nat @ A2 @ X4 )
                    & ( ord_less_nat @ X4 @ C4 ) )
                 => ( P @ X4 ) )
              & ! [D: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A2 @ X3 )
                        & ( ord_less_nat @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_nat @ D @ C4 ) ) ) ) ) ) ).

% complete_interval
thf(fact_586_complete__interval,axiom,
    ! [A2: real,B: real,P: real > $o] :
      ( ( ord_less_real @ A2 @ B )
     => ( ( P @ A2 )
       => ( ~ ( P @ B )
         => ? [C4: real] :
              ( ( ord_less_eq_real @ A2 @ C4 )
              & ( ord_less_eq_real @ C4 @ B )
              & ! [X4: real] :
                  ( ( ( ord_less_eq_real @ A2 @ X4 )
                    & ( ord_less_real @ X4 @ C4 ) )
                 => ( P @ X4 ) )
              & ! [D: real] :
                  ( ! [X3: real] :
                      ( ( ( ord_less_eq_real @ A2 @ X3 )
                        & ( ord_less_real @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_real @ D @ C4 ) ) ) ) ) ) ).

% complete_interval
thf(fact_587_sorted__list__of__set__unique,axiom,
    ! [A: set_nat,L: list_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( ( sorted_wrt_nat @ ord_less_nat @ L )
          & ( ( set_nat2 @ L )
            = A )
          & ( ( size_size_list_nat @ L )
            = ( finite_card_nat @ A ) ) )
        = ( ( linord2614967742042102400et_nat @ A )
          = L ) ) ) ).

% sorted_list_of_set_unique
thf(fact_588_sorted__list__of__set__unique,axiom,
    ! [A: set_real,L: list_real] :
      ( ( finite_finite_real @ A )
     => ( ( ( sorted_wrt_real @ ord_less_real @ L )
          & ( ( set_real2 @ L )
            = A )
          & ( ( size_size_list_real @ L )
            = ( finite_card_real @ A ) ) )
        = ( ( linord4252657396651189596t_real @ A )
          = L ) ) ) ).

% sorted_list_of_set_unique
thf(fact_589_finite__enumerate__step,axiom,
    ! [S: set_nat,N: nat] :
      ( ( finite_finite_nat @ S )
     => ( ( ord_less_nat @ ( suc @ N ) @ ( finite_card_nat @ S ) )
       => ( ord_less_nat @ ( infini8530281810654367211te_nat @ S @ N ) @ ( infini8530281810654367211te_nat @ S @ ( suc @ N ) ) ) ) ) ).

% finite_enumerate_step
thf(fact_590_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_591_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_592_Suc__less__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% Suc_less_eq
thf(fact_593_Suc__mono,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_594_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_595_Suc__le__mono,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M2 ) )
      = ( ord_less_eq_nat @ N @ M2 ) ) ).

% Suc_le_mono
thf(fact_596_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_597_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_598_psubsetD,axiom,
    ! [A: set_nat,B4: set_nat,C: nat] :
      ( ( ord_less_set_nat @ A @ B4 )
     => ( ( member_nat2 @ C @ A )
       => ( member_nat2 @ C @ B4 ) ) ) ).

% psubsetD
thf(fact_599_psubsetD,axiom,
    ! [A: set_real,B4: set_real,C: real] :
      ( ( ord_less_set_real @ A @ B4 )
     => ( ( member_real2 @ C @ A )
       => ( member_real2 @ C @ B4 ) ) ) ).

% psubsetD
thf(fact_600_psubsetD,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat,C: product_prod_nat_nat] :
      ( ( ord_le7866589430770878221at_nat @ A @ B4 )
     => ( ( member8440522571783428010at_nat @ C @ A )
       => ( member8440522571783428010at_nat @ C @ B4 ) ) ) ).

% psubsetD
thf(fact_601_sorted__wrt_Osimps_I1_J,axiom,
    ! [P: nat > nat > $o] : ( sorted_wrt_nat @ P @ nil_nat ) ).

% sorted_wrt.simps(1)
thf(fact_602_sorted__wrt__mono__rel,axiom,
    ! [Xs: list_real,P: real > real > $o,Q: real > real > $o] :
      ( ! [X3: real,Y: real] :
          ( ( member_real2 @ X3 @ ( set_real2 @ Xs ) )
         => ( ( member_real2 @ Y @ ( set_real2 @ Xs ) )
           => ( ( P @ X3 @ Y )
             => ( Q @ X3 @ Y ) ) ) )
     => ( ( sorted_wrt_real @ P @ Xs )
       => ( sorted_wrt_real @ Q @ Xs ) ) ) ).

% sorted_wrt_mono_rel
thf(fact_603_sorted__wrt__mono__rel,axiom,
    ! [Xs: list_P6011104703257516679at_nat,P: product_prod_nat_nat > product_prod_nat_nat > $o,Q: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ! [X3: product_prod_nat_nat,Y: product_prod_nat_nat] :
          ( ( member8440522571783428010at_nat @ X3 @ ( set_Pr5648618587558075414at_nat @ Xs ) )
         => ( ( member8440522571783428010at_nat @ Y @ ( set_Pr5648618587558075414at_nat @ Xs ) )
           => ( ( P @ X3 @ Y )
             => ( Q @ X3 @ Y ) ) ) )
     => ( ( sorted5214655850825725294at_nat @ P @ Xs )
       => ( sorted5214655850825725294at_nat @ Q @ Xs ) ) ) ).

% sorted_wrt_mono_rel
thf(fact_604_sorted__wrt__mono__rel,axiom,
    ! [Xs: list_nat,P: nat > nat > $o,Q: nat > nat > $o] :
      ( ! [X3: nat,Y: nat] :
          ( ( member_nat2 @ X3 @ ( set_nat2 @ Xs ) )
         => ( ( member_nat2 @ Y @ ( set_nat2 @ Xs ) )
           => ( ( P @ X3 @ Y )
             => ( Q @ X3 @ Y ) ) ) )
     => ( ( sorted_wrt_nat @ P @ Xs )
       => ( sorted_wrt_nat @ Q @ Xs ) ) ) ).

% sorted_wrt_mono_rel
thf(fact_605_nat_Osimps_I3_J,axiom,
    ! [X22: nat] :
      ( ( suc @ X22 )
     != zero_zero_nat ) ).

% nat.simps(3)
thf(fact_606_old_Onat_Osimps_I3_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.simps(3)
thf(fact_607_old_Onat_Osimps_I2_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.simps(2)
thf(fact_608_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_609_nat_Oexhaust,axiom,
    ! [Y2: nat] :
      ( ( Y2 != zero_zero_nat )
     => ~ ! [X23: nat] :
            ( Y2
           != ( suc @ X23 ) ) ) ).

% nat.exhaust
thf(fact_610_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_611_diff__induct,axiom,
    ! [P: nat > nat > $o,M2: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y: nat] : ( P @ zero_zero_nat @ ( suc @ Y ) )
       => ( ! [X3: nat,Y: nat] :
              ( ( P @ X3 @ Y )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y ) ) )
         => ( P @ M2 @ N ) ) ) ) ).

% diff_induct
thf(fact_612_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_613_Suc__neq__Zero,axiom,
    ! [M2: nat] :
      ( ( suc @ M2 )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_614_Suc__not__Zero,axiom,
    ! [M2: nat] :
      ( ( suc @ M2 )
     != zero_zero_nat ) ).

% Suc_not_Zero
thf(fact_615_Zero__neq__Suc,axiom,
    ! [M2: nat] :
      ( zero_zero_nat
     != ( suc @ M2 ) ) ).

% Zero_neq_Suc
thf(fact_616_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% not0_implies_Suc
thf(fact_617_not__less__simps_I1_J,axiom,
    ! [N: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N @ M2 )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
        = ( N = M2 ) ) ) ).

% not_less_simps(1)
thf(fact_618_Nat_OlessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ K )
     => ( ( K
         != ( suc @ I2 ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_619_Suc__lessD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_lessD
thf(fact_620_Suc__lessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I2 @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_621_Suc__lessI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( ( suc @ M2 )
         != N )
       => ( ord_less_nat @ ( suc @ M2 ) @ N ) ) ) ).

% Suc_lessI
thf(fact_622_less__SucE,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M2 @ N )
       => ( M2 = N ) ) ) ).

% less_SucE
thf(fact_623_less__SucI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_nat @ M2 @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_624_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( suc @ N ) )
            & ( P @ I5 ) ) )
      = ( ( P @ N )
        | ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ N )
            & ( P @ I5 ) ) ) ) ).

% Ex_less_Suc
thf(fact_625_less__Suc__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
      = ( ( ord_less_nat @ M2 @ N )
        | ( M2 = N ) ) ) ).

% less_Suc_eq
thf(fact_626_not__less__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M2 @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M2 ) ) ) ).

% not_less_eq
thf(fact_627_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( suc @ N ) )
           => ( P @ I5 ) ) )
      = ( ( P @ N )
        & ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ N )
           => ( P @ I5 ) ) ) ) ).

% All_less_Suc
thf(fact_628_Suc__less__eq2,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M2 )
      = ( ? [M6: nat] :
            ( ( M2
              = ( suc @ M6 ) )
            & ( ord_less_nat @ N @ M6 ) ) ) ) ).

% Suc_less_eq2
thf(fact_629_less__antisym,axiom,
    ! [N: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N @ M2 )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
       => ( M2 = N ) ) ) ).

% less_antisym
thf(fact_630_Suc__less__SucD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_less_SucD
thf(fact_631_less__trans__Suc,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I2 ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_632_less__Suc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I2 @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_633_strict__inc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I2 ) ) ) ) ).

% strict_inc_induct
thf(fact_634_transitive__stepwise__le,axiom,
    ! [M2: nat,N: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ! [X3: nat] : ( R2 @ X3 @ X3 )
       => ( ! [X3: nat,Y: nat,Z: nat] :
              ( ( R2 @ X3 @ Y )
             => ( ( R2 @ Y @ Z )
               => ( R2 @ X3 @ Z ) ) )
         => ( ! [N3: nat] : ( R2 @ N3 @ ( suc @ N3 ) )
           => ( R2 @ M2 @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_635_nat__induct__at__least,axiom,
    ! [M2: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( P @ M2 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M2 @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_636_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M5 ) @ N3 )
             => ( P @ M5 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_637_not__less__eq__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M2 @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M2 ) ) ).

% not_less_eq_eq
thf(fact_638_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_639_le__Suc__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M2 @ N )
        | ( M2
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_640_Suc__le__D,axiom,
    ! [N: nat,M7: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M7 )
     => ? [M3: nat] :
          ( M7
          = ( suc @ M3 ) ) ) ).

% Suc_le_D
thf(fact_641_le__SucI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ M2 @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_642_le__SucE,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M2 @ N )
       => ( M2
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_643_Suc__leD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% Suc_leD
thf(fact_644_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_645_Suc__inject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
     => ( X2 = Y2 ) ) ).

% Suc_inject
thf(fact_646_strict__sorted__imp__sorted,axiom,
    ! [Xs: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_nat @ Xs )
     => ( sorted_wrt_nat @ ord_less_eq_nat @ Xs ) ) ).

% strict_sorted_imp_sorted
thf(fact_647_strict__sorted__imp__sorted,axiom,
    ! [Xs: list_real] :
      ( ( sorted_wrt_real @ ord_less_real @ Xs )
     => ( sorted_wrt_real @ ord_less_eq_real @ Xs ) ) ).

% strict_sorted_imp_sorted
thf(fact_648_sorted__simps_I1_J,axiom,
    sorted_wrt_nat @ ord_less_eq_nat @ nil_nat ).

% sorted_simps(1)
thf(fact_649_sorted__simps_I1_J,axiom,
    sorted_wrt_real @ ord_less_eq_real @ nil_real ).

% sorted_simps(1)
thf(fact_650_strict__sorted__simps_I1_J,axiom,
    sorted_wrt_nat @ ord_less_nat @ nil_nat ).

% strict_sorted_simps(1)
thf(fact_651_strict__sorted__simps_I1_J,axiom,
    sorted_wrt_real @ ord_less_real @ nil_real ).

% strict_sorted_simps(1)
thf(fact_652_strict__sorted__equal,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_nat @ Xs )
     => ( ( sorted_wrt_nat @ ord_less_nat @ Ys )
       => ( ( ( set_nat2 @ Ys )
            = ( set_nat2 @ Xs ) )
         => ( Ys = Xs ) ) ) ) ).

% strict_sorted_equal
thf(fact_653_strict__sorted__equal,axiom,
    ! [Xs: list_real,Ys: list_real] :
      ( ( sorted_wrt_real @ ord_less_real @ Xs )
     => ( ( sorted_wrt_real @ ord_less_real @ Ys )
       => ( ( ( set_real2 @ Ys )
            = ( set_real2 @ Xs ) )
         => ( Ys = Xs ) ) ) ) ).

% strict_sorted_equal
thf(fact_654_sorted__list__of__set_Osorted__sorted__key__list__of__set,axiom,
    ! [A: set_nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( linord2614967742042102400et_nat @ A ) ) ).

% sorted_list_of_set.sorted_sorted_key_list_of_set
thf(fact_655_sorted__list__of__set_Osorted__sorted__key__list__of__set,axiom,
    ! [A: set_real] : ( sorted_wrt_real @ ord_less_eq_real @ ( linord4252657396651189596t_real @ A ) ) ).

% sorted_list_of_set.sorted_sorted_key_list_of_set
thf(fact_656_strict__sorted__list__of__set,axiom,
    ! [A: set_nat] : ( sorted_wrt_nat @ ord_less_nat @ ( linord2614967742042102400et_nat @ A ) ) ).

% strict_sorted_list_of_set
thf(fact_657_strict__sorted__list__of__set,axiom,
    ! [A: set_real] : ( sorted_wrt_real @ ord_less_real @ ( linord4252657396651189596t_real @ A ) ) ).

% strict_sorted_list_of_set
thf(fact_658_sorted__nths,axiom,
    ! [Xs: list_nat,I: set_nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ Xs )
     => ( sorted_wrt_nat @ ord_less_eq_nat @ ( nths_nat @ Xs @ I ) ) ) ).

% sorted_nths
thf(fact_659_sorted__nths,axiom,
    ! [Xs: list_real,I: set_nat] :
      ( ( sorted_wrt_real @ ord_less_eq_real @ Xs )
     => ( sorted_wrt_real @ ord_less_eq_real @ ( nths_real @ Xs @ I ) ) ) ).

% sorted_nths
thf(fact_660_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N7: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N7 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N7 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_661_lift__Suc__mono__le,axiom,
    ! [F: nat > real,N: nat,N7: nat] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N7 )
       => ( ord_less_eq_real @ ( F @ N ) @ ( F @ N7 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_662_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N7: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N7 )
       => ( ord_less_eq_nat @ ( F @ N7 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_663_lift__Suc__antimono__le,axiom,
    ! [F: nat > real,N: nat,N7: nat] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N7 )
       => ( ord_less_eq_real @ ( F @ N7 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_664_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M2: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M2 ) )
        = ( ord_less_nat @ N @ M2 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_665_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N: nat,M2: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_real @ ( F @ N ) @ ( F @ M2 ) )
        = ( ord_less_nat @ N @ M2 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_666_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N7: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N7 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N7 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_667_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N: nat,N7: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N7 )
       => ( ord_less_real @ ( F @ N ) @ ( F @ N7 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_668_less__Suc__eq__0__disj,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
      = ( ( M2 = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M2
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_669_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% gr0_implies_Suc
thf(fact_670_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( suc @ N ) )
           => ( P @ I5 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ N )
           => ( P @ ( suc @ I5 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_671_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M: nat] :
            ( N
            = ( suc @ M ) ) ) ) ).

% gr0_conv_Suc
thf(fact_672_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( suc @ N ) )
            & ( P @ I5 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ N )
            & ( P @ ( suc @ I5 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_673_le__simps_I3_J,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
      = ( ord_less_nat @ M2 @ N ) ) ).

% le_simps(3)
thf(fact_674_le__simps_I2_J,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% le_simps(2)
thf(fact_675_not__less__simps_I2_J,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
        = ( N = M2 ) ) ) ).

% not_less_simps(2)
thf(fact_676_Suc__leI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( suc @ M2 ) @ N ) ) ).

% Suc_leI
thf(fact_677_dec__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P @ I2 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I2 @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_678_inc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I2 @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% inc_induct
thf(fact_679_Suc__le__lessD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_le_lessD
thf(fact_680_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_681_le__imp__less__Suc,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_nat @ M2 @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_682_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_683_enumerate__step,axiom,
    ! [S: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( ord_less_nat @ ( infini8530281810654367211te_nat @ S @ N ) @ ( infini8530281810654367211te_nat @ S @ ( suc @ N ) ) ) ) ).

% enumerate_step
thf(fact_684_card__le__Suc0__iff__eq,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ A ) @ ( suc @ zero_zero_nat ) )
        = ( ! [X: product_prod_nat_nat] :
              ( ( member8440522571783428010at_nat @ X @ A )
             => ! [Y3: product_prod_nat_nat] :
                  ( ( member8440522571783428010at_nat @ Y3 @ A )
                 => ( X = Y3 ) ) ) ) ) ) ).

% card_le_Suc0_iff_eq
thf(fact_685_card__le__Suc0__iff__eq,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( suc @ zero_zero_nat ) )
        = ( ! [X: nat] :
              ( ( member_nat2 @ X @ A )
             => ! [Y3: nat] :
                  ( ( member_nat2 @ Y3 @ A )
                 => ( X = Y3 ) ) ) ) ) ) ).

% card_le_Suc0_iff_eq
thf(fact_686_sorted__list__of__set_Ofinite__set__strict__sorted,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ~ ! [L2: list_nat] :
            ( ( sorted_wrt_nat @ ord_less_nat @ L2 )
           => ( ( ( set_nat2 @ L2 )
                = A )
             => ( ( size_size_list_nat @ L2 )
               != ( finite_card_nat @ A ) ) ) ) ) ).

% sorted_list_of_set.finite_set_strict_sorted
thf(fact_687_sorted__list__of__set_Ofinite__set__strict__sorted,axiom,
    ! [A: set_real] :
      ( ( finite_finite_real @ A )
     => ~ ! [L2: list_real] :
            ( ( sorted_wrt_real @ ord_less_real @ L2 )
           => ( ( ( set_real2 @ L2 )
                = A )
             => ( ( size_size_list_real @ L2 )
               != ( finite_card_real @ A ) ) ) ) ) ).

% sorted_list_of_set.finite_set_strict_sorted
thf(fact_688_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_1: nat] : ( P @ X_1 )
       => ? [N3: nat] :
            ( ~ ( P @ N3 )
            & ( P @ ( suc @ N3 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_689_encode__unary__nat_Ocases,axiom,
    ! [X2: nat] :
      ( ! [L2: nat] :
          ( X2
         != ( suc @ L2 ) )
     => ( X2 = zero_zero_nat ) ) ).

% encode_unary_nat.cases
thf(fact_690_fib_Ocases,axiom,
    ! [X2: nat] :
      ( ( X2 != zero_zero_nat )
     => ( ( X2
         != ( suc @ zero_zero_nat ) )
       => ~ ! [N3: nat] :
              ( X2
             != ( suc @ ( suc @ N3 ) ) ) ) ) ).

% fib.cases
thf(fact_691_list__decode_Ocases,axiom,
    ! [X2: nat] :
      ( ( X2 != zero_zero_nat )
     => ~ ! [N3: nat] :
            ( X2
           != ( suc @ N3 ) ) ) ).

% list_decode.cases
thf(fact_692_card__set__1__iff__replicate,axiom,
    ! [Xs: list_P6011104703257516679at_nat] :
      ( ( ( finite711546835091564841at_nat @ ( set_Pr5648618587558075414at_nat @ Xs ) )
        = ( suc @ zero_zero_nat ) )
      = ( ( Xs != nil_Pr5478986624290739719at_nat )
        & ? [X: product_prod_nat_nat] :
            ( Xs
            = ( replic4235873036481779905at_nat @ ( size_s5460976970255530739at_nat @ Xs ) @ X ) ) ) ) ).

% card_set_1_iff_replicate
thf(fact_693_card__set__1__iff__replicate,axiom,
    ! [Xs: list_nat] :
      ( ( ( finite_card_nat @ ( set_nat2 @ Xs ) )
        = ( suc @ zero_zero_nat ) )
      = ( ( Xs != nil_nat )
        & ? [X: nat] :
            ( Xs
            = ( replicate_nat @ ( size_size_list_nat @ Xs ) @ X ) ) ) ) ).

% card_set_1_iff_replicate
thf(fact_694_length__replicate,axiom,
    ! [N: nat,X2: nat] :
      ( ( size_size_list_nat @ ( replicate_nat @ N @ X2 ) )
      = N ) ).

% length_replicate
thf(fact_695_replicate__empty,axiom,
    ! [N: nat,X2: nat] :
      ( ( ( replicate_nat @ N @ X2 )
        = nil_nat )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_696_empty__replicate,axiom,
    ! [N: nat,X2: nat] :
      ( ( nil_nat
        = ( replicate_nat @ N @ X2 ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_697_Ball__set__replicate,axiom,
    ! [N: nat,A2: nat,P: nat > $o] :
      ( ( ! [X: nat] :
            ( ( member_nat2 @ X @ ( set_nat2 @ ( replicate_nat @ N @ A2 ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A2 )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_698_Bex__set__replicate,axiom,
    ! [N: nat,A2: nat,P: nat > $o] :
      ( ( ? [X: nat] :
            ( ( member_nat2 @ X @ ( set_nat2 @ ( replicate_nat @ N @ A2 ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A2 )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_699_in__set__replicate,axiom,
    ! [X2: real,N: nat,Y2: real] :
      ( ( member_real2 @ X2 @ ( set_real2 @ ( replicate_real @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_700_in__set__replicate,axiom,
    ! [X2: product_prod_nat_nat,N: nat,Y2: product_prod_nat_nat] :
      ( ( member8440522571783428010at_nat @ X2 @ ( set_Pr5648618587558075414at_nat @ ( replic4235873036481779905at_nat @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_701_in__set__replicate,axiom,
    ! [X2: nat,N: nat,Y2: nat] :
      ( ( member_nat2 @ X2 @ ( set_nat2 @ ( replicate_nat @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_702_replicate_Osimps_I1_J,axiom,
    ! [X2: nat] :
      ( ( replicate_nat @ zero_zero_nat @ X2 )
      = nil_nat ) ).

% replicate.simps(1)
thf(fact_703_replicate__length__same,axiom,
    ! [Xs: list_nat,X2: nat] :
      ( ! [X3: nat] :
          ( ( member_nat2 @ X3 @ ( set_nat2 @ Xs ) )
         => ( X3 = X2 ) )
     => ( ( replicate_nat @ ( size_size_list_nat @ Xs ) @ X2 )
        = Xs ) ) ).

% replicate_length_same
thf(fact_704_replicate__eqI,axiom,
    ! [Xs: list_real,N: nat,X2: real] :
      ( ( ( size_size_list_real @ Xs )
        = N )
     => ( ! [Y: real] :
            ( ( member_real2 @ Y @ ( set_real2 @ Xs ) )
           => ( Y = X2 ) )
       => ( Xs
          = ( replicate_real @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_705_replicate__eqI,axiom,
    ! [Xs: list_P6011104703257516679at_nat,N: nat,X2: product_prod_nat_nat] :
      ( ( ( size_s5460976970255530739at_nat @ Xs )
        = N )
     => ( ! [Y: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ Y @ ( set_Pr5648618587558075414at_nat @ Xs ) )
           => ( Y = X2 ) )
       => ( Xs
          = ( replic4235873036481779905at_nat @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_706_replicate__eqI,axiom,
    ! [Xs: list_nat,N: nat,X2: nat] :
      ( ( ( size_size_list_nat @ Xs )
        = N )
     => ( ! [Y: nat] :
            ( ( member_nat2 @ Y @ ( set_nat2 @ Xs ) )
           => ( Y = X2 ) )
       => ( Xs
          = ( replicate_nat @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_707_sorted__replicate,axiom,
    ! [N: nat,X2: nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( replicate_nat @ N @ X2 ) ) ).

% sorted_replicate
thf(fact_708_sorted__replicate,axiom,
    ! [N: nat,X2: real] : ( sorted_wrt_real @ ord_less_eq_real @ ( replicate_real @ N @ X2 ) ) ).

% sorted_replicate
thf(fact_709_set__replicate,axiom,
    ! [N: nat,X2: nat] :
      ( ( N != zero_zero_nat )
     => ( ( set_nat2 @ ( replicate_nat @ N @ X2 ) )
        = ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) ).

% set_replicate
thf(fact_710_set__replicate,axiom,
    ! [N: nat,X2: product_prod_nat_nat] :
      ( ( N != zero_zero_nat )
     => ( ( set_Pr5648618587558075414at_nat @ ( replic4235873036481779905at_nat @ N @ X2 ) )
        = ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ) ).

% set_replicate
thf(fact_711_set__replicate,axiom,
    ! [N: nat,X2: real] :
      ( ( N != zero_zero_nat )
     => ( ( set_real2 @ ( replicate_real @ N @ X2 ) )
        = ( insert_real2 @ X2 @ bot_bot_set_real ) ) ) ).

% set_replicate
thf(fact_712_sorted__list__of__multiset__empty,axiom,
    ( ( linord3047872887403683810et_nat @ zero_z7348594199698428585et_nat )
    = nil_nat ) ).

% sorted_list_of_multiset_empty
thf(fact_713_remdups__adj__length__ge1,axiom,
    ! [Xs: list_nat] :
      ( ( Xs != nil_nat )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( size_size_list_nat @ ( remdups_adj_nat @ Xs ) ) ) ) ).

% remdups_adj_length_ge1
thf(fact_714_insert__iff,axiom,
    ! [A2: nat,B: nat,A: set_nat] :
      ( ( member_nat2 @ A2 @ ( insert_nat2 @ B @ A ) )
      = ( ( A2 = B )
        | ( member_nat2 @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_715_insert__iff,axiom,
    ! [A2: real,B: real,A: set_real] :
      ( ( member_real2 @ A2 @ ( insert_real2 @ B @ A ) )
      = ( ( A2 = B )
        | ( member_real2 @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_716_insert__iff,axiom,
    ! [A2: product_prod_nat_nat,B: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ A2 @ ( insert8211810215607154385at_nat @ B @ A ) )
      = ( ( A2 = B )
        | ( member8440522571783428010at_nat @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_717_insertCI,axiom,
    ! [A2: nat,B4: set_nat,B: nat] :
      ( ( ~ ( member_nat2 @ A2 @ B4 )
       => ( A2 = B ) )
     => ( member_nat2 @ A2 @ ( insert_nat2 @ B @ B4 ) ) ) ).

% insertCI
thf(fact_718_insertCI,axiom,
    ! [A2: real,B4: set_real,B: real] :
      ( ( ~ ( member_real2 @ A2 @ B4 )
       => ( A2 = B ) )
     => ( member_real2 @ A2 @ ( insert_real2 @ B @ B4 ) ) ) ).

% insertCI
thf(fact_719_insertCI,axiom,
    ! [A2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat,B: product_prod_nat_nat] :
      ( ( ~ ( member8440522571783428010at_nat @ A2 @ B4 )
       => ( A2 = B ) )
     => ( member8440522571783428010at_nat @ A2 @ ( insert8211810215607154385at_nat @ B @ B4 ) ) ) ).

% insertCI
thf(fact_720_insert__subset,axiom,
    ! [X2: nat,A: set_nat,B4: set_nat] :
      ( ( ord_less_eq_set_nat @ ( insert_nat2 @ X2 @ A ) @ B4 )
      = ( ( member_nat2 @ X2 @ B4 )
        & ( ord_less_eq_set_nat @ A @ B4 ) ) ) ).

% insert_subset
thf(fact_721_insert__subset,axiom,
    ! [X2: real,A: set_real,B4: set_real] :
      ( ( ord_less_eq_set_real @ ( insert_real2 @ X2 @ A ) @ B4 )
      = ( ( member_real2 @ X2 @ B4 )
        & ( ord_less_eq_set_real @ A @ B4 ) ) ) ).

% insert_subset
thf(fact_722_insert__subset,axiom,
    ! [X2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) @ B4 )
      = ( ( member8440522571783428010at_nat @ X2 @ B4 )
        & ( ord_le3146513528884898305at_nat @ A @ B4 ) ) ) ).

% insert_subset
thf(fact_723_singletonI,axiom,
    ! [A2: nat] : ( member_nat2 @ A2 @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) ).

% singletonI
thf(fact_724_singletonI,axiom,
    ! [A2: product_prod_nat_nat] : ( member8440522571783428010at_nat @ A2 @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ) ).

% singletonI
thf(fact_725_singletonI,axiom,
    ! [A2: real] : ( member_real2 @ A2 @ ( insert_real2 @ A2 @ bot_bot_set_real ) ) ).

% singletonI
thf(fact_726_finite__insert,axiom,
    ! [A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ ( insert8211810215607154385at_nat @ A2 @ A ) )
      = ( finite6177210948735845034at_nat @ A ) ) ).

% finite_insert
thf(fact_727_finite__insert,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( finite_finite_nat @ ( insert_nat2 @ A2 @ A ) )
      = ( finite_finite_nat @ A ) ) ).

% finite_insert
thf(fact_728_remdups__adj__Nil__iff,axiom,
    ! [Xs: list_nat] :
      ( ( ( remdups_adj_nat @ Xs )
        = nil_nat )
      = ( Xs = nil_nat ) ) ).

% remdups_adj_Nil_iff
thf(fact_729_remdups__adj__set,axiom,
    ! [Xs: list_nat] :
      ( ( set_nat2 @ ( remdups_adj_nat @ Xs ) )
      = ( set_nat2 @ Xs ) ) ).

% remdups_adj_set
thf(fact_730_singleton__insert__inj__eq,axiom,
    ! [B: nat,A2: nat,A: set_nat] :
      ( ( ( insert_nat2 @ B @ bot_bot_set_nat )
        = ( insert_nat2 @ A2 @ A ) )
      = ( ( A2 = B )
        & ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ B @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_731_singleton__insert__inj__eq,axiom,
    ! [B: product_prod_nat_nat,A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( ( insert8211810215607154385at_nat @ B @ bot_bo2099793752762293965at_nat )
        = ( insert8211810215607154385at_nat @ A2 @ A ) )
      = ( ( A2 = B )
        & ( ord_le3146513528884898305at_nat @ A @ ( insert8211810215607154385at_nat @ B @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_732_singleton__insert__inj__eq,axiom,
    ! [B: real,A2: real,A: set_real] :
      ( ( ( insert_real2 @ B @ bot_bot_set_real )
        = ( insert_real2 @ A2 @ A ) )
      = ( ( A2 = B )
        & ( ord_less_eq_set_real @ A @ ( insert_real2 @ B @ bot_bot_set_real ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_733_singleton__insert__inj__eq_H,axiom,
    ! [A2: nat,A: set_nat,B: nat] :
      ( ( ( insert_nat2 @ A2 @ A )
        = ( insert_nat2 @ B @ bot_bot_set_nat ) )
      = ( ( A2 = B )
        & ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ B @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_734_singleton__insert__inj__eq_H,axiom,
    ! [A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B: product_prod_nat_nat] :
      ( ( ( insert8211810215607154385at_nat @ A2 @ A )
        = ( insert8211810215607154385at_nat @ B @ bot_bo2099793752762293965at_nat ) )
      = ( ( A2 = B )
        & ( ord_le3146513528884898305at_nat @ A @ ( insert8211810215607154385at_nat @ B @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_735_singleton__insert__inj__eq_H,axiom,
    ! [A2: real,A: set_real,B: real] :
      ( ( ( insert_real2 @ A2 @ A )
        = ( insert_real2 @ B @ bot_bot_set_real ) )
      = ( ( A2 = B )
        & ( ord_less_eq_set_real @ A @ ( insert_real2 @ B @ bot_bot_set_real ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_736_List_Oset__insert,axiom,
    ! [X2: nat,Xs: list_nat] :
      ( ( set_nat2 @ ( insert_nat @ X2 @ Xs ) )
      = ( insert_nat2 @ X2 @ ( set_nat2 @ Xs ) ) ) ).

% List.set_insert
thf(fact_737_card__insert__disjoint,axiom,
    ! [A: set_real,X2: real] :
      ( ( finite_finite_real @ A )
     => ( ~ ( member_real2 @ X2 @ A )
       => ( ( finite_card_real @ ( insert_real2 @ X2 @ A ) )
          = ( suc @ ( finite_card_real @ A ) ) ) ) ) ).

% card_insert_disjoint
thf(fact_738_card__insert__disjoint,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ~ ( member8440522571783428010at_nat @ X2 @ A )
       => ( ( finite711546835091564841at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) )
          = ( suc @ ( finite711546835091564841at_nat @ A ) ) ) ) ) ).

% card_insert_disjoint
thf(fact_739_card__insert__disjoint,axiom,
    ! [A: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ~ ( member_nat2 @ X2 @ A )
       => ( ( finite_card_nat @ ( insert_nat2 @ X2 @ A ) )
          = ( suc @ ( finite_card_nat @ A ) ) ) ) ) ).

% card_insert_disjoint
thf(fact_740_remdups__adj_Osimps_I1_J,axiom,
    ( ( remdups_adj_nat @ nil_nat )
    = nil_nat ) ).

% remdups_adj.simps(1)
thf(fact_741_subset__insert,axiom,
    ! [X2: nat,A: set_nat,B4: set_nat] :
      ( ~ ( member_nat2 @ X2 @ A )
     => ( ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ X2 @ B4 ) )
        = ( ord_less_eq_set_nat @ A @ B4 ) ) ) ).

% subset_insert
thf(fact_742_subset__insert,axiom,
    ! [X2: real,A: set_real,B4: set_real] :
      ( ~ ( member_real2 @ X2 @ A )
     => ( ( ord_less_eq_set_real @ A @ ( insert_real2 @ X2 @ B4 ) )
        = ( ord_less_eq_set_real @ A @ B4 ) ) ) ).

% subset_insert
thf(fact_743_subset__insert,axiom,
    ! [X2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ~ ( member8440522571783428010at_nat @ X2 @ A )
     => ( ( ord_le3146513528884898305at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ B4 ) )
        = ( ord_le3146513528884898305at_nat @ A @ B4 ) ) ) ).

% subset_insert
thf(fact_744_insert__subsetI,axiom,
    ! [X2: nat,A: set_nat,X5: set_nat] :
      ( ( member_nat2 @ X2 @ A )
     => ( ( ord_less_eq_set_nat @ X5 @ A )
       => ( ord_less_eq_set_nat @ ( insert_nat2 @ X2 @ X5 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_745_insert__subsetI,axiom,
    ! [X2: real,A: set_real,X5: set_real] :
      ( ( member_real2 @ X2 @ A )
     => ( ( ord_less_eq_set_real @ X5 @ A )
       => ( ord_less_eq_set_real @ ( insert_real2 @ X2 @ X5 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_746_insert__subsetI,axiom,
    ! [X2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,X5: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ X2 @ A )
     => ( ( ord_le3146513528884898305at_nat @ X5 @ A )
       => ( ord_le3146513528884898305at_nat @ ( insert8211810215607154385at_nat @ X2 @ X5 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_747_singletonD,axiom,
    ! [B: nat,A2: nat] :
      ( ( member_nat2 @ B @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_748_singletonD,axiom,
    ! [B: product_prod_nat_nat,A2: product_prod_nat_nat] :
      ( ( member8440522571783428010at_nat @ B @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_749_singletonD,axiom,
    ! [B: real,A2: real] :
      ( ( member_real2 @ B @ ( insert_real2 @ A2 @ bot_bot_set_real ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_750_singleton__iff,axiom,
    ! [B: nat,A2: nat] :
      ( ( member_nat2 @ B @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_751_singleton__iff,axiom,
    ! [B: product_prod_nat_nat,A2: product_prod_nat_nat] :
      ( ( member8440522571783428010at_nat @ B @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_752_singleton__iff,axiom,
    ! [B: real,A2: real] :
      ( ( member_real2 @ B @ ( insert_real2 @ A2 @ bot_bot_set_real ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_753_doubleton__eq__iff,axiom,
    ! [A2: nat,B: nat,C: nat,D3: nat] :
      ( ( ( insert_nat2 @ A2 @ ( insert_nat2 @ B @ bot_bot_set_nat ) )
        = ( insert_nat2 @ C @ ( insert_nat2 @ D3 @ bot_bot_set_nat ) ) )
      = ( ( ( A2 = C )
          & ( B = D3 ) )
        | ( ( A2 = D3 )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_754_doubleton__eq__iff,axiom,
    ! [A2: product_prod_nat_nat,B: product_prod_nat_nat,C: product_prod_nat_nat,D3: product_prod_nat_nat] :
      ( ( ( insert8211810215607154385at_nat @ A2 @ ( insert8211810215607154385at_nat @ B @ bot_bo2099793752762293965at_nat ) )
        = ( insert8211810215607154385at_nat @ C @ ( insert8211810215607154385at_nat @ D3 @ bot_bo2099793752762293965at_nat ) ) )
      = ( ( ( A2 = C )
          & ( B = D3 ) )
        | ( ( A2 = D3 )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_755_doubleton__eq__iff,axiom,
    ! [A2: real,B: real,C: real,D3: real] :
      ( ( ( insert_real2 @ A2 @ ( insert_real2 @ B @ bot_bot_set_real ) )
        = ( insert_real2 @ C @ ( insert_real2 @ D3 @ bot_bot_set_real ) ) )
      = ( ( ( A2 = C )
          & ( B = D3 ) )
        | ( ( A2 = D3 )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_756_empty__not__insert,axiom,
    ! [A2: nat,A: set_nat] :
      ( bot_bot_set_nat
     != ( insert_nat2 @ A2 @ A ) ) ).

% empty_not_insert
thf(fact_757_empty__not__insert,axiom,
    ! [A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( bot_bo2099793752762293965at_nat
     != ( insert8211810215607154385at_nat @ A2 @ A ) ) ).

% empty_not_insert
thf(fact_758_empty__not__insert,axiom,
    ! [A2: real,A: set_real] :
      ( bot_bot_set_real
     != ( insert_real2 @ A2 @ A ) ) ).

% empty_not_insert
thf(fact_759_singleton__inject,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( insert_nat2 @ A2 @ bot_bot_set_nat )
        = ( insert_nat2 @ B @ bot_bot_set_nat ) )
     => ( A2 = B ) ) ).

% singleton_inject
thf(fact_760_singleton__inject,axiom,
    ! [A2: product_prod_nat_nat,B: product_prod_nat_nat] :
      ( ( ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat )
        = ( insert8211810215607154385at_nat @ B @ bot_bo2099793752762293965at_nat ) )
     => ( A2 = B ) ) ).

% singleton_inject
thf(fact_761_singleton__inject,axiom,
    ! [A2: real,B: real] :
      ( ( ( insert_real2 @ A2 @ bot_bot_set_real )
        = ( insert_real2 @ B @ bot_bot_set_real ) )
     => ( A2 = B ) ) ).

% singleton_inject
thf(fact_762_finite_OinsertI,axiom,
    ! [A: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( finite6177210948735845034at_nat @ ( insert8211810215607154385at_nat @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_763_finite_OinsertI,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( finite_finite_nat @ A )
     => ( finite_finite_nat @ ( insert_nat2 @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_764_mk__disjoint__insert,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat2 @ A2 @ A )
     => ? [B6: set_nat] :
          ( ( A
            = ( insert_nat2 @ A2 @ B6 ) )
          & ~ ( member_nat2 @ A2 @ B6 ) ) ) ).

% mk_disjoint_insert
thf(fact_765_mk__disjoint__insert,axiom,
    ! [A2: real,A: set_real] :
      ( ( member_real2 @ A2 @ A )
     => ? [B6: set_real] :
          ( ( A
            = ( insert_real2 @ A2 @ B6 ) )
          & ~ ( member_real2 @ A2 @ B6 ) ) ) ).

% mk_disjoint_insert
thf(fact_766_mk__disjoint__insert,axiom,
    ! [A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ A2 @ A )
     => ? [B6: set_Pr1261947904930325089at_nat] :
          ( ( A
            = ( insert8211810215607154385at_nat @ A2 @ B6 ) )
          & ~ ( member8440522571783428010at_nat @ A2 @ B6 ) ) ) ).

% mk_disjoint_insert
thf(fact_767_insert__eq__iff,axiom,
    ! [A2: nat,A: set_nat,B: nat,B4: set_nat] :
      ( ~ ( member_nat2 @ A2 @ A )
     => ( ~ ( member_nat2 @ B @ B4 )
       => ( ( ( insert_nat2 @ A2 @ A )
            = ( insert_nat2 @ B @ B4 ) )
          = ( ( ( A2 = B )
             => ( A = B4 ) )
            & ( ( A2 != B )
             => ? [C5: set_nat] :
                  ( ( A
                    = ( insert_nat2 @ B @ C5 ) )
                  & ~ ( member_nat2 @ B @ C5 )
                  & ( B4
                    = ( insert_nat2 @ A2 @ C5 ) )
                  & ~ ( member_nat2 @ A2 @ C5 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_768_insert__eq__iff,axiom,
    ! [A2: real,A: set_real,B: real,B4: set_real] :
      ( ~ ( member_real2 @ A2 @ A )
     => ( ~ ( member_real2 @ B @ B4 )
       => ( ( ( insert_real2 @ A2 @ A )
            = ( insert_real2 @ B @ B4 ) )
          = ( ( ( A2 = B )
             => ( A = B4 ) )
            & ( ( A2 != B )
             => ? [C5: set_real] :
                  ( ( A
                    = ( insert_real2 @ B @ C5 ) )
                  & ~ ( member_real2 @ B @ C5 )
                  & ( B4
                    = ( insert_real2 @ A2 @ C5 ) )
                  & ~ ( member_real2 @ A2 @ C5 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_769_insert__eq__iff,axiom,
    ! [A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ~ ( member8440522571783428010at_nat @ A2 @ A )
     => ( ~ ( member8440522571783428010at_nat @ B @ B4 )
       => ( ( ( insert8211810215607154385at_nat @ A2 @ A )
            = ( insert8211810215607154385at_nat @ B @ B4 ) )
          = ( ( ( A2 = B )
             => ( A = B4 ) )
            & ( ( A2 != B )
             => ? [C5: set_Pr1261947904930325089at_nat] :
                  ( ( A
                    = ( insert8211810215607154385at_nat @ B @ C5 ) )
                  & ~ ( member8440522571783428010at_nat @ B @ C5 )
                  & ( B4
                    = ( insert8211810215607154385at_nat @ A2 @ C5 ) )
                  & ~ ( member8440522571783428010at_nat @ A2 @ C5 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_770_insert__absorb,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat2 @ A2 @ A )
     => ( ( insert_nat2 @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_771_insert__absorb,axiom,
    ! [A2: real,A: set_real] :
      ( ( member_real2 @ A2 @ A )
     => ( ( insert_real2 @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_772_insert__absorb,axiom,
    ! [A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ A2 @ A )
     => ( ( insert8211810215607154385at_nat @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_773_insert__ident,axiom,
    ! [X2: nat,A: set_nat,B4: set_nat] :
      ( ~ ( member_nat2 @ X2 @ A )
     => ( ~ ( member_nat2 @ X2 @ B4 )
       => ( ( ( insert_nat2 @ X2 @ A )
            = ( insert_nat2 @ X2 @ B4 ) )
          = ( A = B4 ) ) ) ) ).

% insert_ident
thf(fact_774_insert__ident,axiom,
    ! [X2: real,A: set_real,B4: set_real] :
      ( ~ ( member_real2 @ X2 @ A )
     => ( ~ ( member_real2 @ X2 @ B4 )
       => ( ( ( insert_real2 @ X2 @ A )
            = ( insert_real2 @ X2 @ B4 ) )
          = ( A = B4 ) ) ) ) ).

% insert_ident
thf(fact_775_insert__ident,axiom,
    ! [X2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ~ ( member8440522571783428010at_nat @ X2 @ A )
     => ( ~ ( member8440522571783428010at_nat @ X2 @ B4 )
       => ( ( ( insert8211810215607154385at_nat @ X2 @ A )
            = ( insert8211810215607154385at_nat @ X2 @ B4 ) )
          = ( A = B4 ) ) ) ) ).

% insert_ident
thf(fact_776_Set_Oset__insert,axiom,
    ! [X2: nat,A: set_nat] :
      ( ( member_nat2 @ X2 @ A )
     => ~ ! [B6: set_nat] :
            ( ( A
              = ( insert_nat2 @ X2 @ B6 ) )
           => ( member_nat2 @ X2 @ B6 ) ) ) ).

% Set.set_insert
thf(fact_777_Set_Oset__insert,axiom,
    ! [X2: real,A: set_real] :
      ( ( member_real2 @ X2 @ A )
     => ~ ! [B6: set_real] :
            ( ( A
              = ( insert_real2 @ X2 @ B6 ) )
           => ( member_real2 @ X2 @ B6 ) ) ) ).

% Set.set_insert
thf(fact_778_Set_Oset__insert,axiom,
    ! [X2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ X2 @ A )
     => ~ ! [B6: set_Pr1261947904930325089at_nat] :
            ( ( A
              = ( insert8211810215607154385at_nat @ X2 @ B6 ) )
           => ( member8440522571783428010at_nat @ X2 @ B6 ) ) ) ).

% Set.set_insert
thf(fact_779_insertI2,axiom,
    ! [A2: nat,B4: set_nat,B: nat] :
      ( ( member_nat2 @ A2 @ B4 )
     => ( member_nat2 @ A2 @ ( insert_nat2 @ B @ B4 ) ) ) ).

% insertI2
thf(fact_780_insertI2,axiom,
    ! [A2: real,B4: set_real,B: real] :
      ( ( member_real2 @ A2 @ B4 )
     => ( member_real2 @ A2 @ ( insert_real2 @ B @ B4 ) ) ) ).

% insertI2
thf(fact_781_insertI2,axiom,
    ! [A2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat,B: product_prod_nat_nat] :
      ( ( member8440522571783428010at_nat @ A2 @ B4 )
     => ( member8440522571783428010at_nat @ A2 @ ( insert8211810215607154385at_nat @ B @ B4 ) ) ) ).

% insertI2
thf(fact_782_insertI1,axiom,
    ! [A2: nat,B4: set_nat] : ( member_nat2 @ A2 @ ( insert_nat2 @ A2 @ B4 ) ) ).

% insertI1
thf(fact_783_insertI1,axiom,
    ! [A2: real,B4: set_real] : ( member_real2 @ A2 @ ( insert_real2 @ A2 @ B4 ) ) ).

% insertI1
thf(fact_784_insertI1,axiom,
    ! [A2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat] : ( member8440522571783428010at_nat @ A2 @ ( insert8211810215607154385at_nat @ A2 @ B4 ) ) ).

% insertI1
thf(fact_785_insertE,axiom,
    ! [A2: nat,B: nat,A: set_nat] :
      ( ( member_nat2 @ A2 @ ( insert_nat2 @ B @ A ) )
     => ( ( A2 != B )
       => ( member_nat2 @ A2 @ A ) ) ) ).

% insertE
thf(fact_786_insertE,axiom,
    ! [A2: real,B: real,A: set_real] :
      ( ( member_real2 @ A2 @ ( insert_real2 @ B @ A ) )
     => ( ( A2 != B )
       => ( member_real2 @ A2 @ A ) ) ) ).

% insertE
thf(fact_787_insertE,axiom,
    ! [A2: product_prod_nat_nat,B: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ A2 @ ( insert8211810215607154385at_nat @ B @ A ) )
     => ( ( A2 != B )
       => ( member8440522571783428010at_nat @ A2 @ A ) ) ) ).

% insertE
thf(fact_788_remdups__adj__length,axiom,
    ! [Xs: list_nat] : ( ord_less_eq_nat @ ( size_size_list_nat @ ( remdups_adj_nat @ Xs ) ) @ ( size_size_list_nat @ Xs ) ) ).

% remdups_adj_length
thf(fact_789_subset__singletonD,axiom,
    ! [A: set_nat,X2: nat] :
      ( ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) )
     => ( ( A = bot_bot_set_nat )
        | ( A
          = ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) ) ).

% subset_singletonD
thf(fact_790_subset__singletonD,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] :
      ( ( ord_le3146513528884898305at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) )
     => ( ( A = bot_bo2099793752762293965at_nat )
        | ( A
          = ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% subset_singletonD
thf(fact_791_subset__singletonD,axiom,
    ! [A: set_real,X2: real] :
      ( ( ord_less_eq_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) )
     => ( ( A = bot_bot_set_real )
        | ( A
          = ( insert_real2 @ X2 @ bot_bot_set_real ) ) ) ) ).

% subset_singletonD
thf(fact_792_subset__singleton__iff,axiom,
    ! [X5: set_nat,A2: nat] :
      ( ( ord_less_eq_set_nat @ X5 @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) )
      = ( ( X5 = bot_bot_set_nat )
        | ( X5
          = ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) ) ) ).

% subset_singleton_iff
thf(fact_793_subset__singleton__iff,axiom,
    ! [X5: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat] :
      ( ( ord_le3146513528884898305at_nat @ X5 @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) )
      = ( ( X5 = bot_bo2099793752762293965at_nat )
        | ( X5
          = ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% subset_singleton_iff
thf(fact_794_subset__singleton__iff,axiom,
    ! [X5: set_real,A2: real] :
      ( ( ord_less_eq_set_real @ X5 @ ( insert_real2 @ A2 @ bot_bot_set_real ) )
      = ( ( X5 = bot_bot_set_real )
        | ( X5
          = ( insert_real2 @ A2 @ bot_bot_set_real ) ) ) ) ).

% subset_singleton_iff
thf(fact_795_finite_Ocases,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ~ ! [A7: set_nat] :
              ( ? [A5: nat] :
                  ( A2
                  = ( insert_nat2 @ A5 @ A7 ) )
             => ~ ( finite_finite_nat @ A7 ) ) ) ) ).

% finite.cases
thf(fact_796_finite_Ocases,axiom,
    ! [A2: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A2 )
     => ( ( A2 != bot_bo2099793752762293965at_nat )
       => ~ ! [A7: set_Pr1261947904930325089at_nat] :
              ( ? [A5: product_prod_nat_nat] :
                  ( A2
                  = ( insert8211810215607154385at_nat @ A5 @ A7 ) )
             => ~ ( finite6177210948735845034at_nat @ A7 ) ) ) ) ).

% finite.cases
thf(fact_797_finite_Ocases,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ~ ! [A7: set_real] :
              ( ? [A5: real] :
                  ( A2
                  = ( insert_real2 @ A5 @ A7 ) )
             => ~ ( finite_finite_real @ A7 ) ) ) ) ).

% finite.cases
thf(fact_798_finite_Osimps,axiom,
    ( finite_finite_nat
    = ( ^ [A4: set_nat] :
          ( ( A4 = bot_bot_set_nat )
          | ? [A3: set_nat,B2: nat] :
              ( ( A4
                = ( insert_nat2 @ B2 @ A3 ) )
              & ( finite_finite_nat @ A3 ) ) ) ) ) ).

% finite.simps
thf(fact_799_finite_Osimps,axiom,
    ( finite6177210948735845034at_nat
    = ( ^ [A4: set_Pr1261947904930325089at_nat] :
          ( ( A4 = bot_bo2099793752762293965at_nat )
          | ? [A3: set_Pr1261947904930325089at_nat,B2: product_prod_nat_nat] :
              ( ( A4
                = ( insert8211810215607154385at_nat @ B2 @ A3 ) )
              & ( finite6177210948735845034at_nat @ A3 ) ) ) ) ) ).

% finite.simps
thf(fact_800_finite_Osimps,axiom,
    ( finite_finite_real
    = ( ^ [A4: set_real] :
          ( ( A4 = bot_bot_set_real )
          | ? [A3: set_real,B2: real] :
              ( ( A4
                = ( insert_real2 @ B2 @ A3 ) )
              & ( finite_finite_real @ A3 ) ) ) ) ) ).

% finite.simps
thf(fact_801_finite__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat2 @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_nat2 @ X3 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_802_finite__induct,axiom,
    ! [F2: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o] :
      ( ( finite6177210948735845034at_nat @ F2 )
     => ( ( P @ bot_bo2099793752762293965at_nat )
       => ( ! [X3: product_prod_nat_nat,F3: set_Pr1261947904930325089at_nat] :
              ( ( finite6177210948735845034at_nat @ F3 )
             => ( ~ ( member8440522571783428010at_nat @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert8211810215607154385at_nat @ X3 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_803_finite__induct,axiom,
    ! [F2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ F2 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X3: real,F3: set_real] :
              ( ( finite_finite_real @ F3 )
             => ( ~ ( member_real2 @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_real2 @ X3 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_804_finite__ne__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( F2 != bot_bot_set_nat )
       => ( ! [X3: nat] : ( P @ ( insert_nat2 @ X3 @ bot_bot_set_nat ) )
         => ( ! [X3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( F3 != bot_bot_set_nat )
                 => ( ~ ( member_nat2 @ X3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_nat2 @ X3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_805_finite__ne__induct,axiom,
    ! [F2: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o] :
      ( ( finite6177210948735845034at_nat @ F2 )
     => ( ( F2 != bot_bo2099793752762293965at_nat )
       => ( ! [X3: product_prod_nat_nat] : ( P @ ( insert8211810215607154385at_nat @ X3 @ bot_bo2099793752762293965at_nat ) )
         => ( ! [X3: product_prod_nat_nat,F3: set_Pr1261947904930325089at_nat] :
                ( ( finite6177210948735845034at_nat @ F3 )
               => ( ( F3 != bot_bo2099793752762293965at_nat )
                 => ( ~ ( member8440522571783428010at_nat @ X3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert8211810215607154385at_nat @ X3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_806_finite__ne__induct,axiom,
    ! [F2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ F2 )
     => ( ( F2 != bot_bot_set_real )
       => ( ! [X3: real] : ( P @ ( insert_real2 @ X3 @ bot_bot_set_real ) )
         => ( ! [X3: real,F3: set_real] :
                ( ( finite_finite_real @ F3 )
               => ( ( F3 != bot_bot_set_real )
                 => ( ~ ( member_real2 @ X3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_real2 @ X3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_807_infinite__finite__induct,axiom,
    ! [P: set_nat > $o,A: set_nat] :
      ( ! [A7: set_nat] :
          ( ~ ( finite_finite_nat @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat2 @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_nat2 @ X3 @ F3 ) ) ) ) )
         => ( P @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_808_infinite__finite__induct,axiom,
    ! [P: set_Pr1261947904930325089at_nat > $o,A: set_Pr1261947904930325089at_nat] :
      ( ! [A7: set_Pr1261947904930325089at_nat] :
          ( ~ ( finite6177210948735845034at_nat @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bo2099793752762293965at_nat )
       => ( ! [X3: product_prod_nat_nat,F3: set_Pr1261947904930325089at_nat] :
              ( ( finite6177210948735845034at_nat @ F3 )
             => ( ~ ( member8440522571783428010at_nat @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert8211810215607154385at_nat @ X3 @ F3 ) ) ) ) )
         => ( P @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_809_infinite__finite__induct,axiom,
    ! [P: set_real > $o,A: set_real] :
      ( ! [A7: set_real] :
          ( ~ ( finite_finite_real @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X3: real,F3: set_real] :
              ( ( finite_finite_real @ F3 )
             => ( ~ ( member_real2 @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_real2 @ X3 @ F3 ) ) ) ) )
         => ( P @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_810_sorted__remdups__adj,axiom,
    ! [Xs: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ Xs )
     => ( sorted_wrt_nat @ ord_less_eq_nat @ ( remdups_adj_nat @ Xs ) ) ) ).

% sorted_remdups_adj
thf(fact_811_sorted__remdups__adj,axiom,
    ! [Xs: list_real] :
      ( ( sorted_wrt_real @ ord_less_eq_real @ Xs )
     => ( sorted_wrt_real @ ord_less_eq_real @ ( remdups_adj_real @ Xs ) ) ) ).

% sorted_remdups_adj
thf(fact_812_card__insert__le,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] : ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite711546835091564841at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) ) ) ).

% card_insert_le
thf(fact_813_card__insert__le,axiom,
    ! [A: set_nat,X2: nat] : ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ ( insert_nat2 @ X2 @ A ) ) ) ).

% card_insert_le
thf(fact_814_finite__ranking__induct,axiom,
    ! [S: set_nat,P: set_nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,S3: set_nat] :
              ( ( finite_finite_nat @ S3 )
             => ( ! [Y4: nat] :
                    ( ( member_nat2 @ Y4 @ S3 )
                   => ( ord_less_eq_nat @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S3 )
                 => ( P @ ( insert_nat2 @ X3 @ S3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_815_finite__ranking__induct,axiom,
    ! [S: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o,F: product_prod_nat_nat > nat] :
      ( ( finite6177210948735845034at_nat @ S )
     => ( ( P @ bot_bo2099793752762293965at_nat )
       => ( ! [X3: product_prod_nat_nat,S3: set_Pr1261947904930325089at_nat] :
              ( ( finite6177210948735845034at_nat @ S3 )
             => ( ! [Y4: product_prod_nat_nat] :
                    ( ( member8440522571783428010at_nat @ Y4 @ S3 )
                   => ( ord_less_eq_nat @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S3 )
                 => ( P @ ( insert8211810215607154385at_nat @ X3 @ S3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_816_finite__ranking__induct,axiom,
    ! [S: set_real,P: set_real > $o,F: real > nat] :
      ( ( finite_finite_real @ S )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X3: real,S3: set_real] :
              ( ( finite_finite_real @ S3 )
             => ( ! [Y4: real] :
                    ( ( member_real2 @ Y4 @ S3 )
                   => ( ord_less_eq_nat @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S3 )
                 => ( P @ ( insert_real2 @ X3 @ S3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_817_finite__ranking__induct,axiom,
    ! [S: set_nat,P: set_nat > $o,F: nat > real] :
      ( ( finite_finite_nat @ S )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,S3: set_nat] :
              ( ( finite_finite_nat @ S3 )
             => ( ! [Y4: nat] :
                    ( ( member_nat2 @ Y4 @ S3 )
                   => ( ord_less_eq_real @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S3 )
                 => ( P @ ( insert_nat2 @ X3 @ S3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_818_finite__ranking__induct,axiom,
    ! [S: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o,F: product_prod_nat_nat > real] :
      ( ( finite6177210948735845034at_nat @ S )
     => ( ( P @ bot_bo2099793752762293965at_nat )
       => ( ! [X3: product_prod_nat_nat,S3: set_Pr1261947904930325089at_nat] :
              ( ( finite6177210948735845034at_nat @ S3 )
             => ( ! [Y4: product_prod_nat_nat] :
                    ( ( member8440522571783428010at_nat @ Y4 @ S3 )
                   => ( ord_less_eq_real @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S3 )
                 => ( P @ ( insert8211810215607154385at_nat @ X3 @ S3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_819_finite__ranking__induct,axiom,
    ! [S: set_real,P: set_real > $o,F: real > real] :
      ( ( finite_finite_real @ S )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X3: real,S3: set_real] :
              ( ( finite_finite_real @ S3 )
             => ( ! [Y4: real] :
                    ( ( member_real2 @ Y4 @ S3 )
                   => ( ord_less_eq_real @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S3 )
                 => ( P @ ( insert_real2 @ X3 @ S3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_820_finite__linorder__max__induct,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B3: nat,A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ! [X4: nat] :
                    ( ( member_nat2 @ X4 @ A7 )
                   => ( ord_less_nat @ X4 @ B3 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_nat2 @ B3 @ A7 ) ) ) ) )
         => ( P @ A ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_821_finite__linorder__max__induct,axiom,
    ! [A: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ A )
     => ( ( P @ bot_bot_set_real )
       => ( ! [B3: real,A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ! [X4: real] :
                    ( ( member_real2 @ X4 @ A7 )
                   => ( ord_less_real @ X4 @ B3 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_real2 @ B3 @ A7 ) ) ) ) )
         => ( P @ A ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_822_finite__linorder__min__induct,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B3: nat,A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ! [X4: nat] :
                    ( ( member_nat2 @ X4 @ A7 )
                   => ( ord_less_nat @ B3 @ X4 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_nat2 @ B3 @ A7 ) ) ) ) )
         => ( P @ A ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_823_finite__linorder__min__induct,axiom,
    ! [A: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ A )
     => ( ( P @ bot_bot_set_real )
       => ( ! [B3: real,A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ! [X4: real] :
                    ( ( member_real2 @ X4 @ A7 )
                   => ( ord_less_real @ B3 @ X4 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_real2 @ B3 @ A7 ) ) ) ) )
         => ( P @ A ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_824_finite__subset__induct,axiom,
    ! [F2: set_nat,A: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A5: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat2 @ A5 @ A )
                 => ( ~ ( member_nat2 @ A5 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_nat2 @ A5 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_825_finite__subset__induct,axiom,
    ! [F2: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o] :
      ( ( finite6177210948735845034at_nat @ F2 )
     => ( ( ord_le3146513528884898305at_nat @ F2 @ A )
       => ( ( P @ bot_bo2099793752762293965at_nat )
         => ( ! [A5: product_prod_nat_nat,F3: set_Pr1261947904930325089at_nat] :
                ( ( finite6177210948735845034at_nat @ F3 )
               => ( ( member8440522571783428010at_nat @ A5 @ A )
                 => ( ~ ( member8440522571783428010at_nat @ A5 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert8211810215607154385at_nat @ A5 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_826_finite__subset__induct,axiom,
    ! [F2: set_real,A: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ F2 )
     => ( ( ord_less_eq_set_real @ F2 @ A )
       => ( ( P @ bot_bot_set_real )
         => ( ! [A5: real,F3: set_real] :
                ( ( finite_finite_real @ F3 )
               => ( ( member_real2 @ A5 @ A )
                 => ( ~ ( member_real2 @ A5 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_real2 @ A5 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_827_finite__subset__induct_H,axiom,
    ! [F2: set_nat,A: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A5: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat2 @ A5 @ A )
                 => ( ( ord_less_eq_set_nat @ F3 @ A )
                   => ( ~ ( member_nat2 @ A5 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert_nat2 @ A5 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_828_finite__subset__induct_H,axiom,
    ! [F2: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o] :
      ( ( finite6177210948735845034at_nat @ F2 )
     => ( ( ord_le3146513528884898305at_nat @ F2 @ A )
       => ( ( P @ bot_bo2099793752762293965at_nat )
         => ( ! [A5: product_prod_nat_nat,F3: set_Pr1261947904930325089at_nat] :
                ( ( finite6177210948735845034at_nat @ F3 )
               => ( ( member8440522571783428010at_nat @ A5 @ A )
                 => ( ( ord_le3146513528884898305at_nat @ F3 @ A )
                   => ( ~ ( member8440522571783428010at_nat @ A5 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert8211810215607154385at_nat @ A5 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_829_finite__subset__induct_H,axiom,
    ! [F2: set_real,A: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ F2 )
     => ( ( ord_less_eq_set_real @ F2 @ A )
       => ( ( P @ bot_bot_set_real )
         => ( ! [A5: real,F3: set_real] :
                ( ( finite_finite_real @ F3 )
               => ( ( member_real2 @ A5 @ A )
                 => ( ( ord_less_eq_set_real @ F3 @ A )
                   => ( ~ ( member_real2 @ A5 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert_real2 @ A5 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_830_card__Suc__eq__finite,axiom,
    ! [A: set_real,K: nat] :
      ( ( ( finite_card_real @ A )
        = ( suc @ K ) )
      = ( ? [B2: real,B7: set_real] :
            ( ( A
              = ( insert_real2 @ B2 @ B7 ) )
            & ~ ( member_real2 @ B2 @ B7 )
            & ( ( finite_card_real @ B7 )
              = K )
            & ( finite_finite_real @ B7 ) ) ) ) ).

% card_Suc_eq_finite
thf(fact_831_card__Suc__eq__finite,axiom,
    ! [A: set_Pr1261947904930325089at_nat,K: nat] :
      ( ( ( finite711546835091564841at_nat @ A )
        = ( suc @ K ) )
      = ( ? [B2: product_prod_nat_nat,B7: set_Pr1261947904930325089at_nat] :
            ( ( A
              = ( insert8211810215607154385at_nat @ B2 @ B7 ) )
            & ~ ( member8440522571783428010at_nat @ B2 @ B7 )
            & ( ( finite711546835091564841at_nat @ B7 )
              = K )
            & ( finite6177210948735845034at_nat @ B7 ) ) ) ) ).

% card_Suc_eq_finite
thf(fact_832_card__Suc__eq__finite,axiom,
    ! [A: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A )
        = ( suc @ K ) )
      = ( ? [B2: nat,B7: set_nat] :
            ( ( A
              = ( insert_nat2 @ B2 @ B7 ) )
            & ~ ( member_nat2 @ B2 @ B7 )
            & ( ( finite_card_nat @ B7 )
              = K )
            & ( finite_finite_nat @ B7 ) ) ) ) ).

% card_Suc_eq_finite
thf(fact_833_card__insert__if,axiom,
    ! [A: set_real,X2: real] :
      ( ( finite_finite_real @ A )
     => ( ( ( member_real2 @ X2 @ A )
         => ( ( finite_card_real @ ( insert_real2 @ X2 @ A ) )
            = ( finite_card_real @ A ) ) )
        & ( ~ ( member_real2 @ X2 @ A )
         => ( ( finite_card_real @ ( insert_real2 @ X2 @ A ) )
            = ( suc @ ( finite_card_real @ A ) ) ) ) ) ) ).

% card_insert_if
thf(fact_834_card__insert__if,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( ( member8440522571783428010at_nat @ X2 @ A )
         => ( ( finite711546835091564841at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) )
            = ( finite711546835091564841at_nat @ A ) ) )
        & ( ~ ( member8440522571783428010at_nat @ X2 @ A )
         => ( ( finite711546835091564841at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) )
            = ( suc @ ( finite711546835091564841at_nat @ A ) ) ) ) ) ) ).

% card_insert_if
thf(fact_835_card__insert__if,axiom,
    ! [A: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( ( member_nat2 @ X2 @ A )
         => ( ( finite_card_nat @ ( insert_nat2 @ X2 @ A ) )
            = ( finite_card_nat @ A ) ) )
        & ( ~ ( member_nat2 @ X2 @ A )
         => ( ( finite_card_nat @ ( insert_nat2 @ X2 @ A ) )
            = ( suc @ ( finite_card_nat @ A ) ) ) ) ) ) ).

% card_insert_if
thf(fact_836_card__1__singleton__iff,axiom,
    ! [A: set_nat] :
      ( ( ( finite_card_nat @ A )
        = ( suc @ zero_zero_nat ) )
      = ( ? [X: nat] :
            ( A
            = ( insert_nat2 @ X @ bot_bot_set_nat ) ) ) ) ).

% card_1_singleton_iff
thf(fact_837_card__1__singleton__iff,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( ( finite711546835091564841at_nat @ A )
        = ( suc @ zero_zero_nat ) )
      = ( ? [X: product_prod_nat_nat] :
            ( A
            = ( insert8211810215607154385at_nat @ X @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% card_1_singleton_iff
thf(fact_838_card__1__singleton__iff,axiom,
    ! [A: set_real] :
      ( ( ( finite_card_real @ A )
        = ( suc @ zero_zero_nat ) )
      = ( ? [X: real] :
            ( A
            = ( insert_real2 @ X @ bot_bot_set_real ) ) ) ) ).

% card_1_singleton_iff
thf(fact_839_card__eq__SucD,axiom,
    ! [A: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A )
        = ( suc @ K ) )
     => ? [B3: nat,B6: set_nat] :
          ( ( A
            = ( insert_nat2 @ B3 @ B6 ) )
          & ~ ( member_nat2 @ B3 @ B6 )
          & ( ( finite_card_nat @ B6 )
            = K )
          & ( ( K = zero_zero_nat )
           => ( B6 = bot_bot_set_nat ) ) ) ) ).

% card_eq_SucD
thf(fact_840_card__eq__SucD,axiom,
    ! [A: set_Pr1261947904930325089at_nat,K: nat] :
      ( ( ( finite711546835091564841at_nat @ A )
        = ( suc @ K ) )
     => ? [B3: product_prod_nat_nat,B6: set_Pr1261947904930325089at_nat] :
          ( ( A
            = ( insert8211810215607154385at_nat @ B3 @ B6 ) )
          & ~ ( member8440522571783428010at_nat @ B3 @ B6 )
          & ( ( finite711546835091564841at_nat @ B6 )
            = K )
          & ( ( K = zero_zero_nat )
           => ( B6 = bot_bo2099793752762293965at_nat ) ) ) ) ).

% card_eq_SucD
thf(fact_841_card__eq__SucD,axiom,
    ! [A: set_real,K: nat] :
      ( ( ( finite_card_real @ A )
        = ( suc @ K ) )
     => ? [B3: real,B6: set_real] :
          ( ( A
            = ( insert_real2 @ B3 @ B6 ) )
          & ~ ( member_real2 @ B3 @ B6 )
          & ( ( finite_card_real @ B6 )
            = K )
          & ( ( K = zero_zero_nat )
           => ( B6 = bot_bot_set_real ) ) ) ) ).

% card_eq_SucD
thf(fact_842_card__Suc__eq,axiom,
    ! [A: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A )
        = ( suc @ K ) )
      = ( ? [B2: nat,B7: set_nat] :
            ( ( A
              = ( insert_nat2 @ B2 @ B7 ) )
            & ~ ( member_nat2 @ B2 @ B7 )
            & ( ( finite_card_nat @ B7 )
              = K )
            & ( ( K = zero_zero_nat )
             => ( B7 = bot_bot_set_nat ) ) ) ) ) ).

% card_Suc_eq
thf(fact_843_card__Suc__eq,axiom,
    ! [A: set_Pr1261947904930325089at_nat,K: nat] :
      ( ( ( finite711546835091564841at_nat @ A )
        = ( suc @ K ) )
      = ( ? [B2: product_prod_nat_nat,B7: set_Pr1261947904930325089at_nat] :
            ( ( A
              = ( insert8211810215607154385at_nat @ B2 @ B7 ) )
            & ~ ( member8440522571783428010at_nat @ B2 @ B7 )
            & ( ( finite711546835091564841at_nat @ B7 )
              = K )
            & ( ( K = zero_zero_nat )
             => ( B7 = bot_bo2099793752762293965at_nat ) ) ) ) ) ).

% card_Suc_eq
thf(fact_844_card__Suc__eq,axiom,
    ! [A: set_real,K: nat] :
      ( ( ( finite_card_real @ A )
        = ( suc @ K ) )
      = ( ? [B2: real,B7: set_real] :
            ( ( A
              = ( insert_real2 @ B2 @ B7 ) )
            & ~ ( member_real2 @ B2 @ B7 )
            & ( ( finite_card_real @ B7 )
              = K )
            & ( ( K = zero_zero_nat )
             => ( B7 = bot_bot_set_real ) ) ) ) ) ).

% card_Suc_eq
thf(fact_845_card__le__Suc__iff,axiom,
    ! [N: nat,A: set_real] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( finite_card_real @ A ) )
      = ( ? [A4: real,B7: set_real] :
            ( ( A
              = ( insert_real2 @ A4 @ B7 ) )
            & ~ ( member_real2 @ A4 @ B7 )
            & ( ord_less_eq_nat @ N @ ( finite_card_real @ B7 ) )
            & ( finite_finite_real @ B7 ) ) ) ) ).

% card_le_Suc_iff
thf(fact_846_card__le__Suc__iff,axiom,
    ! [N: nat,A: set_Pr1261947904930325089at_nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( finite711546835091564841at_nat @ A ) )
      = ( ? [A4: product_prod_nat_nat,B7: set_Pr1261947904930325089at_nat] :
            ( ( A
              = ( insert8211810215607154385at_nat @ A4 @ B7 ) )
            & ~ ( member8440522571783428010at_nat @ A4 @ B7 )
            & ( ord_less_eq_nat @ N @ ( finite711546835091564841at_nat @ B7 ) )
            & ( finite6177210948735845034at_nat @ B7 ) ) ) ) ).

% card_le_Suc_iff
thf(fact_847_card__le__Suc__iff,axiom,
    ! [N: nat,A: set_nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( finite_card_nat @ A ) )
      = ( ? [A4: nat,B7: set_nat] :
            ( ( A
              = ( insert_nat2 @ A4 @ B7 ) )
            & ~ ( member_nat2 @ A4 @ B7 )
            & ( ord_less_eq_nat @ N @ ( finite_card_nat @ B7 ) )
            & ( finite_finite_nat @ B7 ) ) ) ) ).

% card_le_Suc_iff
thf(fact_848_set__replicate__conv__if,axiom,
    ! [N: nat,X2: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_nat2 @ ( replicate_nat @ N @ X2 ) )
          = bot_bot_set_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_nat2 @ ( replicate_nat @ N @ X2 ) )
          = ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_849_set__replicate__conv__if,axiom,
    ! [N: nat,X2: product_prod_nat_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_Pr5648618587558075414at_nat @ ( replic4235873036481779905at_nat @ N @ X2 ) )
          = bot_bo2099793752762293965at_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_Pr5648618587558075414at_nat @ ( replic4235873036481779905at_nat @ N @ X2 ) )
          = ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_850_set__replicate__conv__if,axiom,
    ! [N: nat,X2: real] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_real2 @ ( replicate_real @ N @ X2 ) )
          = bot_bot_set_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_real2 @ ( replicate_real @ N @ X2 ) )
          = ( insert_real2 @ X2 @ bot_bot_set_real ) ) ) ) ).

% set_replicate_conv_if
thf(fact_851_set__replicate__Suc,axiom,
    ! [N: nat,X2: nat] :
      ( ( set_nat2 @ ( replicate_nat @ ( suc @ N ) @ X2 ) )
      = ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ).

% set_replicate_Suc
thf(fact_852_set__replicate__Suc,axiom,
    ! [N: nat,X2: product_prod_nat_nat] :
      ( ( set_Pr5648618587558075414at_nat @ ( replic4235873036481779905at_nat @ ( suc @ N ) @ X2 ) )
      = ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ).

% set_replicate_Suc
thf(fact_853_set__replicate__Suc,axiom,
    ! [N: nat,X2: real] :
      ( ( set_real2 @ ( replicate_real @ ( suc @ N ) @ X2 ) )
      = ( insert_real2 @ X2 @ bot_bot_set_real ) ) ).

% set_replicate_Suc
thf(fact_854_sorted__sorted__list__of__multiset,axiom,
    ! [M4: multiset_nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( linord3047872887403683810et_nat @ M4 ) ) ).

% sorted_sorted_list_of_multiset
thf(fact_855_sorted__sorted__list__of__multiset,axiom,
    ! [M4: multiset_real] : ( sorted_wrt_real @ ord_less_eq_real @ ( linord36121425647212990t_real @ M4 ) ) ).

% sorted_sorted_list_of_multiset
thf(fact_856_set__zero,axiom,
    ( zero_zero_set_nat
    = ( insert_nat2 @ zero_zero_nat @ bot_bot_set_nat ) ) ).

% set_zero
thf(fact_857_set__zero,axiom,
    ( zero_z7294763051868718104at_nat
    = ( insert8211810215607154385at_nat @ zero_z3979849011205770936at_nat @ bot_bo2099793752762293965at_nat ) ) ).

% set_zero
thf(fact_858_set__zero,axiom,
    ( zero_zero_set_real
    = ( insert_real2 @ zero_zero_real @ bot_bot_set_real ) ) ).

% set_zero
thf(fact_859_is__singletonI,axiom,
    ! [X2: nat] : ( is_singleton_nat @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ).

% is_singletonI
thf(fact_860_is__singletonI,axiom,
    ! [X2: product_prod_nat_nat] : ( is_sin2850979758926227957at_nat @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ).

% is_singletonI
thf(fact_861_is__singletonI,axiom,
    ! [X2: real] : ( is_singleton_real @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) ).

% is_singletonI
thf(fact_862_is__singletonI_H,axiom,
    ! [A: set_nat] :
      ( ( A != bot_bot_set_nat )
     => ( ! [X3: nat,Y: nat] :
            ( ( member_nat2 @ X3 @ A )
           => ( ( member_nat2 @ Y @ A )
             => ( X3 = Y ) ) )
       => ( is_singleton_nat @ A ) ) ) ).

% is_singletonI'
thf(fact_863_is__singletonI_H,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( A != bot_bo2099793752762293965at_nat )
     => ( ! [X3: product_prod_nat_nat,Y: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ X3 @ A )
           => ( ( member8440522571783428010at_nat @ Y @ A )
             => ( X3 = Y ) ) )
       => ( is_sin2850979758926227957at_nat @ A ) ) ) ).

% is_singletonI'
thf(fact_864_is__singletonI_H,axiom,
    ! [A: set_real] :
      ( ( A != bot_bot_set_real )
     => ( ! [X3: real,Y: real] :
            ( ( member_real2 @ X3 @ A )
           => ( ( member_real2 @ Y @ A )
             => ( X3 = Y ) ) )
       => ( is_singleton_real @ A ) ) ) ).

% is_singletonI'
thf(fact_865_is__singletonE,axiom,
    ! [A: set_nat] :
      ( ( is_singleton_nat @ A )
     => ~ ! [X3: nat] :
            ( A
           != ( insert_nat2 @ X3 @ bot_bot_set_nat ) ) ) ).

% is_singletonE
thf(fact_866_is__singletonE,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( is_sin2850979758926227957at_nat @ A )
     => ~ ! [X3: product_prod_nat_nat] :
            ( A
           != ( insert8211810215607154385at_nat @ X3 @ bot_bo2099793752762293965at_nat ) ) ) ).

% is_singletonE
thf(fact_867_is__singletonE,axiom,
    ! [A: set_real] :
      ( ( is_singleton_real @ A )
     => ~ ! [X3: real] :
            ( A
           != ( insert_real2 @ X3 @ bot_bot_set_real ) ) ) ).

% is_singletonE
thf(fact_868_is__singleton__def,axiom,
    ( is_singleton_nat
    = ( ^ [A3: set_nat] :
        ? [X: nat] :
          ( A3
          = ( insert_nat2 @ X @ bot_bot_set_nat ) ) ) ) ).

% is_singleton_def
thf(fact_869_is__singleton__def,axiom,
    ( is_sin2850979758926227957at_nat
    = ( ^ [A3: set_Pr1261947904930325089at_nat] :
        ? [X: product_prod_nat_nat] :
          ( A3
          = ( insert8211810215607154385at_nat @ X @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% is_singleton_def
thf(fact_870_is__singleton__def,axiom,
    ( is_singleton_real
    = ( ^ [A3: set_real] :
        ? [X: real] :
          ( A3
          = ( insert_real2 @ X @ bot_bot_set_real ) ) ) ) ).

% is_singleton_def
thf(fact_871_remdups__adj__singleton__iff,axiom,
    ! [Xs: list_nat] :
      ( ( ( size_size_list_nat @ ( remdups_adj_nat @ Xs ) )
        = ( suc @ zero_zero_nat ) )
      = ( ( Xs != nil_nat )
        & ( Xs
          = ( replicate_nat @ ( size_size_list_nat @ Xs ) @ ( hd_nat @ Xs ) ) ) ) ) ).

% remdups_adj_singleton_iff
thf(fact_872_enumerate__Suc_H,axiom,
    ! [S: set_nat,N: nat] :
      ( ( infini8530281810654367211te_nat @ S @ ( suc @ N ) )
      = ( infini8530281810654367211te_nat @ ( minus_minus_set_nat @ S @ ( insert_nat2 @ ( infini8530281810654367211te_nat @ S @ zero_zero_nat ) @ bot_bot_set_nat ) ) @ N ) ) ).

% enumerate_Suc'
thf(fact_873_card__Diff1__less__iff,axiom,
    ! [A: set_nat,X2: nat] :
      ( ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A ) )
      = ( ( finite_finite_nat @ A )
        & ( member_nat2 @ X2 @ A ) ) ) ).

% card_Diff1_less_iff
thf(fact_874_card__Diff1__less__iff,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] :
      ( ( ord_less_nat @ ( finite711546835091564841at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ) @ ( finite711546835091564841at_nat @ A ) )
      = ( ( finite6177210948735845034at_nat @ A )
        & ( member8440522571783428010at_nat @ X2 @ A ) ) ) ).

% card_Diff1_less_iff
thf(fact_875_card__Diff1__less__iff,axiom,
    ! [A: set_real,X2: real] :
      ( ( ord_less_nat @ ( finite_card_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) ) @ ( finite_card_real @ A ) )
      = ( ( finite_finite_real @ A )
        & ( member_real2 @ X2 @ A ) ) ) ).

% card_Diff1_less_iff
thf(fact_876_Diff__iff,axiom,
    ! [C: nat,A: set_nat,B4: set_nat] :
      ( ( member_nat2 @ C @ ( minus_minus_set_nat @ A @ B4 ) )
      = ( ( member_nat2 @ C @ A )
        & ~ ( member_nat2 @ C @ B4 ) ) ) ).

% Diff_iff
thf(fact_877_Diff__iff,axiom,
    ! [C: real,A: set_real,B4: set_real] :
      ( ( member_real2 @ C @ ( minus_minus_set_real @ A @ B4 ) )
      = ( ( member_real2 @ C @ A )
        & ~ ( member_real2 @ C @ B4 ) ) ) ).

% Diff_iff
thf(fact_878_Diff__iff,axiom,
    ! [C: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ C @ ( minus_1356011639430497352at_nat @ A @ B4 ) )
      = ( ( member8440522571783428010at_nat @ C @ A )
        & ~ ( member8440522571783428010at_nat @ C @ B4 ) ) ) ).

% Diff_iff
thf(fact_879_DiffI,axiom,
    ! [C: nat,A: set_nat,B4: set_nat] :
      ( ( member_nat2 @ C @ A )
     => ( ~ ( member_nat2 @ C @ B4 )
       => ( member_nat2 @ C @ ( minus_minus_set_nat @ A @ B4 ) ) ) ) ).

% DiffI
thf(fact_880_DiffI,axiom,
    ! [C: real,A: set_real,B4: set_real] :
      ( ( member_real2 @ C @ A )
     => ( ~ ( member_real2 @ C @ B4 )
       => ( member_real2 @ C @ ( minus_minus_set_real @ A @ B4 ) ) ) ) ).

% DiffI
thf(fact_881_DiffI,axiom,
    ! [C: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ C @ A )
     => ( ~ ( member8440522571783428010at_nat @ C @ B4 )
       => ( member8440522571783428010at_nat @ C @ ( minus_1356011639430497352at_nat @ A @ B4 ) ) ) ) ).

% DiffI
thf(fact_882_semiring__norm_I58_J,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ A2 @ zero_zero_real )
      = A2 ) ).

% semiring_norm(58)
thf(fact_883_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ A2 @ A2 )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_884_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ A2 @ A2 )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_885_diff__zero,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% diff_zero
thf(fact_886_diff__zero,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ A2 @ zero_zero_real )
      = A2 ) ).

% diff_zero
thf(fact_887_zero__diff,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_888_right__minus__eq,axiom,
    ! [A2: real,B: real] :
      ( ( ( minus_minus_real @ A2 @ B )
        = zero_zero_real )
      = ( A2 = B ) ) ).

% right_minus_eq
thf(fact_889_diff__self,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ A2 @ A2 )
      = zero_zero_real ) ).

% diff_self
thf(fact_890_Diff__empty,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ A @ bot_bot_set_nat )
      = A ) ).

% Diff_empty
thf(fact_891_Diff__empty,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( minus_1356011639430497352at_nat @ A @ bot_bo2099793752762293965at_nat )
      = A ) ).

% Diff_empty
thf(fact_892_Diff__empty,axiom,
    ! [A: set_real] :
      ( ( minus_minus_set_real @ A @ bot_bot_set_real )
      = A ) ).

% Diff_empty
thf(fact_893_empty__Diff,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ bot_bot_set_nat @ A )
      = bot_bot_set_nat ) ).

% empty_Diff
thf(fact_894_empty__Diff,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( minus_1356011639430497352at_nat @ bot_bo2099793752762293965at_nat @ A )
      = bot_bo2099793752762293965at_nat ) ).

% empty_Diff
thf(fact_895_empty__Diff,axiom,
    ! [A: set_real] :
      ( ( minus_minus_set_real @ bot_bot_set_real @ A )
      = bot_bot_set_real ) ).

% empty_Diff
thf(fact_896_Diff__cancel,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ A @ A )
      = bot_bot_set_nat ) ).

% Diff_cancel
thf(fact_897_Diff__cancel,axiom,
    ! [A: set_Pr1261947904930325089at_nat] :
      ( ( minus_1356011639430497352at_nat @ A @ A )
      = bot_bo2099793752762293965at_nat ) ).

% Diff_cancel
thf(fact_898_Diff__cancel,axiom,
    ! [A: set_real] :
      ( ( minus_minus_set_real @ A @ A )
      = bot_bot_set_real ) ).

% Diff_cancel
thf(fact_899_finite__Diff2,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ( finite6177210948735845034at_nat @ ( minus_1356011639430497352at_nat @ A @ B4 ) )
        = ( finite6177210948735845034at_nat @ A ) ) ) ).

% finite_Diff2
thf(fact_900_finite__Diff2,axiom,
    ! [B4: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B4 )
     => ( ( finite_finite_nat @ ( minus_minus_set_nat @ A @ B4 ) )
        = ( finite_finite_nat @ A ) ) ) ).

% finite_Diff2
thf(fact_901_finite__Diff,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( finite6177210948735845034at_nat @ ( minus_1356011639430497352at_nat @ A @ B4 ) ) ) ).

% finite_Diff
thf(fact_902_finite__Diff,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( finite_finite_nat @ ( minus_minus_set_nat @ A @ B4 ) ) ) ).

% finite_Diff
thf(fact_903_Diff__insert0,axiom,
    ! [X2: nat,A: set_nat,B4: set_nat] :
      ( ~ ( member_nat2 @ X2 @ A )
     => ( ( minus_minus_set_nat @ A @ ( insert_nat2 @ X2 @ B4 ) )
        = ( minus_minus_set_nat @ A @ B4 ) ) ) ).

% Diff_insert0
thf(fact_904_Diff__insert0,axiom,
    ! [X2: real,A: set_real,B4: set_real] :
      ( ~ ( member_real2 @ X2 @ A )
     => ( ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ B4 ) )
        = ( minus_minus_set_real @ A @ B4 ) ) ) ).

% Diff_insert0
thf(fact_905_Diff__insert0,axiom,
    ! [X2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ~ ( member8440522571783428010at_nat @ X2 @ A )
     => ( ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ B4 ) )
        = ( minus_1356011639430497352at_nat @ A @ B4 ) ) ) ).

% Diff_insert0
thf(fact_906_insert__Diff1,axiom,
    ! [X2: nat,B4: set_nat,A: set_nat] :
      ( ( member_nat2 @ X2 @ B4 )
     => ( ( minus_minus_set_nat @ ( insert_nat2 @ X2 @ A ) @ B4 )
        = ( minus_minus_set_nat @ A @ B4 ) ) ) ).

% insert_Diff1
thf(fact_907_insert__Diff1,axiom,
    ! [X2: real,B4: set_real,A: set_real] :
      ( ( member_real2 @ X2 @ B4 )
     => ( ( minus_minus_set_real @ ( insert_real2 @ X2 @ A ) @ B4 )
        = ( minus_minus_set_real @ A @ B4 ) ) ) ).

% insert_Diff1
thf(fact_908_insert__Diff1,axiom,
    ! [X2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ X2 @ B4 )
     => ( ( minus_1356011639430497352at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) @ B4 )
        = ( minus_1356011639430497352at_nat @ A @ B4 ) ) ) ).

% insert_Diff1
thf(fact_909_diff__le__0__iff__le,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A2 @ B ) @ zero_zero_real )
      = ( ord_less_eq_real @ A2 @ B ) ) ).

% diff_le_0_iff_le
thf(fact_910_diff__ge__0__iff__ge,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A2 @ B ) )
      = ( ord_less_eq_real @ B @ A2 ) ) ).

% diff_ge_0_iff_ge
thf(fact_911_diff__gt__0__iff__gt,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A2 @ B ) )
      = ( ord_less_real @ B @ A2 ) ) ).

% diff_gt_0_iff_gt
thf(fact_912_diff__less__0__iff__less,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A2 @ B ) @ zero_zero_real )
      = ( ord_less_real @ A2 @ B ) ) ).

% diff_less_0_iff_less
thf(fact_913_Diff__eq__empty__iff,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( ( minus_minus_set_nat @ A @ B4 )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ A @ B4 ) ) ).

% Diff_eq_empty_iff
thf(fact_914_Diff__eq__empty__iff,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( ( minus_1356011639430497352at_nat @ A @ B4 )
        = bot_bo2099793752762293965at_nat )
      = ( ord_le3146513528884898305at_nat @ A @ B4 ) ) ).

% Diff_eq_empty_iff
thf(fact_915_Diff__eq__empty__iff,axiom,
    ! [A: set_real,B4: set_real] :
      ( ( ( minus_minus_set_real @ A @ B4 )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ A @ B4 ) ) ).

% Diff_eq_empty_iff
thf(fact_916_insert__Diff__single,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( insert_nat2 @ A2 @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) )
      = ( insert_nat2 @ A2 @ A ) ) ).

% insert_Diff_single
thf(fact_917_insert__Diff__single,axiom,
    ! [A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( insert8211810215607154385at_nat @ A2 @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ) )
      = ( insert8211810215607154385at_nat @ A2 @ A ) ) ).

% insert_Diff_single
thf(fact_918_insert__Diff__single,axiom,
    ! [A2: real,A: set_real] :
      ( ( insert_real2 @ A2 @ ( minus_minus_set_real @ A @ ( insert_real2 @ A2 @ bot_bot_set_real ) ) )
      = ( insert_real2 @ A2 @ A ) ) ).

% insert_Diff_single
thf(fact_919_finite__Diff__insert,axiom,
    ! [A: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ A2 @ B4 ) ) )
      = ( finite6177210948735845034at_nat @ ( minus_1356011639430497352at_nat @ A @ B4 ) ) ) ).

% finite_Diff_insert
thf(fact_920_finite__Diff__insert,axiom,
    ! [A: set_nat,A2: nat,B4: set_nat] :
      ( ( finite_finite_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ B4 ) ) )
      = ( finite_finite_nat @ ( minus_minus_set_nat @ A @ B4 ) ) ) ).

% finite_Diff_insert
thf(fact_921_hd__in__set,axiom,
    ! [Xs: list_real] :
      ( ( Xs != nil_real )
     => ( member_real2 @ ( hd_real @ Xs ) @ ( set_real2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_922_hd__in__set,axiom,
    ! [Xs: list_P6011104703257516679at_nat] :
      ( ( Xs != nil_Pr5478986624290739719at_nat )
     => ( member8440522571783428010at_nat @ ( hd_Pro3460610213475200108at_nat @ Xs ) @ ( set_Pr5648618587558075414at_nat @ Xs ) ) ) ).

% hd_in_set
thf(fact_923_hd__in__set,axiom,
    ! [Xs: list_nat] :
      ( ( Xs != nil_nat )
     => ( member_nat2 @ ( hd_nat @ Xs ) @ ( set_nat2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_924_list_Oset__sel_I1_J,axiom,
    ! [A2: list_real] :
      ( ( A2 != nil_real )
     => ( member_real2 @ ( hd_real @ A2 ) @ ( set_real2 @ A2 ) ) ) ).

% list.set_sel(1)
thf(fact_925_list_Oset__sel_I1_J,axiom,
    ! [A2: list_P6011104703257516679at_nat] :
      ( ( A2 != nil_Pr5478986624290739719at_nat )
     => ( member8440522571783428010at_nat @ ( hd_Pro3460610213475200108at_nat @ A2 ) @ ( set_Pr5648618587558075414at_nat @ A2 ) ) ) ).

% list.set_sel(1)
thf(fact_926_list_Oset__sel_I1_J,axiom,
    ! [A2: list_nat] :
      ( ( A2 != nil_nat )
     => ( member_nat2 @ ( hd_nat @ A2 ) @ ( set_nat2 @ A2 ) ) ) ).

% list.set_sel(1)
thf(fact_927_diff__mono,axiom,
    ! [A2: real,B: real,D3: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ D3 @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A2 @ C ) @ ( minus_minus_real @ B @ D3 ) ) ) ) ).

% diff_mono
thf(fact_928_diff__left__mono,axiom,
    ! [B: real,A2: real,C: real] :
      ( ( ord_less_eq_real @ B @ A2 )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A2 ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_929_diff__right__mono,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A2 @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_930_diff__eq__diff__less__eq,axiom,
    ! [A2: real,B: real,C: real,D3: real] :
      ( ( ( minus_minus_real @ A2 @ B )
        = ( minus_minus_real @ C @ D3 ) )
     => ( ( ord_less_eq_real @ A2 @ B )
        = ( ord_less_eq_real @ C @ D3 ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_931_Diff__infinite__finite,axiom,
    ! [T: set_Pr1261947904930325089at_nat,S: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ T )
     => ( ~ ( finite6177210948735845034at_nat @ S )
       => ~ ( finite6177210948735845034at_nat @ ( minus_1356011639430497352at_nat @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_932_Diff__infinite__finite,axiom,
    ! [T: set_nat,S: set_nat] :
      ( ( finite_finite_nat @ T )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_933_DiffD2,axiom,
    ! [C: nat,A: set_nat,B4: set_nat] :
      ( ( member_nat2 @ C @ ( minus_minus_set_nat @ A @ B4 ) )
     => ~ ( member_nat2 @ C @ B4 ) ) ).

% DiffD2
thf(fact_934_DiffD2,axiom,
    ! [C: real,A: set_real,B4: set_real] :
      ( ( member_real2 @ C @ ( minus_minus_set_real @ A @ B4 ) )
     => ~ ( member_real2 @ C @ B4 ) ) ).

% DiffD2
thf(fact_935_DiffD2,axiom,
    ! [C: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ C @ ( minus_1356011639430497352at_nat @ A @ B4 ) )
     => ~ ( member8440522571783428010at_nat @ C @ B4 ) ) ).

% DiffD2
thf(fact_936_DiffD1,axiom,
    ! [C: nat,A: set_nat,B4: set_nat] :
      ( ( member_nat2 @ C @ ( minus_minus_set_nat @ A @ B4 ) )
     => ( member_nat2 @ C @ A ) ) ).

% DiffD1
thf(fact_937_DiffD1,axiom,
    ! [C: real,A: set_real,B4: set_real] :
      ( ( member_real2 @ C @ ( minus_minus_set_real @ A @ B4 ) )
     => ( member_real2 @ C @ A ) ) ).

% DiffD1
thf(fact_938_DiffD1,axiom,
    ! [C: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ C @ ( minus_1356011639430497352at_nat @ A @ B4 ) )
     => ( member8440522571783428010at_nat @ C @ A ) ) ).

% DiffD1
thf(fact_939_DiffE,axiom,
    ! [C: nat,A: set_nat,B4: set_nat] :
      ( ( member_nat2 @ C @ ( minus_minus_set_nat @ A @ B4 ) )
     => ~ ( ( member_nat2 @ C @ A )
         => ( member_nat2 @ C @ B4 ) ) ) ).

% DiffE
thf(fact_940_DiffE,axiom,
    ! [C: real,A: set_real,B4: set_real] :
      ( ( member_real2 @ C @ ( minus_minus_set_real @ A @ B4 ) )
     => ~ ( ( member_real2 @ C @ A )
         => ( member_real2 @ C @ B4 ) ) ) ).

% DiffE
thf(fact_941_DiffE,axiom,
    ! [C: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ C @ ( minus_1356011639430497352at_nat @ A @ B4 ) )
     => ~ ( ( member8440522571783428010at_nat @ C @ A )
         => ( member8440522571783428010at_nat @ C @ B4 ) ) ) ).

% DiffE
thf(fact_942_psubset__imp__ex__mem,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( ord_less_set_nat @ A @ B4 )
     => ? [B3: nat] : ( member_nat2 @ B3 @ ( minus_minus_set_nat @ B4 @ A ) ) ) ).

% psubset_imp_ex_mem
thf(fact_943_psubset__imp__ex__mem,axiom,
    ! [A: set_real,B4: set_real] :
      ( ( ord_less_set_real @ A @ B4 )
     => ? [B3: real] : ( member_real2 @ B3 @ ( minus_minus_set_real @ B4 @ A ) ) ) ).

% psubset_imp_ex_mem
thf(fact_944_psubset__imp__ex__mem,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( ord_le7866589430770878221at_nat @ A @ B4 )
     => ? [B3: product_prod_nat_nat] : ( member8440522571783428010at_nat @ B3 @ ( minus_1356011639430497352at_nat @ B4 @ A ) ) ) ).

% psubset_imp_ex_mem
thf(fact_945_insert__Diff__if,axiom,
    ! [X2: nat,B4: set_nat,A: set_nat] :
      ( ( ( member_nat2 @ X2 @ B4 )
       => ( ( minus_minus_set_nat @ ( insert_nat2 @ X2 @ A ) @ B4 )
          = ( minus_minus_set_nat @ A @ B4 ) ) )
      & ( ~ ( member_nat2 @ X2 @ B4 )
       => ( ( minus_minus_set_nat @ ( insert_nat2 @ X2 @ A ) @ B4 )
          = ( insert_nat2 @ X2 @ ( minus_minus_set_nat @ A @ B4 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_946_insert__Diff__if,axiom,
    ! [X2: real,B4: set_real,A: set_real] :
      ( ( ( member_real2 @ X2 @ B4 )
       => ( ( minus_minus_set_real @ ( insert_real2 @ X2 @ A ) @ B4 )
          = ( minus_minus_set_real @ A @ B4 ) ) )
      & ( ~ ( member_real2 @ X2 @ B4 )
       => ( ( minus_minus_set_real @ ( insert_real2 @ X2 @ A ) @ B4 )
          = ( insert_real2 @ X2 @ ( minus_minus_set_real @ A @ B4 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_947_insert__Diff__if,axiom,
    ! [X2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( ( member8440522571783428010at_nat @ X2 @ B4 )
       => ( ( minus_1356011639430497352at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) @ B4 )
          = ( minus_1356011639430497352at_nat @ A @ B4 ) ) )
      & ( ~ ( member8440522571783428010at_nat @ X2 @ B4 )
       => ( ( minus_1356011639430497352at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) @ B4 )
          = ( insert8211810215607154385at_nat @ X2 @ ( minus_1356011639430497352at_nat @ A @ B4 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_948_subset__Diff__insert,axiom,
    ! [A: set_nat,B4: set_nat,X2: nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( minus_minus_set_nat @ B4 @ ( insert_nat2 @ X2 @ C2 ) ) )
      = ( ( ord_less_eq_set_nat @ A @ ( minus_minus_set_nat @ B4 @ C2 ) )
        & ~ ( member_nat2 @ X2 @ A ) ) ) ).

% subset_Diff_insert
thf(fact_949_subset__Diff__insert,axiom,
    ! [A: set_real,B4: set_real,X2: real,C2: set_real] :
      ( ( ord_less_eq_set_real @ A @ ( minus_minus_set_real @ B4 @ ( insert_real2 @ X2 @ C2 ) ) )
      = ( ( ord_less_eq_set_real @ A @ ( minus_minus_set_real @ B4 @ C2 ) )
        & ~ ( member_real2 @ X2 @ A ) ) ) ).

% subset_Diff_insert
thf(fact_950_subset__Diff__insert,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat,C2: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ A @ ( minus_1356011639430497352at_nat @ B4 @ ( insert8211810215607154385at_nat @ X2 @ C2 ) ) )
      = ( ( ord_le3146513528884898305at_nat @ A @ ( minus_1356011639430497352at_nat @ B4 @ C2 ) )
        & ~ ( member8440522571783428010at_nat @ X2 @ A ) ) ) ).

% subset_Diff_insert
thf(fact_951_Diff__insert,axiom,
    ! [A: set_nat,A2: nat,B4: set_nat] :
      ( ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ B4 ) )
      = ( minus_minus_set_nat @ ( minus_minus_set_nat @ A @ B4 ) @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) ) ).

% Diff_insert
thf(fact_952_Diff__insert,axiom,
    ! [A: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ A2 @ B4 ) )
      = ( minus_1356011639430497352at_nat @ ( minus_1356011639430497352at_nat @ A @ B4 ) @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ) ) ).

% Diff_insert
thf(fact_953_Diff__insert,axiom,
    ! [A: set_real,A2: real,B4: set_real] :
      ( ( minus_minus_set_real @ A @ ( insert_real2 @ A2 @ B4 ) )
      = ( minus_minus_set_real @ ( minus_minus_set_real @ A @ B4 ) @ ( insert_real2 @ A2 @ bot_bot_set_real ) ) ) ).

% Diff_insert
thf(fact_954_insert__Diff,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat2 @ A2 @ A )
     => ( ( insert_nat2 @ A2 @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_955_insert__Diff,axiom,
    ! [A2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ A2 @ A )
     => ( ( insert8211810215607154385at_nat @ A2 @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_956_insert__Diff,axiom,
    ! [A2: real,A: set_real] :
      ( ( member_real2 @ A2 @ A )
     => ( ( insert_real2 @ A2 @ ( minus_minus_set_real @ A @ ( insert_real2 @ A2 @ bot_bot_set_real ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_957_Diff__insert2,axiom,
    ! [A: set_nat,A2: nat,B4: set_nat] :
      ( ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ B4 ) )
      = ( minus_minus_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) @ B4 ) ) ).

% Diff_insert2
thf(fact_958_Diff__insert2,axiom,
    ! [A: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ A2 @ B4 ) )
      = ( minus_1356011639430497352at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ) @ B4 ) ) ).

% Diff_insert2
thf(fact_959_Diff__insert2,axiom,
    ! [A: set_real,A2: real,B4: set_real] :
      ( ( minus_minus_set_real @ A @ ( insert_real2 @ A2 @ B4 ) )
      = ( minus_minus_set_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ A2 @ bot_bot_set_real ) ) @ B4 ) ) ).

% Diff_insert2
thf(fact_960_Diff__insert__absorb,axiom,
    ! [X2: nat,A: set_nat] :
      ( ~ ( member_nat2 @ X2 @ A )
     => ( ( minus_minus_set_nat @ ( insert_nat2 @ X2 @ A ) @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_961_Diff__insert__absorb,axiom,
    ! [X2: product_prod_nat_nat,A: set_Pr1261947904930325089at_nat] :
      ( ~ ( member8440522571783428010at_nat @ X2 @ A )
     => ( ( minus_1356011639430497352at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_962_Diff__insert__absorb,axiom,
    ! [X2: real,A: set_real] :
      ( ~ ( member_real2 @ X2 @ A )
     => ( ( minus_minus_set_real @ ( insert_real2 @ X2 @ A ) @ ( insert_real2 @ X2 @ bot_bot_set_real ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_963_subset__insert__iff,axiom,
    ! [A: set_nat,X2: nat,B4: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ X2 @ B4 ) )
      = ( ( ( member_nat2 @ X2 @ A )
         => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) @ B4 ) )
        & ( ~ ( member_nat2 @ X2 @ A )
         => ( ord_less_eq_set_nat @ A @ B4 ) ) ) ) ).

% subset_insert_iff
thf(fact_964_subset__insert__iff,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ B4 ) )
      = ( ( ( member8440522571783428010at_nat @ X2 @ A )
         => ( ord_le3146513528884898305at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) @ B4 ) )
        & ( ~ ( member8440522571783428010at_nat @ X2 @ A )
         => ( ord_le3146513528884898305at_nat @ A @ B4 ) ) ) ) ).

% subset_insert_iff
thf(fact_965_subset__insert__iff,axiom,
    ! [A: set_real,X2: real,B4: set_real] :
      ( ( ord_less_eq_set_real @ A @ ( insert_real2 @ X2 @ B4 ) )
      = ( ( ( member_real2 @ X2 @ A )
         => ( ord_less_eq_set_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) @ B4 ) )
        & ( ~ ( member_real2 @ X2 @ A )
         => ( ord_less_eq_set_real @ A @ B4 ) ) ) ) ).

% subset_insert_iff
thf(fact_966_Diff__single__insert,axiom,
    ! [A: set_nat,X2: nat,B4: set_nat] :
      ( ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) @ B4 )
     => ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ X2 @ B4 ) ) ) ).

% Diff_single_insert
thf(fact_967_Diff__single__insert,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( ord_le3146513528884898305at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) @ B4 )
     => ( ord_le3146513528884898305at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ B4 ) ) ) ).

% Diff_single_insert
thf(fact_968_Diff__single__insert,axiom,
    ! [A: set_real,X2: real,B4: set_real] :
      ( ( ord_less_eq_set_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) @ B4 )
     => ( ord_less_eq_set_real @ A @ ( insert_real2 @ X2 @ B4 ) ) ) ).

% Diff_single_insert
thf(fact_969_finite__empty__induct,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ( P @ A )
       => ( ! [A5: nat,A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( member_nat2 @ A5 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat2 @ A5 @ bot_bot_set_nat ) ) ) ) ) )
         => ( P @ bot_bot_set_nat ) ) ) ) ).

% finite_empty_induct
thf(fact_970_finite__empty__induct,axiom,
    ! [A: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( P @ A )
       => ( ! [A5: product_prod_nat_nat,A7: set_Pr1261947904930325089at_nat] :
              ( ( finite6177210948735845034at_nat @ A7 )
             => ( ( member8440522571783428010at_nat @ A5 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_1356011639430497352at_nat @ A7 @ ( insert8211810215607154385at_nat @ A5 @ bot_bo2099793752762293965at_nat ) ) ) ) ) )
         => ( P @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% finite_empty_induct
thf(fact_971_finite__empty__induct,axiom,
    ! [A: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ A )
     => ( ( P @ A )
       => ( ! [A5: real,A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ( member_real2 @ A5 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_minus_set_real @ A7 @ ( insert_real2 @ A5 @ bot_bot_set_real ) ) ) ) ) )
         => ( P @ bot_bot_set_real ) ) ) ) ).

% finite_empty_induct
thf(fact_972_infinite__coinduct,axiom,
    ! [X5: set_nat > $o,A: set_nat] :
      ( ( X5 @ A )
     => ( ! [A7: set_nat] :
            ( ( X5 @ A7 )
           => ? [X4: nat] :
                ( ( member_nat2 @ X4 @ A7 )
                & ( ( X5 @ ( minus_minus_set_nat @ A7 @ ( insert_nat2 @ X4 @ bot_bot_set_nat ) ) )
                  | ~ ( finite_finite_nat @ ( minus_minus_set_nat @ A7 @ ( insert_nat2 @ X4 @ bot_bot_set_nat ) ) ) ) ) )
       => ~ ( finite_finite_nat @ A ) ) ) ).

% infinite_coinduct
thf(fact_973_infinite__coinduct,axiom,
    ! [X5: set_Pr1261947904930325089at_nat > $o,A: set_Pr1261947904930325089at_nat] :
      ( ( X5 @ A )
     => ( ! [A7: set_Pr1261947904930325089at_nat] :
            ( ( X5 @ A7 )
           => ? [X4: product_prod_nat_nat] :
                ( ( member8440522571783428010at_nat @ X4 @ A7 )
                & ( ( X5 @ ( minus_1356011639430497352at_nat @ A7 @ ( insert8211810215607154385at_nat @ X4 @ bot_bo2099793752762293965at_nat ) ) )
                  | ~ ( finite6177210948735845034at_nat @ ( minus_1356011639430497352at_nat @ A7 @ ( insert8211810215607154385at_nat @ X4 @ bot_bo2099793752762293965at_nat ) ) ) ) ) )
       => ~ ( finite6177210948735845034at_nat @ A ) ) ) ).

% infinite_coinduct
thf(fact_974_infinite__coinduct,axiom,
    ! [X5: set_real > $o,A: set_real] :
      ( ( X5 @ A )
     => ( ! [A7: set_real] :
            ( ( X5 @ A7 )
           => ? [X4: real] :
                ( ( member_real2 @ X4 @ A7 )
                & ( ( X5 @ ( minus_minus_set_real @ A7 @ ( insert_real2 @ X4 @ bot_bot_set_real ) ) )
                  | ~ ( finite_finite_real @ ( minus_minus_set_real @ A7 @ ( insert_real2 @ X4 @ bot_bot_set_real ) ) ) ) ) )
       => ~ ( finite_finite_real @ A ) ) ) ).

% infinite_coinduct
thf(fact_975_infinite__remove,axiom,
    ! [S: set_nat,A2: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) ) ) ).

% infinite_remove
thf(fact_976_infinite__remove,axiom,
    ! [S: set_Pr1261947904930325089at_nat,A2: product_prod_nat_nat] :
      ( ~ ( finite6177210948735845034at_nat @ S )
     => ~ ( finite6177210948735845034at_nat @ ( minus_1356011639430497352at_nat @ S @ ( insert8211810215607154385at_nat @ A2 @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% infinite_remove
thf(fact_977_infinite__remove,axiom,
    ! [S: set_real,A2: real] :
      ( ~ ( finite_finite_real @ S )
     => ~ ( finite_finite_real @ ( minus_minus_set_real @ S @ ( insert_real2 @ A2 @ bot_bot_set_real ) ) ) ) ).

% infinite_remove
thf(fact_978_card__less__sym__Diff,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( finite6177210948735845034at_nat @ B4 )
       => ( ( ord_less_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite711546835091564841at_nat @ B4 ) )
         => ( ord_less_nat @ ( finite711546835091564841at_nat @ ( minus_1356011639430497352at_nat @ A @ B4 ) ) @ ( finite711546835091564841at_nat @ ( minus_1356011639430497352at_nat @ B4 @ A ) ) ) ) ) ) ).

% card_less_sym_Diff
thf(fact_979_card__less__sym__Diff,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( finite_finite_nat @ B4 )
       => ( ( ord_less_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B4 ) )
         => ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A @ B4 ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B4 @ A ) ) ) ) ) ) ).

% card_less_sym_Diff
thf(fact_980_card__le__sym__Diff,axiom,
    ! [A: set_Pr1261947904930325089at_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( finite6177210948735845034at_nat @ B4 )
       => ( ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ A ) @ ( finite711546835091564841at_nat @ B4 ) )
         => ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ ( minus_1356011639430497352at_nat @ A @ B4 ) ) @ ( finite711546835091564841at_nat @ ( minus_1356011639430497352at_nat @ B4 @ A ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_981_card__le__sym__Diff,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( finite_finite_nat @ B4 )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B4 ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A @ B4 ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B4 @ A ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_982_remove__induct,axiom,
    ! [P: set_nat > $o,B4: set_nat] :
      ( ( P @ bot_bot_set_nat )
     => ( ( ~ ( finite_finite_nat @ B4 )
         => ( P @ B4 ) )
       => ( ! [A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( A7 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A7 @ B4 )
                 => ( ! [X4: nat] :
                        ( ( member_nat2 @ X4 @ A7 )
                       => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat2 @ X4 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B4 ) ) ) ) ).

% remove_induct
thf(fact_983_remove__induct,axiom,
    ! [P: set_Pr1261947904930325089at_nat > $o,B4: set_Pr1261947904930325089at_nat] :
      ( ( P @ bot_bo2099793752762293965at_nat )
     => ( ( ~ ( finite6177210948735845034at_nat @ B4 )
         => ( P @ B4 ) )
       => ( ! [A7: set_Pr1261947904930325089at_nat] :
              ( ( finite6177210948735845034at_nat @ A7 )
             => ( ( A7 != bot_bo2099793752762293965at_nat )
               => ( ( ord_le3146513528884898305at_nat @ A7 @ B4 )
                 => ( ! [X4: product_prod_nat_nat] :
                        ( ( member8440522571783428010at_nat @ X4 @ A7 )
                       => ( P @ ( minus_1356011639430497352at_nat @ A7 @ ( insert8211810215607154385at_nat @ X4 @ bot_bo2099793752762293965at_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B4 ) ) ) ) ).

% remove_induct
thf(fact_984_remove__induct,axiom,
    ! [P: set_real > $o,B4: set_real] :
      ( ( P @ bot_bot_set_real )
     => ( ( ~ ( finite_finite_real @ B4 )
         => ( P @ B4 ) )
       => ( ! [A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ( A7 != bot_bot_set_real )
               => ( ( ord_less_eq_set_real @ A7 @ B4 )
                 => ( ! [X4: real] :
                        ( ( member_real2 @ X4 @ A7 )
                       => ( P @ ( minus_minus_set_real @ A7 @ ( insert_real2 @ X4 @ bot_bot_set_real ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B4 ) ) ) ) ).

% remove_induct
thf(fact_985_finite__remove__induct,axiom,
    ! [B4: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ B4 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( A7 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A7 @ B4 )
                 => ( ! [X4: nat] :
                        ( ( member_nat2 @ X4 @ A7 )
                       => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat2 @ X4 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B4 ) ) ) ) ).

% finite_remove_induct
thf(fact_986_finite__remove__induct,axiom,
    ! [B4: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o] :
      ( ( finite6177210948735845034at_nat @ B4 )
     => ( ( P @ bot_bo2099793752762293965at_nat )
       => ( ! [A7: set_Pr1261947904930325089at_nat] :
              ( ( finite6177210948735845034at_nat @ A7 )
             => ( ( A7 != bot_bo2099793752762293965at_nat )
               => ( ( ord_le3146513528884898305at_nat @ A7 @ B4 )
                 => ( ! [X4: product_prod_nat_nat] :
                        ( ( member8440522571783428010at_nat @ X4 @ A7 )
                       => ( P @ ( minus_1356011639430497352at_nat @ A7 @ ( insert8211810215607154385at_nat @ X4 @ bot_bo2099793752762293965at_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B4 ) ) ) ) ).

% finite_remove_induct
thf(fact_987_finite__remove__induct,axiom,
    ! [B4: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ B4 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ( A7 != bot_bot_set_real )
               => ( ( ord_less_eq_set_real @ A7 @ B4 )
                 => ( ! [X4: real] :
                        ( ( member_real2 @ X4 @ A7 )
                       => ( P @ ( minus_minus_set_real @ A7 @ ( insert_real2 @ X4 @ bot_bot_set_real ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B4 ) ) ) ) ).

% finite_remove_induct
thf(fact_988_card__Diff1__le,axiom,
    ! [A: set_nat,X2: nat] : ( ord_less_eq_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A ) ) ).

% card_Diff1_le
thf(fact_989_card__Diff1__le,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] : ( ord_less_eq_nat @ ( finite711546835091564841at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ) @ ( finite711546835091564841at_nat @ A ) ) ).

% card_Diff1_le
thf(fact_990_card__Diff1__le,axiom,
    ! [A: set_real,X2: real] : ( ord_less_eq_nat @ ( finite_card_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) ) @ ( finite_card_real @ A ) ) ).

% card_Diff1_le
thf(fact_991_psubset__insert__iff,axiom,
    ! [A: set_nat,X2: nat,B4: set_nat] :
      ( ( ord_less_set_nat @ A @ ( insert_nat2 @ X2 @ B4 ) )
      = ( ( ( member_nat2 @ X2 @ B4 )
         => ( ord_less_set_nat @ A @ B4 ) )
        & ( ~ ( member_nat2 @ X2 @ B4 )
         => ( ( ( member_nat2 @ X2 @ A )
             => ( ord_less_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) @ B4 ) )
            & ( ~ ( member_nat2 @ X2 @ A )
             => ( ord_less_eq_set_nat @ A @ B4 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_992_psubset__insert__iff,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat,B4: set_Pr1261947904930325089at_nat] :
      ( ( ord_le7866589430770878221at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ B4 ) )
      = ( ( ( member8440522571783428010at_nat @ X2 @ B4 )
         => ( ord_le7866589430770878221at_nat @ A @ B4 ) )
        & ( ~ ( member8440522571783428010at_nat @ X2 @ B4 )
         => ( ( ( member8440522571783428010at_nat @ X2 @ A )
             => ( ord_le7866589430770878221at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) @ B4 ) )
            & ( ~ ( member8440522571783428010at_nat @ X2 @ A )
             => ( ord_le3146513528884898305at_nat @ A @ B4 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_993_psubset__insert__iff,axiom,
    ! [A: set_real,X2: real,B4: set_real] :
      ( ( ord_less_set_real @ A @ ( insert_real2 @ X2 @ B4 ) )
      = ( ( ( member_real2 @ X2 @ B4 )
         => ( ord_less_set_real @ A @ B4 ) )
        & ( ~ ( member_real2 @ X2 @ B4 )
         => ( ( ( member_real2 @ X2 @ A )
             => ( ord_less_set_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) @ B4 ) )
            & ( ~ ( member_real2 @ X2 @ A )
             => ( ord_less_eq_set_real @ A @ B4 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_994_finite__induct__select,axiom,
    ! [S: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ S )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [T2: set_nat] :
              ( ( ord_less_set_nat @ T2 @ S )
             => ( ( P @ T2 )
               => ? [X4: nat] :
                    ( ( member_nat2 @ X4 @ ( minus_minus_set_nat @ S @ T2 ) )
                    & ( P @ ( insert_nat2 @ X4 @ T2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_induct_select
thf(fact_995_finite__induct__select,axiom,
    ! [S: set_Pr1261947904930325089at_nat,P: set_Pr1261947904930325089at_nat > $o] :
      ( ( finite6177210948735845034at_nat @ S )
     => ( ( P @ bot_bo2099793752762293965at_nat )
       => ( ! [T2: set_Pr1261947904930325089at_nat] :
              ( ( ord_le7866589430770878221at_nat @ T2 @ S )
             => ( ( P @ T2 )
               => ? [X4: product_prod_nat_nat] :
                    ( ( member8440522571783428010at_nat @ X4 @ ( minus_1356011639430497352at_nat @ S @ T2 ) )
                    & ( P @ ( insert8211810215607154385at_nat @ X4 @ T2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_induct_select
thf(fact_996_finite__induct__select,axiom,
    ! [S: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ S )
     => ( ( P @ bot_bot_set_real )
       => ( ! [T2: set_real] :
              ( ( ord_less_set_real @ T2 @ S )
             => ( ( P @ T2 )
               => ? [X4: real] :
                    ( ( member_real2 @ X4 @ ( minus_minus_set_real @ S @ T2 ) )
                    & ( P @ ( insert_real2 @ X4 @ T2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_induct_select
thf(fact_997_card__Suc__Diff1,axiom,
    ! [A: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( member_nat2 @ X2 @ A )
       => ( ( suc @ ( finite_card_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) )
          = ( finite_card_nat @ A ) ) ) ) ).

% card_Suc_Diff1
thf(fact_998_card__Suc__Diff1,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( member8440522571783428010at_nat @ X2 @ A )
       => ( ( suc @ ( finite711546835091564841at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ) )
          = ( finite711546835091564841at_nat @ A ) ) ) ) ).

% card_Suc_Diff1
thf(fact_999_card__Suc__Diff1,axiom,
    ! [A: set_real,X2: real] :
      ( ( finite_finite_real @ A )
     => ( ( member_real2 @ X2 @ A )
       => ( ( suc @ ( finite_card_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) ) )
          = ( finite_card_real @ A ) ) ) ) ).

% card_Suc_Diff1
thf(fact_1000_card_Oinsert__remove,axiom,
    ! [A: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( finite_card_nat @ ( insert_nat2 @ X2 @ A ) )
        = ( suc @ ( finite_card_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) ) ) ) ).

% card.insert_remove
thf(fact_1001_card_Oinsert__remove,axiom,
    ! [A: set_Pr1261947904930325089at_nat,X2: product_prod_nat_nat] :
      ( ( finite6177210948735845034at_nat @ A )
     => ( ( finite711546835091564841at_nat @ ( insert8211810215607154385at_nat @ X2 @ A ) )
        = ( suc @ ( finite711546835091564841at_nat @ ( minus_1356011639430497352at_nat @ A @ ( insert8211810215607154385at_nat @ X2 @ bot_bo2099793752762293965at_nat ) ) ) ) ) ) ).

% card.insert_remove
thf(fact_1002_card_Oinsert__remove,axiom,
    ! [A: set_real,X2: real] :
      ( ( finite_finite_real @ A )
     => ( ( finite_card_real @ ( insert_real2 @ X2 @ A ) )
        = ( suc @ ( finite_card_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) ) ) ) ) ).

% card.insert_remove
thf(fact_1003_card_Oremove,axiom,
    ! [A: set_real,X2: real] :
      ( ( finite_finite_real @ A )
     => ( ( member_real2 @ X2 @ A )
       => ( ( finite_card_real @ A )
          = ( suc @ ( finite_card_real @ ( minus_minus_set_real @ A @ ( insert_real2 @ X2 @ bot_bot_set_real ) ) ) ) ) ) ) ).

% card.remove
thf(fact_1004_diff__self__eq__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ M2 )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1005_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1006_diff__Suc__Suc,axiom,
    ! [M2: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M2 ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M2 @ N ) ) ).

% diff_Suc_Suc
thf(fact_1007_Suc__diff__diff,axiom,
    ! [M2: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M2 ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M2 @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1008_diff__diff__cancel,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_1009_zero__less__diff,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M2 ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% zero_less_diff
thf(fact_1010_diff__is__0__eq_H,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1011_diff__is__0__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% diff_is_0_eq
thf(fact_1012_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_1013_diffs0__imp__equal,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M2 )
          = zero_zero_nat )
       => ( M2 = N ) ) ) ).

% diffs0_imp_equal
thf(fact_1014_minus__nat_Odiff__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% minus_nat.diff_0
thf(fact_1015_diff__le__mono2,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).

% diff_le_mono2
thf(fact_1016_le__diff__iff_H,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A2 ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A2 ) ) ) ) ).

% le_diff_iff'
thf(fact_1017_diff__le__self,axiom,
    ! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ).

% diff_le_self
thf(fact_1018_diff__le__mono,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_1019_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M2 @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1020_le__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M2 @ N ) ) ) ) ).

% le_diff_iff
thf(fact_1021_eq__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M2 @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M2 = N ) ) ) ) ).

% eq_diff_iff
thf(fact_1022_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I2: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ ( minus_minus_nat @ K @ I2 ) ) ) ) ).

% zero_induct_lemma
thf(fact_1023_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_1024_diff__less__mono2,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( ord_less_nat @ M2 @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ) ).

% diff_less_mono2
thf(fact_1025_diff__less,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M2 )
       => ( ord_less_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ) ) ).

% diff_less
thf(fact_1026_Suc__diff__Suc,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ N @ M2 )
     => ( ( suc @ ( minus_minus_nat @ M2 @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M2 @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_1027_diff__less__Suc,axiom,
    ! [M2: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M2 @ N ) @ ( suc @ M2 ) ) ).

% diff_less_Suc
thf(fact_1028_Suc__diff__le,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_eq_nat @ N @ M2 )
     => ( ( minus_minus_nat @ ( suc @ M2 ) @ N )
        = ( suc @ ( minus_minus_nat @ M2 @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1029_diff__less__mono,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ C @ A2 )
       => ( ord_less_nat @ ( minus_minus_nat @ A2 @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1030_less__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M2 @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1031_diff__Suc__less,axiom,
    ! [N: nat,I2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I2 ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_1032_diff__commute,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I2 @ K ) @ J ) ) ).

% diff_commute
thf(fact_1033_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1034_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_1035_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_1036_diff__Suc__eq__diff__pred,axiom,
    ! [M2: nat,N: nat] :
      ( ( minus_minus_nat @ M2 @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1037_numeral__nat_I7_J,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% numeral_nat(7)
thf(fact_1038_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1039_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M2 ) @ N )
        = ( minus_minus_nat @ M2 @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1040_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1041_kuhn__labelling__lemma_H,axiom,
    ! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q: nat > $o] :
      ( ! [X3: nat > real] :
          ( ( P @ X3 )
         => ( P @ ( F @ X3 ) ) )
     => ( ! [X3: nat > real] :
            ( ( P @ X3 )
           => ! [I3: nat] :
                ( ( Q @ I3 )
               => ( ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I3 ) )
                  & ( ord_less_eq_real @ ( X3 @ I3 ) @ one_one_real ) ) ) )
       => ? [L2: ( nat > real ) > nat > nat] :
            ( ! [X4: nat > real,I4: nat] : ( ord_less_eq_nat @ ( L2 @ X4 @ I4 ) @ one_one_nat )
            & ! [X4: nat > real,I4: nat] :
                ( ( ( P @ X4 )
                  & ( Q @ I4 )
                  & ( ( X4 @ I4 )
                    = zero_zero_real ) )
               => ( ( L2 @ X4 @ I4 )
                  = zero_zero_nat ) )
            & ! [X4: nat > real,I4: nat] :
                ( ( ( P @ X4 )
                  & ( Q @ I4 )
                  & ( ( X4 @ I4 )
                    = one_one_real ) )
               => ( ( L2 @ X4 @ I4 )
                  = one_one_nat ) )
            & ! [X4: nat > real,I4: nat] :
                ( ( ( P @ X4 )
                  & ( Q @ I4 )
                  & ( ( L2 @ X4 @ I4 )
                    = zero_zero_nat ) )
               => ( ord_less_eq_real @ ( X4 @ I4 ) @ ( F @ X4 @ I4 ) ) )
            & ! [X4: nat > real,I4: nat] :
                ( ( ( P @ X4 )
                  & ( Q @ I4 )
                  & ( ( L2 @ X4 @ I4 )
                    = one_one_nat ) )
               => ( ord_less_eq_real @ ( F @ X4 @ I4 ) @ ( X4 @ I4 ) ) ) ) ) ) ).

% kuhn_labelling_lemma'
thf(fact_1042_complete__real,axiom,
    ! [S: set_real] :
      ( ? [X4: real] : ( member_real2 @ X4 @ S )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( member_real2 @ X3 @ S )
           => ( ord_less_eq_real @ X3 @ Z4 ) )
       => ? [Y: real] :
            ( ! [X4: real] :
                ( ( member_real2 @ X4 @ S )
               => ( ord_less_eq_real @ X4 @ Y ) )
            & ! [Z4: real] :
                ( ! [X3: real] :
                    ( ( member_real2 @ X3 @ S )
                   => ( ord_less_eq_real @ X3 @ Z4 ) )
               => ( ord_less_eq_real @ Y @ Z4 ) ) ) ) ) ).

% complete_real
thf(fact_1043_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y3: real] :
          ( ( ord_less_real @ X @ Y3 )
          | ( X = Y3 ) ) ) ) ).

% less_eq_real_def
thf(fact_1044_k__ge__1,axiom,
    ord_less_eq_nat @ one_one_nat @ k ).

% k_ge_1
thf(fact_1045_seq__mono__lemma,axiom,
    ! [M2: nat,D3: nat > real,E2: nat > real] :
      ( ! [N3: nat] :
          ( ( ord_less_eq_nat @ M2 @ N3 )
         => ( ord_less_real @ ( D3 @ N3 ) @ ( E2 @ N3 ) ) )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ M2 @ N3 )
           => ( ord_less_eq_real @ ( E2 @ N3 ) @ ( E2 @ M2 ) ) )
       => ! [N5: nat] :
            ( ( ord_less_eq_nat @ M2 @ N5 )
           => ( ord_less_real @ ( D3 @ N5 ) @ ( E2 @ M2 ) ) ) ) ) ).

% seq_mono_lemma
thf(fact_1046_Bolzano,axiom,
    ! [A2: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ! [A5: real,B3: real,C4: real] :
            ( ( P @ A5 @ B3 )
           => ( ( P @ B3 @ C4 )
             => ( ( ord_less_eq_real @ A5 @ B3 )
               => ( ( ord_less_eq_real @ B3 @ C4 )
                 => ( P @ A5 @ C4 ) ) ) ) )
       => ( ! [X3: real] :
              ( ( ord_less_eq_real @ A2 @ X3 )
             => ( ( ord_less_eq_real @ X3 @ B )
               => ? [D: real] :
                    ( ( ord_less_real @ zero_zero_real @ D )
                    & ! [A5: real,B3: real] :
                        ( ( ( ord_less_eq_real @ A5 @ X3 )
                          & ( ord_less_eq_real @ X3 @ B3 )
                          & ( ord_less_real @ ( minus_minus_real @ B3 @ A5 ) @ D ) )
                       => ( P @ A5 @ B3 ) ) ) ) )
         => ( P @ A2 @ B ) ) ) ) ).

% Bolzano
thf(fact_1047_list__encode_Ocases,axiom,
    ! [X2: list_nat] :
      ( ( X2 != nil_nat )
     => ~ ! [X3: nat,Xs3: list_nat] :
            ( X2
           != ( cons_nat @ X3 @ Xs3 ) ) ) ).

% list_encode.cases

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( set_nat2 @ as )
   != bot_bot_set_nat ) ).

%------------------------------------------------------------------------------