TPTP Problem File: SLH0027^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Commuting_Hermitian/0001_Spectral_Theory_Complements/prob_00408_014339__19279122_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1316 ( 424 unt; 224 typ;   0 def)
%            Number of atoms       : 3004 (1031 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 9774 ( 253   ~;  66   |; 105   &;7955   @)
%                                         (   0 <=>;1395  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   22 (   7 avg)
%            Number of types       :   28 (  27 usr)
%            Number of type conns  :  475 ( 475   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  200 ( 197 usr;  18 con; 0-4 aty)
%            Number of variables   : 3160 ( 134   ^;2971   !;  55   ?;3160   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 11:35:11.130
%------------------------------------------------------------------------------
% Could-be-implicit typings (27)
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Complex__Ocomplex_J_J,type,
    list_P6605091754902497125omplex: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Matrix__Omat_It__Complex__Ocomplex_J_J_J,type,
    set_set_mat_complex: $tType ).

thf(ty_n_t__List__Olist_It__Matrix__Omat_It__Complex__Ocomplex_J_J,type,
    list_mat_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Matrix__Omat_Itf__a_J_J_J,type,
    set_set_mat_a: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Ovec_It__Complex__Ocomplex_J_J,type,
    set_vec_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Omat_It__Complex__Ocomplex_J_J,type,
    set_mat_complex: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Matrix__Omat_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
    mat_set_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
    set_set_complex: $tType ).

thf(ty_n_t__List__Olist_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    list_mat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    set_mat_nat: $tType ).

thf(ty_n_t__Matrix__Omat_It__Set__Oset_It__Nat__Onat_J_J,type,
    mat_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__List__Olist_It__Matrix__Omat_Itf__a_J_J,type,
    list_mat_a: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    set_mat_a: $tType ).

thf(ty_n_t__Matrix__Omat_It__Complex__Ocomplex_J,type,
    mat_complex: $tType ).

thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
    list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_complex: $tType ).

thf(ty_n_t__Matrix__Omat_It__Nat__Onat_J,type,
    mat_nat: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Matrix__Omat_Itf__a_J,type,
    mat_a: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Complex__Ocomplex,type,
    complex: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (197)
thf(sy_c_Column__Operations_Oadd__col__sub__row_001t__Complex__Ocomplex,type,
    column6029646570091773654omplex: complex > nat > nat > mat_complex > mat_complex ).

thf(sy_c_Column__Operations_Omat__multcol_001t__Complex__Ocomplex,type,
    column4410001698458707789omplex: nat > complex > mat_complex > mat_complex ).

thf(sy_c_Column__Operations_Omat__swapcols_001t__Complex__Ocomplex,type,
    column4357519492343924999omplex: nat > nat > mat_complex > mat_complex ).

thf(sy_c_Column__Operations_Omat__swapcols_001tf__a,type,
    column2528828918332591333cols_a: nat > nat > mat_a > mat_a ).

thf(sy_c_Column__Operations_Omult__col__div__row_001t__Complex__Ocomplex,type,
    column217142795681433722omplex: complex > nat > mat_complex > mat_complex ).

thf(sy_c_Column__Operations_Oswap__cols__rows_001t__Complex__Ocomplex,type,
    column7161609239796038556omplex: nat > nat > mat_complex > mat_complex ).

thf(sy_c_Column__Operations_Oswap__cols__rows_001t__Nat__Onat,type,
    column141131285749525182ws_nat: nat > nat > mat_nat > mat_nat ).

thf(sy_c_Column__Operations_Oswap__cols__rows_001tf__a,type,
    column5129559316938501008rows_a: nat > nat > mat_a > mat_a ).

thf(sy_c_Complex__Matrix_Odensity__operator,type,
    comple5220265106149225959erator: mat_complex > $o ).

thf(sy_c_Complex__Matrix_Ohermitian_001t__Complex__Ocomplex,type,
    comple8306762464034002205omplex: mat_complex > $o ).

thf(sy_c_Complex__Matrix_Olowner__le,type,
    complex_lowner_le: mat_complex > mat_complex > $o ).

thf(sy_c_Complex__Matrix_Opartial__density__operator,type,
    comple1169154605998056944erator: mat_complex > $o ).

thf(sy_c_Complex__Matrix_Opositive,type,
    complex_positive: mat_complex > $o ).

thf(sy_c_Complex__Matrix_Otrace_001t__Complex__Ocomplex,type,
    comple3184165445352484367omplex: mat_complex > complex ).

thf(sy_c_Complex__Matrix_Otrace_001tf__a,type,
    complex_trace_a: mat_a > a ).

thf(sy_c_Complex__Matrix_Ounitary_001t__Complex__Ocomplex,type,
    comple6660659447773130958omplex: mat_complex > $o ).

thf(sy_c_Factorial__Ring_Ocomm__semiring__1__class_Oirreducible_001t__Complex__Ocomplex,type,
    factor4870819777162427853omplex: complex > $o ).

thf(sy_c_Factorial__Ring_Ocomm__semiring__1__class_Oirreducible_001t__Nat__Onat,type,
    factor4388943552880185071le_nat: nat > $o ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
    invers8013647133539491842omplex: complex > complex ).

thf(sy_c_Gates_Omat__incr,type,
    mat_incr: nat > mat_complex ).

thf(sy_c_Gauss__Jordan__Elimination_Ogauss__jordan__single_001t__Complex__Ocomplex,type,
    gauss_4244865067341541924omplex: mat_complex > mat_complex ).

thf(sy_c_Gauss__Jordan__Elimination_Omat__multrow__gen_001t__Complex__Ocomplex,type,
    gauss_2324787009747932227omplex: ( complex > complex > complex ) > nat > complex > mat_complex > mat_complex ).

thf(sy_c_Gauss__Jordan__Elimination_Omat__multrow__gen_001t__Nat__Onat,type,
    gauss_2409696420326117733en_nat: ( nat > nat > nat ) > nat > nat > mat_nat > mat_nat ).

thf(sy_c_Gauss__Jordan__Elimination_Omat__multrow__gen_001tf__a,type,
    gauss_5154200947219177641_gen_a: ( a > a > a ) > nat > a > mat_a > mat_a ).

thf(sy_c_Gauss__Jordan__Elimination_Omat__swaprows_001t__Complex__Ocomplex,type,
    gauss_1020679828357514249omplex: nat > nat > mat_complex > mat_complex ).

thf(sy_c_Gauss__Jordan__Elimination_Omat__swaprows_001tf__a,type,
    gauss_2482569599970757219rows_a: nat > nat > mat_a > mat_a ).

thf(sy_c_Gauss__Jordan__Elimination_Omultrow__mat_001t__Complex__Ocomplex,type,
    gauss_6868829418328711927omplex: nat > nat > complex > mat_complex ).

thf(sy_c_Gauss__Jordan__Elimination_Omultrow__mat_001t__Nat__Onat,type,
    gauss_3195076542185637913at_nat: nat > nat > nat > mat_nat ).

thf(sy_c_Gauss__Jordan__Elimination_Opivot__fun_001t__Complex__Ocomplex,type,
    gauss_2609248829700396350omplex: mat_complex > ( nat > nat ) > nat > $o ).

thf(sy_c_Gauss__Jordan__Elimination_Opivot__fun_001t__Nat__Onat,type,
    gauss_8416567519840421984un_nat: mat_nat > ( nat > nat ) > nat > $o ).

thf(sy_c_Gauss__Jordan__Elimination_Orow__echelon__form_001t__Complex__Ocomplex,type,
    gauss_194721375535881179omplex: mat_complex > $o ).

thf(sy_c_Gauss__Jordan__Elimination_Oswaprows__mat_001t__Complex__Ocomplex,type,
    gauss_8970452565587180529omplex: nat > nat > nat > mat_complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
    one_one_complex: complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    one_one_set_complex: set_complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Set__Oset_It__Nat__Onat_J,type,
    one_one_set_nat: set_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
    plus_plus_complex: complex > complex > complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Omat_It__Complex__Ocomplex_J,type,
    plus_p8323303612493835998omplex: mat_complex > mat_complex > mat_complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Omat_It__Nat__Onat_J,type,
    plus_plus_mat_nat: mat_nat > mat_nat > mat_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Omat_Itf__a_J,type,
    plus_plus_mat_a: mat_a > mat_a > mat_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    plus_p7052360327008956141omplex: set_complex > set_complex > set_complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Omat_It__Complex__Ocomplex_J_J,type,
    plus_p4229080058245121342omplex: set_mat_complex > set_mat_complex > set_mat_complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    plus_plus_set_mat_a: set_mat_a > set_mat_a > set_mat_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Nat__Onat_J,type,
    plus_plus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001tf__a,type,
    plus_plus_a: a > a > a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
    times_times_complex: complex > complex > complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Matrix__Omat_It__Complex__Ocomplex_J,type,
    times_8009071140041733218omplex: mat_complex > mat_complex > mat_complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Matrix__Omat_It__Nat__Onat_J,type,
    times_times_mat_nat: mat_nat > mat_nat > mat_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Matrix__Omat_Itf__a_J,type,
    times_times_mat_a: mat_a > mat_a > mat_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    times_6048082448287401577omplex: set_complex > set_complex > set_complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Matrix__Omat_It__Complex__Ocomplex_J_J,type,
    times_6731331324747250370omplex: set_mat_complex > set_mat_complex > set_mat_complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    times_5500231875258083300at_nat: set_mat_nat > set_mat_nat > set_mat_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    times_1230744552615602198_mat_a: set_mat_a > set_mat_a > set_mat_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Nat__Onat_J,type,
    times_times_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
    times_6103784797850505759omplex: set_set_complex > set_set_complex > set_set_complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Set__Oset_It__Matrix__Omat_It__Complex__Ocomplex_J_J_J,type,
    times_3957003352596167970omplex: set_set_mat_complex > set_set_mat_complex > set_set_mat_complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Set__Oset_It__Matrix__Omat_Itf__a_J_J_J,type,
    times_5016826689369604684_mat_a: set_set_mat_a > set_set_mat_a > set_set_mat_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    times_4850922872519784769et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_Itf__a_J,type,
    times_times_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001tf__a,type,
    times_times_a: a > a > a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
    zero_zero_complex: complex ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001tf__a,type,
    zero_zero_a: a ).

thf(sy_c_If_001t__Complex__Ocomplex,type,
    if_complex: $o > complex > complex > complex ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_Jordan__Normal__Form_Ojordan__matrix_001t__Complex__Ocomplex,type,
    jordan5739059635872469039omplex: list_P6605091754902497125omplex > mat_complex ).

thf(sy_c_Jordan__Normal__Form__Existence_Odiff__ev_001t__Complex__Ocomplex,type,
    jordan8650160714669549932omplex: mat_complex > nat > nat > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Oev__block_001t__Complex__Ocomplex,type,
    jordan8042990603089931364omplex: nat > mat_complex > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Oev__blocks_001t__Complex__Ocomplex,type,
    jordan4650062548456832493omplex: nat > mat_complex > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Oev__blocks__part_001t__Complex__Ocomplex,type,
    jordan4637981584770492064omplex: nat > mat_complex > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Oinv__all_001t__Complex__Ocomplex,type,
    jordan5244935068081719878omplex: nat > ( mat_complex > nat > nat > $o ) > mat_complex > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Oinv__all_H_001t__Complex__Ocomplex,type,
    jordan5032732407113867375omplex: ( mat_complex > nat > nat > $o ) > mat_complex > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Oinv__upto_001t__Complex__Ocomplex,type,
    jordan5475473882837061487omplex: nat > ( mat_complex > nat > nat > $o ) > mat_complex > nat > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Ojb_001t__Complex__Ocomplex,type,
    jordan4971026570492200526omplex: mat_complex > nat > nat > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Ojnf__vector_001t__Complex__Ocomplex,type,
    jordan387279176131498413omplex: mat_complex > list_P6605091754902497125omplex ).

thf(sy_c_Jordan__Normal__Form__Existence_Ojnf__vector__main_001t__Complex__Ocomplex,type,
    jordan4459423482773701094omplex: nat > mat_complex > list_P6605091754902497125omplex ).

thf(sy_c_Jordan__Normal__Form__Existence_Opartition__ev__blocks_001t__Complex__Ocomplex,type,
    jordan5009815537632354121omplex: mat_complex > list_mat_complex > list_mat_complex ).

thf(sy_c_Jordan__Normal__Form__Existence_Osame__diag_001t__Complex__Ocomplex,type,
    jordan2620430285385836103omplex: nat > mat_complex > mat_complex > $o ).

thf(sy_c_Jordan__Normal__Form__Existence_Ostep__1_001t__Complex__Ocomplex,type,
    jordan2017415923357163885omplex: mat_complex > mat_complex ).

thf(sy_c_Jordan__Normal__Form__Existence_Ostep__1__main_001t__Complex__Ocomplex,type,
    jordan9130142659770429862omplex: nat > nat > nat > mat_complex > mat_complex ).

thf(sy_c_Jordan__Normal__Form__Existence_Ostep__2_001t__Complex__Ocomplex,type,
    jordan7871273693253786478omplex: mat_complex > mat_complex ).

thf(sy_c_Jordan__Normal__Form__Existence_Ostep__2__main_001t__Complex__Ocomplex,type,
    jordan6916311984355858983omplex: nat > nat > mat_complex > mat_complex ).

thf(sy_c_Jordan__Normal__Form__Existence_Ostep__3_001t__Complex__Ocomplex,type,
    jordan4501759426295633263omplex: mat_complex > mat_complex ).

thf(sy_c_Jordan__Normal__Form__Existence_Ostep__3__main_001t__Complex__Ocomplex,type,
    jordan4702481308941288104omplex: nat > nat > mat_complex > mat_complex ).

thf(sy_c_Jordan__Normal__Form__Existence_Ouppert_001t__Complex__Ocomplex,type,
    jordan3528196489273997576omplex: mat_complex > nat > nat > $o ).

thf(sy_c_Linear__Algebra__Complements_Ocpx__sq__mat__axioms,type,
    linear2040860143340867312axioms: nat > nat > $o ).

thf(sy_c_Linear__Algebra__Complements_Oprojector_001t__Complex__Ocomplex,type,
    linear5633924348262549461omplex: mat_complex > $o ).

thf(sy_c_List_Olist_ONil_001t__Complex__Ocomplex,type,
    nil_complex: list_complex ).

thf(sy_c_List_Olist_ONil_001t__Matrix__Omat_It__Complex__Ocomplex_J,type,
    nil_mat_complex: list_mat_complex ).

thf(sy_c_List_Olist_ONil_001t__Matrix__Omat_Itf__a_J,type,
    nil_mat_a: list_mat_a ).

thf(sy_c_List_Olist_ONil_001tf__a,type,
    nil_a: list_a ).

thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
    set_complex2: list_complex > set_complex ).

thf(sy_c_List_Olist_Oset_001t__Matrix__Omat_It__Complex__Ocomplex_J,type,
    set_mat_complex2: list_mat_complex > set_mat_complex ).

thf(sy_c_List_Olist_Oset_001t__Matrix__Omat_It__Nat__Onat_J,type,
    set_mat_nat2: list_mat_nat > set_mat_nat ).

thf(sy_c_List_Olist_Oset_001t__Matrix__Omat_Itf__a_J,type,
    set_mat_a2: list_mat_a > set_mat_a ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001tf__a,type,
    set_a2: list_a > set_a ).

thf(sy_c_Matrix_Ocarrier__mat_001t__Complex__Ocomplex,type,
    carrier_mat_complex: nat > nat > set_mat_complex ).

thf(sy_c_Matrix_Ocarrier__mat_001t__Nat__Onat,type,
    carrier_mat_nat: nat > nat > set_mat_nat ).

thf(sy_c_Matrix_Ocarrier__mat_001tf__a,type,
    carrier_mat_a: nat > nat > set_mat_a ).

thf(sy_c_Matrix_Odiag__block__mat_001t__Complex__Ocomplex,type,
    diag_b9145358668110806138omplex: list_mat_complex > mat_complex ).

thf(sy_c_Matrix_Odiagonal__mat_001t__Complex__Ocomplex,type,
    diagonal_mat_complex: mat_complex > $o ).

thf(sy_c_Matrix_Odiagonal__mat_001t__Nat__Onat,type,
    diagonal_mat_nat: mat_nat > $o ).

thf(sy_c_Matrix_Odiagonal__mat_001tf__a,type,
    diagonal_mat_a: mat_a > $o ).

thf(sy_c_Matrix_Odim__col_001t__Complex__Ocomplex,type,
    dim_col_complex: mat_complex > nat ).

thf(sy_c_Matrix_Odim__col_001t__Nat__Onat,type,
    dim_col_nat: mat_nat > nat ).

thf(sy_c_Matrix_Odim__col_001tf__a,type,
    dim_col_a: mat_a > nat ).

thf(sy_c_Matrix_Odim__row_001t__Complex__Ocomplex,type,
    dim_row_complex: mat_complex > nat ).

thf(sy_c_Matrix_Odim__row_001t__Nat__Onat,type,
    dim_row_nat: mat_nat > nat ).

thf(sy_c_Matrix_Odim__row_001tf__a,type,
    dim_row_a: mat_a > nat ).

thf(sy_c_Matrix_Oinvertible__mat_001t__Complex__Ocomplex,type,
    invert2568027935824841882omplex: mat_complex > $o ).

thf(sy_c_Matrix_Oinverts__mat_001t__Complex__Ocomplex,type,
    inverts_mat_complex: mat_complex > mat_complex > $o ).

thf(sy_c_Matrix_Oinverts__mat_001t__Nat__Onat,type,
    inverts_mat_nat: mat_nat > mat_nat > $o ).

thf(sy_c_Matrix_Omk__diagonal_001t__Complex__Ocomplex,type,
    mk_diagonal_complex: list_complex > mat_complex ).

thf(sy_c_Matrix_Omk__diagonal_001t__Nat__Onat,type,
    mk_diagonal_nat: list_nat > mat_nat ).

thf(sy_c_Matrix_Omk__diagonal_001tf__a,type,
    mk_diagonal_a: list_a > mat_a ).

thf(sy_c_Matrix_Oone__mat_001t__Complex__Ocomplex,type,
    one_mat_complex: nat > mat_complex ).

thf(sy_c_Matrix_Oone__mat_001t__Nat__Onat,type,
    one_mat_nat: nat > mat_nat ).

thf(sy_c_Matrix_Osimilar__mat_001t__Complex__Ocomplex,type,
    similar_mat_complex: mat_complex > mat_complex > $o ).

thf(sy_c_Matrix_Osimilar__mat_001t__Nat__Onat,type,
    similar_mat_nat: mat_nat > mat_nat > $o ).

thf(sy_c_Matrix_Osimilar__mat__wit_001t__Complex__Ocomplex,type,
    simila5774310414453981135omplex: mat_complex > mat_complex > mat_complex > mat_complex > $o ).

thf(sy_c_Matrix_Osimilar__mat__wit_001t__Nat__Onat,type,
    similar_mat_wit_nat: mat_nat > mat_nat > mat_nat > mat_nat > $o ).

thf(sy_c_Matrix_Osmult__mat_001t__Complex__Ocomplex,type,
    smult_mat_complex: complex > mat_complex > mat_complex ).

thf(sy_c_Matrix_Osmult__mat_001t__Nat__Onat,type,
    smult_mat_nat: nat > mat_nat > mat_nat ).

thf(sy_c_Matrix_Osmult__mat_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    smult_4557042052056852367omplex: set_complex > mat_set_complex > mat_set_complex ).

thf(sy_c_Matrix_Osmult__mat_001t__Set__Oset_It__Nat__Onat_J,type,
    smult_mat_set_nat: set_nat > mat_set_nat > mat_set_nat ).

thf(sy_c_Matrix_Osmult__mat_001tf__a,type,
    smult_mat_a: a > mat_a > mat_a ).

thf(sy_c_Matrix_Osquare__mat_001t__Complex__Ocomplex,type,
    square_mat_complex: mat_complex > $o ).

thf(sy_c_Matrix_Osquare__mat_001tf__a,type,
    square_mat_a: mat_a > $o ).

thf(sy_c_Matrix_Otranspose__mat_001t__Complex__Ocomplex,type,
    transp3074176993011536131omplex: mat_complex > mat_complex ).

thf(sy_c_Matrix_Otranspose__mat_001tf__a,type,
    transpose_mat_a: mat_a > mat_a ).

thf(sy_c_Matrix_Oupdate__mat_001t__Complex__Ocomplex,type,
    update_mat_complex: mat_complex > product_prod_nat_nat > complex > mat_complex ).

thf(sy_c_Matrix_Oupdate__mat_001t__Nat__Onat,type,
    update_mat_nat: mat_nat > product_prod_nat_nat > nat > mat_nat ).

thf(sy_c_Matrix_Oupdate__mat_001tf__a,type,
    update_mat_a: mat_a > product_prod_nat_nat > a > mat_a ).

thf(sy_c_Matrix_Oupper__triangular_001t__Complex__Ocomplex,type,
    upper_4850907204721561915omplex: mat_complex > $o ).

thf(sy_c_Matrix_Oupper__triangular_001t__Nat__Onat,type,
    upper_triangular_nat: mat_nat > $o ).

thf(sy_c_Matrix_Oupper__triangular_001tf__a,type,
    upper_triangular_a: mat_a > $o ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
    size_s3451745648224563538omplex: list_complex > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Matrix__Omat_It__Complex__Ocomplex_J_J,type,
    size_s5969786470865220249omplex: list_mat_complex > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    size_s66138613738048955at_nat: list_mat_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Matrix__Omat_Itf__a_J_J,type,
    size_size_list_mat_a: list_mat_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_Itf__a_J,type,
    size_size_list_a: list_a > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Complex__Ocomplex,type,
    ord_less_complex: complex > complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Complex__Ocomplex,type,
    ord_less_eq_complex: complex > complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_le211207098394363844omplex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Matrix__Omat_It__Complex__Ocomplex_J_J,type,
    ord_le3632134057777142183omplex: set_mat_complex > set_mat_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    ord_le3318621148231462513_mat_a: set_mat_a > set_mat_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
    power_power_complex: complex > nat > complex ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Projective__Measurements_Odensity__collapse,type,
    projec3470689467825365843llapse: mat_complex > mat_complex > mat_complex ).

thf(sy_c_Projective__Measurements_Ohermitian__decomp_001t__Complex__Ocomplex,type,
    projec5943904436471448624omplex: mat_complex > mat_complex > mat_complex > $o ).

thf(sy_c_Projective__Measurements_Omax__mix__density,type,
    projec8360710381328234318ensity: nat > mat_complex ).

thf(sy_c_Quantum_Ocpx__mat__cnj,type,
    cpx_mat_cnj: mat_complex > mat_complex ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
    dvd_dvd_complex: complex > complex > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Schur__Decomposition_Ocorthogonal__mat_001t__Complex__Ocomplex,type,
    schur_549222400177443379omplex: mat_complex > $o ).

thf(sy_c_Schur__Decomposition_Omat__adjoint_001t__Complex__Ocomplex,type,
    schur_5982229384592763574omplex: mat_complex > mat_complex ).

thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
    collect_complex: ( complex > $o ) > set_complex ).

thf(sy_c_Set_OCollect_001t__Matrix__Omat_It__Complex__Ocomplex_J,type,
    collect_mat_complex: ( mat_complex > $o ) > set_mat_complex ).

thf(sy_c_Set_OCollect_001t__Matrix__Omat_It__Nat__Onat_J,type,
    collect_mat_nat: ( mat_nat > $o ) > set_mat_nat ).

thf(sy_c_Set_OCollect_001t__Matrix__Omat_Itf__a_J,type,
    collect_mat_a: ( mat_a > $o ) > set_mat_a ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Complex__Ocomplex,type,
    set_el8005228190238886239omplex: complex > set_complex > set_complex ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Matrix__Omat_It__Complex__Ocomplex_J,type,
    set_el176066062795894710omplex: mat_complex > set_mat_complex > set_mat_complex ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Matrix__Omat_It__Nat__Onat_J,type,
    set_el1310594772197002200at_nat: mat_nat > set_mat_nat > set_mat_nat ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Matrix__Omat_Itf__a_J,type,
    set_el1062546952344711308_mat_a: mat_a > set_mat_a > set_mat_a ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Nat__Onat,type,
    set_el2933305810450955905es_nat: nat > set_nat > set_nat ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_el158709831744343061omplex: set_complex > set_set_complex > set_set_complex ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Set__Oset_It__Matrix__Omat_It__Complex__Ocomplex_J_J,type,
    set_el2325834261644174870omplex: set_mat_complex > set_set_mat_complex > set_set_mat_complex ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    set_el7210227519270355394_mat_a: set_mat_a > set_set_mat_a > set_set_mat_a ).

thf(sy_c_Set__Algebras_Oelt__set__times_001t__Set__Oset_It__Nat__Onat_J,type,
    set_el3528970498207131191et_nat: set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Set__Algebras_Oelt__set__times_001tf__a,type,
    set_elt_set_times_a: a > set_a > set_a ).

thf(sy_c_Spectral__Theory__Complements_Omat__conj_001t__Complex__Ocomplex,type,
    spectr5699176650994449695omplex: mat_complex > mat_complex > mat_complex ).

thf(sy_c_Tensor_Otensor__mat,type,
    tensor_mat: mat_complex > mat_complex > mat_complex ).

thf(sy_c_VS__Connect_Ovec__space_Ocol__space_001t__Complex__Ocomplex,type,
    vS_vec1879987866596122552omplex: nat > mat_complex > set_vec_complex ).

thf(sy_c_VS__Connect_Ovec__space_Orow__space_001t__Complex__Ocomplex,type,
    vS_vec3284807721666986142omplex: nat > mat_complex > set_vec_complex ).

thf(sy_c_member_001t__Complex__Ocomplex,type,
    member_complex: complex > set_complex > $o ).

thf(sy_c_member_001t__Matrix__Omat_It__Complex__Ocomplex_J,type,
    member_mat_complex: mat_complex > set_mat_complex > $o ).

thf(sy_c_member_001t__Matrix__Omat_It__Nat__Onat_J,type,
    member_mat_nat: mat_nat > set_mat_nat > $o ).

thf(sy_c_member_001t__Matrix__Omat_Itf__a_J,type,
    member_mat_a: mat_a > set_mat_a > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    member_set_complex: set_complex > set_set_complex > $o ).

thf(sy_c_member_001t__Set__Oset_It__Matrix__Omat_It__Complex__Ocomplex_J_J,type,
    member3612512168372279472omplex: set_mat_complex > set_set_mat_complex > $o ).

thf(sy_c_member_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    member_set_mat_a: set_mat_a > set_set_mat_a > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_A,type,
    a2: mat_a ).

thf(sy_v_B,type,
    b: mat_a ).

thf(sy_v_i,type,
    i: nat ).

thf(sy_v_j,type,
    j: nat ).

thf(sy_v_n,type,
    n: nat ).

% Relevant facts (1086)
thf(fact_0_assms_I5_J,axiom,
    ord_less_nat @ j @ n ).

% assms(5)
thf(fact_1_assms_I4_J,axiom,
    ord_less_nat @ i @ n ).

% assms(4)
thf(fact_2_assms_I1_J,axiom,
    diagonal_mat_a @ a2 ).

% assms(1)
thf(fact_3_assms_I2_J,axiom,
    member_mat_a @ a2 @ ( carrier_mat_a @ n @ n ) ).

% assms(2)
thf(fact_4_assms_I3_J,axiom,
    member_mat_a @ b @ ( carrier_mat_a @ n @ n ) ).

% assms(3)
thf(fact_5_index__mult__mat_I2_J,axiom,
    ! [A: mat_nat,B: mat_nat] :
      ( ( dim_row_nat @ ( times_times_mat_nat @ A @ B ) )
      = ( dim_row_nat @ A ) ) ).

% index_mult_mat(2)
thf(fact_6_index__mult__mat_I2_J,axiom,
    ! [A: mat_a,B: mat_a] :
      ( ( dim_row_a @ ( times_times_mat_a @ A @ B ) )
      = ( dim_row_a @ A ) ) ).

% index_mult_mat(2)
thf(fact_7_index__mult__mat_I2_J,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( dim_row_complex @ ( times_8009071140041733218omplex @ A @ B ) )
      = ( dim_row_complex @ A ) ) ).

% index_mult_mat(2)
thf(fact_8_Groups_Omult__ac_I3_J,axiom,
    ! [B2: set_complex,A2: set_complex,C: set_complex] :
      ( ( times_6048082448287401577omplex @ B2 @ ( times_6048082448287401577omplex @ A2 @ C ) )
      = ( times_6048082448287401577omplex @ A2 @ ( times_6048082448287401577omplex @ B2 @ C ) ) ) ).

% Groups.mult_ac(3)
thf(fact_9_Groups_Omult__ac_I3_J,axiom,
    ! [B2: set_nat,A2: set_nat,C: set_nat] :
      ( ( times_times_set_nat @ B2 @ ( times_times_set_nat @ A2 @ C ) )
      = ( times_times_set_nat @ A2 @ ( times_times_set_nat @ B2 @ C ) ) ) ).

% Groups.mult_ac(3)
thf(fact_10_Groups_Omult__ac_I3_J,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( times_times_nat @ B2 @ ( times_times_nat @ A2 @ C ) )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% Groups.mult_ac(3)
thf(fact_11_Groups_Omult__ac_I3_J,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( times_times_complex @ B2 @ ( times_times_complex @ A2 @ C ) )
      = ( times_times_complex @ A2 @ ( times_times_complex @ B2 @ C ) ) ) ).

% Groups.mult_ac(3)
thf(fact_12_Groups_Omult__ac_I2_J,axiom,
    ( times_6048082448287401577omplex
    = ( ^ [A3: set_complex,B3: set_complex] : ( times_6048082448287401577omplex @ B3 @ A3 ) ) ) ).

% Groups.mult_ac(2)
thf(fact_13_Groups_Omult__ac_I2_J,axiom,
    ( times_times_set_nat
    = ( ^ [A3: set_nat,B3: set_nat] : ( times_times_set_nat @ B3 @ A3 ) ) ) ).

% Groups.mult_ac(2)
thf(fact_14_Groups_Omult__ac_I2_J,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B3: nat] : ( times_times_nat @ B3 @ A3 ) ) ) ).

% Groups.mult_ac(2)
thf(fact_15_Groups_Omult__ac_I2_J,axiom,
    ( times_times_complex
    = ( ^ [A3: complex,B3: complex] : ( times_times_complex @ B3 @ A3 ) ) ) ).

% Groups.mult_ac(2)
thf(fact_16_Groups_Omult__ac_I1_J,axiom,
    ! [A2: set_complex,B2: set_complex,C: set_complex] :
      ( ( times_6048082448287401577omplex @ ( times_6048082448287401577omplex @ A2 @ B2 ) @ C )
      = ( times_6048082448287401577omplex @ A2 @ ( times_6048082448287401577omplex @ B2 @ C ) ) ) ).

% Groups.mult_ac(1)
thf(fact_17_Groups_Omult__ac_I1_J,axiom,
    ! [A2: set_nat,B2: set_nat,C: set_nat] :
      ( ( times_times_set_nat @ ( times_times_set_nat @ A2 @ B2 ) @ C )
      = ( times_times_set_nat @ A2 @ ( times_times_set_nat @ B2 @ C ) ) ) ).

% Groups.mult_ac(1)
thf(fact_18_Groups_Omult__ac_I1_J,axiom,
    ! [A2: a,B2: a,C: a] :
      ( ( times_times_a @ ( times_times_a @ A2 @ B2 ) @ C )
      = ( times_times_a @ A2 @ ( times_times_a @ B2 @ C ) ) ) ).

% Groups.mult_ac(1)
thf(fact_19_Groups_Omult__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% Groups.mult_ac(1)
thf(fact_20_Groups_Omult__ac_I1_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( times_times_complex @ ( times_times_complex @ A2 @ B2 ) @ C )
      = ( times_times_complex @ A2 @ ( times_times_complex @ B2 @ C ) ) ) ).

% Groups.mult_ac(1)
thf(fact_21_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: set_complex,B2: set_complex,C: set_complex] :
      ( ( times_6048082448287401577omplex @ ( times_6048082448287401577omplex @ A2 @ B2 ) @ C )
      = ( times_6048082448287401577omplex @ A2 @ ( times_6048082448287401577omplex @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_22_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: set_nat,B2: set_nat,C: set_nat] :
      ( ( times_times_set_nat @ ( times_times_set_nat @ A2 @ B2 ) @ C )
      = ( times_times_set_nat @ A2 @ ( times_times_set_nat @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_23_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_24_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( times_times_complex @ ( times_times_complex @ A2 @ B2 ) @ C )
      = ( times_times_complex @ A2 @ ( times_times_complex @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_25_vector__space__over__itself_Ovector__space__assms_I3_J,axiom,
    ! [A2: complex,B2: complex,X: complex] :
      ( ( times_times_complex @ A2 @ ( times_times_complex @ B2 @ X ) )
      = ( times_times_complex @ ( times_times_complex @ A2 @ B2 ) @ X ) ) ).

% vector_space_over_itself.vector_space_assms(3)
thf(fact_26_carrier__matD_I1_J,axiom,
    ! [A: mat_nat,Nr: nat,Nc: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( ( dim_row_nat @ A )
        = Nr ) ) ).

% carrier_matD(1)
thf(fact_27_carrier__matD_I1_J,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( dim_row_a @ A )
        = Nr ) ) ).

% carrier_matD(1)
thf(fact_28_carrier__matD_I1_J,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( dim_row_complex @ A )
        = Nr ) ) ).

% carrier_matD(1)
thf(fact_29_mult__carrier__mat,axiom,
    ! [A: mat_nat,Nr: nat,N: nat,B: mat_nat,Nc: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ N ) )
     => ( ( member_mat_nat @ B @ ( carrier_mat_nat @ N @ Nc ) )
       => ( member_mat_nat @ ( times_times_mat_nat @ A @ B ) @ ( carrier_mat_nat @ Nr @ Nc ) ) ) ) ).

% mult_carrier_mat
thf(fact_30_mult__carrier__mat,axiom,
    ! [A: mat_a,Nr: nat,N: nat,B: mat_a,Nc: nat] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ N @ Nc ) )
       => ( member_mat_a @ ( times_times_mat_a @ A @ B ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ) ).

% mult_carrier_mat
thf(fact_31_mult__carrier__mat,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,B: mat_complex,Nc: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ Nc ) )
       => ( member_mat_complex @ ( times_8009071140041733218omplex @ A @ B ) @ ( carrier_mat_complex @ Nr @ Nc ) ) ) ) ).

% mult_carrier_mat
thf(fact_32_assoc__mult__mat,axiom,
    ! [A: mat_nat,N_1: nat,N_2: nat,B: mat_nat,N_3: nat,C2: mat_nat,N_4: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N_1 @ N_2 ) )
     => ( ( member_mat_nat @ B @ ( carrier_mat_nat @ N_2 @ N_3 ) )
       => ( ( member_mat_nat @ C2 @ ( carrier_mat_nat @ N_3 @ N_4 ) )
         => ( ( times_times_mat_nat @ ( times_times_mat_nat @ A @ B ) @ C2 )
            = ( times_times_mat_nat @ A @ ( times_times_mat_nat @ B @ C2 ) ) ) ) ) ) ).

% assoc_mult_mat
thf(fact_33_assoc__mult__mat,axiom,
    ! [A: mat_a,N_1: nat,N_2: nat,B: mat_a,N_3: nat,C2: mat_a,N_4: nat] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ N_1 @ N_2 ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ N_2 @ N_3 ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ N_3 @ N_4 ) )
         => ( ( times_times_mat_a @ ( times_times_mat_a @ A @ B ) @ C2 )
            = ( times_times_mat_a @ A @ ( times_times_mat_a @ B @ C2 ) ) ) ) ) ) ).

% assoc_mult_mat
thf(fact_34_assoc__mult__mat,axiom,
    ! [A: mat_complex,N_1: nat,N_2: nat,B: mat_complex,N_3: nat,C2: mat_complex,N_4: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N_1 @ N_2 ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N_2 @ N_3 ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N_3 @ N_4 ) )
         => ( ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ A @ B ) @ C2 )
            = ( times_8009071140041733218omplex @ A @ ( times_8009071140041733218omplex @ B @ C2 ) ) ) ) ) ) ).

% assoc_mult_mat
thf(fact_35_vector__space__over__itself_Oscale__left__commute,axiom,
    ! [A2: complex,B2: complex,X: complex] :
      ( ( times_times_complex @ A2 @ ( times_times_complex @ B2 @ X ) )
      = ( times_times_complex @ B2 @ ( times_times_complex @ A2 @ X ) ) ) ).

% vector_space_over_itself.scale_left_commute
thf(fact_36_mk__diagonal__diagonal,axiom,
    ! [As: list_complex] : ( diagonal_mat_complex @ ( mk_diagonal_complex @ As ) ) ).

% mk_diagonal_diagonal
thf(fact_37_mk__diagonal__diagonal,axiom,
    ! [As: list_a] : ( diagonal_mat_a @ ( mk_diagonal_a @ As ) ) ).

% mk_diagonal_diagonal
thf(fact_38_inv__all_H__def,axiom,
    ( jordan5032732407113867375omplex
    = ( ^ [P: mat_complex > nat > nat > $o,A4: mat_complex] :
        ! [I: nat,J: nat] :
          ( ( ord_less_nat @ I @ ( dim_row_complex @ A4 ) )
         => ( ( ord_less_nat @ J @ ( dim_row_complex @ A4 ) )
           => ( P @ A4 @ I @ J ) ) ) ) ) ).

% inv_all'_def
thf(fact_39_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_40_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_41_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_42_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_43_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_44_nat__less__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ( P2 @ M2 ) )
         => ( P2 @ N2 ) )
     => ( P2 @ N ) ) ).

% nat_less_induct
thf(fact_45_infinite__descent,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P2 @ N2 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
              & ~ ( P2 @ M2 ) ) )
     => ( P2 @ N ) ) ).

% infinite_descent
thf(fact_46_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_47_pinf_I1_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z: nat] :
        ! [X2: nat] :
          ( ( ord_less_nat @ Z @ X2 )
         => ( ( P2 @ X2 )
            = ( P3 @ X2 ) ) )
     => ( ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z @ X2 )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z2 @ X3 )
           => ( ( ( P2 @ X3 )
                & ( Q @ X3 ) )
              = ( ( P3 @ X3 )
                & ( Q2 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_48_pinf_I2_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z: nat] :
        ! [X2: nat] :
          ( ( ord_less_nat @ Z @ X2 )
         => ( ( P2 @ X2 )
            = ( P3 @ X2 ) ) )
     => ( ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z @ X2 )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z2 @ X3 )
           => ( ( ( P2 @ X3 )
                | ( Q @ X3 ) )
              = ( ( P3 @ X3 )
                | ( Q2 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_49_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_50_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_51_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ~ ( ord_less_nat @ X3 @ T ) ) ).

% pinf(5)
thf(fact_52_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ( ord_less_nat @ T @ X3 ) ) ).

% pinf(7)
thf(fact_53_mem__Collect__eq,axiom,
    ! [A2: complex,P2: complex > $o] :
      ( ( member_complex @ A2 @ ( collect_complex @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_54_mem__Collect__eq,axiom,
    ! [A2: nat,P2: nat > $o] :
      ( ( member_nat @ A2 @ ( collect_nat @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_55_mem__Collect__eq,axiom,
    ! [A2: mat_nat,P2: mat_nat > $o] :
      ( ( member_mat_nat @ A2 @ ( collect_mat_nat @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_56_mem__Collect__eq,axiom,
    ! [A2: mat_a,P2: mat_a > $o] :
      ( ( member_mat_a @ A2 @ ( collect_mat_a @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_57_mem__Collect__eq,axiom,
    ! [A2: mat_complex,P2: mat_complex > $o] :
      ( ( member_mat_complex @ A2 @ ( collect_mat_complex @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_58_Collect__mem__eq,axiom,
    ! [A: set_complex] :
      ( ( collect_complex
        @ ^ [X4: complex] : ( member_complex @ X4 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_59_Collect__mem__eq,axiom,
    ! [A: set_nat] :
      ( ( collect_nat
        @ ^ [X4: nat] : ( member_nat @ X4 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_60_Collect__mem__eq,axiom,
    ! [A: set_mat_nat] :
      ( ( collect_mat_nat
        @ ^ [X4: mat_nat] : ( member_mat_nat @ X4 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_61_Collect__mem__eq,axiom,
    ! [A: set_mat_a] :
      ( ( collect_mat_a
        @ ^ [X4: mat_a] : ( member_mat_a @ X4 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_62_Collect__mem__eq,axiom,
    ! [A: set_mat_complex] :
      ( ( collect_mat_complex
        @ ^ [X4: mat_complex] : ( member_mat_complex @ X4 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_63_Collect__cong,axiom,
    ! [P2: mat_complex > $o,Q: mat_complex > $o] :
      ( ! [X2: mat_complex] :
          ( ( P2 @ X2 )
          = ( Q @ X2 ) )
     => ( ( collect_mat_complex @ P2 )
        = ( collect_mat_complex @ Q ) ) ) ).

% Collect_cong
thf(fact_64_Collect__cong,axiom,
    ! [P2: mat_a > $o,Q: mat_a > $o] :
      ( ! [X2: mat_a] :
          ( ( P2 @ X2 )
          = ( Q @ X2 ) )
     => ( ( collect_mat_a @ P2 )
        = ( collect_mat_a @ Q ) ) ) ).

% Collect_cong
thf(fact_65_minf_I1_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z: nat] :
        ! [X2: nat] :
          ( ( ord_less_nat @ X2 @ Z )
         => ( ( P2 @ X2 )
            = ( P3 @ X2 ) ) )
     => ( ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z2 )
           => ( ( ( P2 @ X3 )
                & ( Q @ X3 ) )
              = ( ( P3 @ X3 )
                & ( Q2 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_66_minf_I2_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z: nat] :
        ! [X2: nat] :
          ( ( ord_less_nat @ X2 @ Z )
         => ( ( P2 @ X2 )
            = ( P3 @ X2 ) ) )
     => ( ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z2 )
           => ( ( ( P2 @ X3 )
                | ( Q @ X3 ) )
              = ( ( P3 @ X3 )
                | ( Q2 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_67_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_68_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_69_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ( ord_less_nat @ X3 @ T ) ) ).

% minf(5)
thf(fact_70_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ~ ( ord_less_nat @ T @ X3 ) ) ).

% minf(7)
thf(fact_71_order__less__imp__not__less,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ~ ( ord_less_complex @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_72_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_73_order__less__imp__not__eq2,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_74_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_75_order__less__imp__not__eq,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_76_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_77_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_78_order__less__imp__triv,axiom,
    ! [X: complex,Y: complex,P2: $o] :
      ( ( ord_less_complex @ X @ Y )
     => ( ( ord_less_complex @ Y @ X )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_79_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P2: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_80_order__less__not__sym,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ~ ( ord_less_complex @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_81_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_82_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > complex,C: complex] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_complex @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_83_order__less__subst2,axiom,
    ! [A2: complex,B2: complex,F: complex > nat,C: nat] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_complex @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_84_order__less__subst2,axiom,
    ! [A2: complex,B2: complex,F: complex > complex,C: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( ( ord_less_complex @ ( F @ B2 ) @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_complex @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_85_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_86_order__less__subst1,axiom,
    ! [A2: nat,F: complex > nat,B2: complex,C: complex] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_complex @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_87_order__less__subst1,axiom,
    ! [A2: complex,F: nat > complex,B2: nat,C: nat] :
      ( ( ord_less_complex @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_88_order__less__subst1,axiom,
    ! [A2: complex,F: complex > complex,B2: complex,C: complex] :
      ( ( ord_less_complex @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_complex @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_89_order__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_90_order__less__irrefl,axiom,
    ! [X: complex] :
      ~ ( ord_less_complex @ X @ X ) ).

% order_less_irrefl
thf(fact_91_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_92_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > complex,C: complex] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_93_ord__less__eq__subst,axiom,
    ! [A2: complex,B2: complex,F: complex > nat,C: nat] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_complex @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_94_ord__less__eq__subst,axiom,
    ! [A2: complex,B2: complex,F: complex > complex,C: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_complex @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_95_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_96_ord__eq__less__subst,axiom,
    ! [A2: complex,F: nat > complex,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_97_ord__eq__less__subst,axiom,
    ! [A2: nat,F: complex > nat,B2: complex,C: complex] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_complex @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_98_ord__eq__less__subst,axiom,
    ! [A2: complex,F: complex > complex,B2: complex,C: complex] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_complex @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_99_ord__eq__less__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_100_order__trans__rules_I28_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( A2 = B2 )
     => ( ( ord_less_complex @ B2 @ C )
       => ( ord_less_complex @ A2 @ C ) ) ) ).

% order_trans_rules(28)
thf(fact_101_order__trans__rules_I28_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order_trans_rules(28)
thf(fact_102_order__trans__rules_I27_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_complex @ A2 @ C ) ) ) ).

% order_trans_rules(27)
thf(fact_103_order__trans__rules_I27_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order_trans_rules(27)
thf(fact_104_order__trans__rules_I20_J,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ~ ( ord_less_complex @ B2 @ A2 ) ) ).

% order_trans_rules(20)
thf(fact_105_order__trans__rules_I20_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order_trans_rules(20)
thf(fact_106_order__trans__rules_I19_J,axiom,
    ! [X: complex,Y: complex,Z3: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ( ( ord_less_complex @ Y @ Z3 )
       => ( ord_less_complex @ X @ Z3 ) ) ) ).

% order_trans_rules(19)
thf(fact_107_order__trans__rules_I19_J,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_trans_rules(19)
thf(fact_108_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_109_neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% neqE
thf(fact_110_neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% neq_iff
thf(fact_111_less__imp__neq,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_112_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_113_less__asym,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ~ ( ord_less_complex @ Y @ X ) ) ).

% less_asym
thf(fact_114_less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% less_asym
thf(fact_115_order_Oasym,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ~ ( ord_less_complex @ B2 @ A2 ) ) ).

% order.asym
thf(fact_116_order_Oasym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order.asym
thf(fact_117_order_Oirrefl,axiom,
    ! [A2: complex] :
      ~ ( ord_less_complex @ A2 @ A2 ) ).

% order.irrefl
thf(fact_118_order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% order.irrefl
thf(fact_119_less__induct,axiom,
    ! [P2: nat > $o,A2: nat] :
      ( ! [X2: nat] :
          ( ! [Y3: nat] :
              ( ( ord_less_nat @ Y3 @ X2 )
             => ( P2 @ Y3 ) )
         => ( P2 @ X2 ) )
     => ( P2 @ A2 ) ) ).

% less_induct
thf(fact_120_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_121_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_122_dual__order_Oasym,axiom,
    ! [B2: complex,A2: complex] :
      ( ( ord_less_complex @ B2 @ A2 )
     => ~ ( ord_less_complex @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_123_dual__order_Oasym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ~ ( ord_less_nat @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_124_exists__least__iff,axiom,
    ( ( ^ [P4: nat > $o] :
        ? [X5: nat] : ( P4 @ X5 ) )
    = ( ^ [P5: nat > $o] :
        ? [N3: nat] :
          ( ( P5 @ N3 )
          & ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ~ ( P5 @ M3 ) ) ) ) ) ).

% exists_least_iff
thf(fact_125_linorder__less__wlog,axiom,
    ! [P2: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( ord_less_nat @ A5 @ B4 )
         => ( P2 @ A5 @ B4 ) )
     => ( ! [A5: nat] : ( P2 @ A5 @ A5 )
       => ( ! [A5: nat,B4: nat] :
              ( ( P2 @ B4 @ A5 )
             => ( P2 @ A5 @ B4 ) )
         => ( P2 @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_126_order_Ostrict__trans,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( ( ord_less_complex @ B2 @ C )
       => ( ord_less_complex @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_127_order_Ostrict__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_128_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_129_dual__order_Ostrict__trans,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ord_less_complex @ B2 @ A2 )
     => ( ( ord_less_complex @ C @ B2 )
       => ( ord_less_complex @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_130_dual__order_Ostrict__trans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_131_order_Ostrict__implies__not__eq,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_132_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_133_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: complex,A2: complex] :
      ( ( ord_less_complex @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_134_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_135_verit__comp__simplify_I1_J,axiom,
    ! [A2: complex] :
      ~ ( ord_less_complex @ A2 @ A2 ) ).

% verit_comp_simplify(1)
thf(fact_136_verit__comp__simplify_I1_J,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% verit_comp_simplify(1)
thf(fact_137_class__cring_Ofactors__equal,axiom,
    ! [A2: complex,B2: complex,C: complex,D: complex] :
      ( ( A2 = B2 )
     => ( ( C = D )
       => ( ( times_times_complex @ A2 @ C )
          = ( times_times_complex @ B2 @ D ) ) ) ) ).

% class_cring.factors_equal
thf(fact_138_set__times__elim,axiom,
    ! [X: mat_nat,A: set_mat_nat,B: set_mat_nat] :
      ( ( member_mat_nat @ X @ ( times_5500231875258083300at_nat @ A @ B ) )
     => ~ ! [A5: mat_nat,B4: mat_nat] :
            ( ( X
              = ( times_times_mat_nat @ A5 @ B4 ) )
           => ( ( member_mat_nat @ A5 @ A )
             => ~ ( member_mat_nat @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_139_set__times__elim,axiom,
    ! [X: set_complex,A: set_set_complex,B: set_set_complex] :
      ( ( member_set_complex @ X @ ( times_6103784797850505759omplex @ A @ B ) )
     => ~ ! [A5: set_complex,B4: set_complex] :
            ( ( X
              = ( times_6048082448287401577omplex @ A5 @ B4 ) )
           => ( ( member_set_complex @ A5 @ A )
             => ~ ( member_set_complex @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_140_set__times__elim,axiom,
    ! [X: set_mat_complex,A: set_set_mat_complex,B: set_set_mat_complex] :
      ( ( member3612512168372279472omplex @ X @ ( times_3957003352596167970omplex @ A @ B ) )
     => ~ ! [A5: set_mat_complex,B4: set_mat_complex] :
            ( ( X
              = ( times_6731331324747250370omplex @ A5 @ B4 ) )
           => ( ( member3612512168372279472omplex @ A5 @ A )
             => ~ ( member3612512168372279472omplex @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_141_set__times__elim,axiom,
    ! [X: set_mat_a,A: set_set_mat_a,B: set_set_mat_a] :
      ( ( member_set_mat_a @ X @ ( times_5016826689369604684_mat_a @ A @ B ) )
     => ~ ! [A5: set_mat_a,B4: set_mat_a] :
            ( ( X
              = ( times_1230744552615602198_mat_a @ A5 @ B4 ) )
           => ( ( member_set_mat_a @ A5 @ A )
             => ~ ( member_set_mat_a @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_142_set__times__elim,axiom,
    ! [X: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat @ X @ ( times_4850922872519784769et_nat @ A @ B ) )
     => ~ ! [A5: set_nat,B4: set_nat] :
            ( ( X
              = ( times_times_set_nat @ A5 @ B4 ) )
           => ( ( member_set_nat @ A5 @ A )
             => ~ ( member_set_nat @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_143_set__times__elim,axiom,
    ! [X: a,A: set_a,B: set_a] :
      ( ( member_a @ X @ ( times_times_set_a @ A @ B ) )
     => ~ ! [A5: a,B4: a] :
            ( ( X
              = ( times_times_a @ A5 @ B4 ) )
           => ( ( member_a @ A5 @ A )
             => ~ ( member_a @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_144_set__times__elim,axiom,
    ! [X: mat_a,A: set_mat_a,B: set_mat_a] :
      ( ( member_mat_a @ X @ ( times_1230744552615602198_mat_a @ A @ B ) )
     => ~ ! [A5: mat_a,B4: mat_a] :
            ( ( X
              = ( times_times_mat_a @ A5 @ B4 ) )
           => ( ( member_mat_a @ A5 @ A )
             => ~ ( member_mat_a @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_145_set__times__elim,axiom,
    ! [X: nat,A: set_nat,B: set_nat] :
      ( ( member_nat @ X @ ( times_times_set_nat @ A @ B ) )
     => ~ ! [A5: nat,B4: nat] :
            ( ( X
              = ( times_times_nat @ A5 @ B4 ) )
           => ( ( member_nat @ A5 @ A )
             => ~ ( member_nat @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_146_set__times__elim,axiom,
    ! [X: mat_complex,A: set_mat_complex,B: set_mat_complex] :
      ( ( member_mat_complex @ X @ ( times_6731331324747250370omplex @ A @ B ) )
     => ~ ! [A5: mat_complex,B4: mat_complex] :
            ( ( X
              = ( times_8009071140041733218omplex @ A5 @ B4 ) )
           => ( ( member_mat_complex @ A5 @ A )
             => ~ ( member_mat_complex @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_147_set__times__elim,axiom,
    ! [X: complex,A: set_complex,B: set_complex] :
      ( ( member_complex @ X @ ( times_6048082448287401577omplex @ A @ B ) )
     => ~ ! [A5: complex,B4: complex] :
            ( ( X
              = ( times_times_complex @ A5 @ B4 ) )
           => ( ( member_complex @ A5 @ A )
             => ~ ( member_complex @ B4 @ B ) ) ) ) ).

% set_times_elim
thf(fact_148_set__times__intro,axiom,
    ! [A2: mat_nat,C2: set_mat_nat,B2: mat_nat,D2: set_mat_nat] :
      ( ( member_mat_nat @ A2 @ C2 )
     => ( ( member_mat_nat @ B2 @ D2 )
       => ( member_mat_nat @ ( times_times_mat_nat @ A2 @ B2 ) @ ( times_5500231875258083300at_nat @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_149_set__times__intro,axiom,
    ! [A2: set_complex,C2: set_set_complex,B2: set_complex,D2: set_set_complex] :
      ( ( member_set_complex @ A2 @ C2 )
     => ( ( member_set_complex @ B2 @ D2 )
       => ( member_set_complex @ ( times_6048082448287401577omplex @ A2 @ B2 ) @ ( times_6103784797850505759omplex @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_150_set__times__intro,axiom,
    ! [A2: set_mat_complex,C2: set_set_mat_complex,B2: set_mat_complex,D2: set_set_mat_complex] :
      ( ( member3612512168372279472omplex @ A2 @ C2 )
     => ( ( member3612512168372279472omplex @ B2 @ D2 )
       => ( member3612512168372279472omplex @ ( times_6731331324747250370omplex @ A2 @ B2 ) @ ( times_3957003352596167970omplex @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_151_set__times__intro,axiom,
    ! [A2: set_mat_a,C2: set_set_mat_a,B2: set_mat_a,D2: set_set_mat_a] :
      ( ( member_set_mat_a @ A2 @ C2 )
     => ( ( member_set_mat_a @ B2 @ D2 )
       => ( member_set_mat_a @ ( times_1230744552615602198_mat_a @ A2 @ B2 ) @ ( times_5016826689369604684_mat_a @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_152_set__times__intro,axiom,
    ! [A2: set_nat,C2: set_set_nat,B2: set_nat,D2: set_set_nat] :
      ( ( member_set_nat @ A2 @ C2 )
     => ( ( member_set_nat @ B2 @ D2 )
       => ( member_set_nat @ ( times_times_set_nat @ A2 @ B2 ) @ ( times_4850922872519784769et_nat @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_153_set__times__intro,axiom,
    ! [A2: a,C2: set_a,B2: a,D2: set_a] :
      ( ( member_a @ A2 @ C2 )
     => ( ( member_a @ B2 @ D2 )
       => ( member_a @ ( times_times_a @ A2 @ B2 ) @ ( times_times_set_a @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_154_set__times__intro,axiom,
    ! [A2: mat_a,C2: set_mat_a,B2: mat_a,D2: set_mat_a] :
      ( ( member_mat_a @ A2 @ C2 )
     => ( ( member_mat_a @ B2 @ D2 )
       => ( member_mat_a @ ( times_times_mat_a @ A2 @ B2 ) @ ( times_1230744552615602198_mat_a @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_155_set__times__intro,axiom,
    ! [A2: nat,C2: set_nat,B2: nat,D2: set_nat] :
      ( ( member_nat @ A2 @ C2 )
     => ( ( member_nat @ B2 @ D2 )
       => ( member_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_set_nat @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_156_set__times__intro,axiom,
    ! [A2: mat_complex,C2: set_mat_complex,B2: mat_complex,D2: set_mat_complex] :
      ( ( member_mat_complex @ A2 @ C2 )
     => ( ( member_mat_complex @ B2 @ D2 )
       => ( member_mat_complex @ ( times_8009071140041733218omplex @ A2 @ B2 ) @ ( times_6731331324747250370omplex @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_157_set__times__intro,axiom,
    ! [A2: complex,C2: set_complex,B2: complex,D2: set_complex] :
      ( ( member_complex @ A2 @ C2 )
     => ( ( member_complex @ B2 @ D2 )
       => ( member_complex @ ( times_times_complex @ A2 @ B2 ) @ ( times_6048082448287401577omplex @ C2 @ D2 ) ) ) ) ).

% set_times_intro
thf(fact_158_diagonal__imp__upper__triangular,axiom,
    ! [A: mat_nat,N: nat] :
      ( ( diagonal_mat_nat @ A )
     => ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ N ) )
       => ( upper_triangular_nat @ A ) ) ) ).

% diagonal_imp_upper_triangular
thf(fact_159_diagonal__imp__upper__triangular,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( diagonal_mat_complex @ A )
     => ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
       => ( upper_4850907204721561915omplex @ A ) ) ) ).

% diagonal_imp_upper_triangular
thf(fact_160_diagonal__imp__upper__triangular,axiom,
    ! [A: mat_a,N: nat] :
      ( ( diagonal_mat_a @ A )
     => ( ( member_mat_a @ A @ ( carrier_mat_a @ N @ N ) )
       => ( upper_triangular_a @ A ) ) ) ).

% diagonal_imp_upper_triangular
thf(fact_161_normal__upper__triangular__matrix__is__diagonal,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( upper_4850907204721561915omplex @ A )
       => ( ( ( times_8009071140041733218omplex @ A @ ( schur_5982229384592763574omplex @ A ) )
            = ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ A ) @ A ) )
         => ( diagonal_mat_complex @ A ) ) ) ) ).

% normal_upper_triangular_matrix_is_diagonal
thf(fact_162_dim__update__mat_I1_J,axiom,
    ! [A: mat_nat,Ij: product_prod_nat_nat,A2: nat] :
      ( ( dim_row_nat @ ( update_mat_nat @ A @ Ij @ A2 ) )
      = ( dim_row_nat @ A ) ) ).

% dim_update_mat(1)
thf(fact_163_dim__update__mat_I1_J,axiom,
    ! [A: mat_a,Ij: product_prod_nat_nat,A2: a] :
      ( ( dim_row_a @ ( update_mat_a @ A @ Ij @ A2 ) )
      = ( dim_row_a @ A ) ) ).

% dim_update_mat(1)
thf(fact_164_dim__update__mat_I1_J,axiom,
    ! [A: mat_complex,Ij: product_prod_nat_nat,A2: complex] :
      ( ( dim_row_complex @ ( update_mat_complex @ A @ Ij @ A2 ) )
      = ( dim_row_complex @ A ) ) ).

% dim_update_mat(1)
thf(fact_165_triangular__to__jnf__steps__dims_I5_J,axiom,
    ! [A: mat_complex] :
      ( ( dim_row_complex @ ( jordan4501759426295633263omplex @ A ) )
      = ( dim_row_complex @ A ) ) ).

% triangular_to_jnf_steps_dims(5)
thf(fact_166_mk__diagonal__dim_I1_J,axiom,
    ! [As: list_nat] :
      ( ( dim_row_nat @ ( mk_diagonal_nat @ As ) )
      = ( size_size_list_nat @ As ) ) ).

% mk_diagonal_dim(1)
thf(fact_167_mk__diagonal__dim_I1_J,axiom,
    ! [As: list_a] :
      ( ( dim_row_a @ ( mk_diagonal_a @ As ) )
      = ( size_size_list_a @ As ) ) ).

% mk_diagonal_dim(1)
thf(fact_168_mk__diagonal__dim_I1_J,axiom,
    ! [As: list_complex] :
      ( ( dim_row_complex @ ( mk_diagonal_complex @ As ) )
      = ( size_s3451745648224563538omplex @ As ) ) ).

% mk_diagonal_dim(1)
thf(fact_169_vec__space_Orow__space__is__preserved,axiom,
    ! [P2: mat_complex,M: nat,A: mat_complex,N: nat] :
      ( ( invert2568027935824841882omplex @ P2 )
     => ( ( member_mat_complex @ P2 @ ( carrier_mat_complex @ M @ M ) )
       => ( ( member_mat_complex @ A @ ( carrier_mat_complex @ M @ N ) )
         => ( ( vS_vec3284807721666986142omplex @ N @ ( times_8009071140041733218omplex @ P2 @ A ) )
            = ( vS_vec3284807721666986142omplex @ N @ A ) ) ) ) ) ).

% vec_space.row_space_is_preserved
thf(fact_170_similar__mat__witD_I3_J,axiom,
    ! [N: nat,A: mat_nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( N
        = ( dim_row_nat @ A ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( A
          = ( times_times_mat_nat @ ( times_times_mat_nat @ P2 @ B ) @ Q ) ) ) ) ).

% similar_mat_witD(3)
thf(fact_171_similar__mat__witD_I3_J,axiom,
    ! [N: nat,A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( N
        = ( dim_row_complex @ A ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( A
          = ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ P2 @ B ) @ Q ) ) ) ) ).

% similar_mat_witD(3)
thf(fact_172_set__times__rearrange,axiom,
    ! [A2: set_complex,C2: set_set_complex,B2: set_complex,D2: set_set_complex] :
      ( ( times_6103784797850505759omplex @ ( set_el158709831744343061omplex @ A2 @ C2 ) @ ( set_el158709831744343061omplex @ B2 @ D2 ) )
      = ( set_el158709831744343061omplex @ ( times_6048082448287401577omplex @ A2 @ B2 ) @ ( times_6103784797850505759omplex @ C2 @ D2 ) ) ) ).

% set_times_rearrange
thf(fact_173_set__times__rearrange,axiom,
    ! [A2: set_nat,C2: set_set_nat,B2: set_nat,D2: set_set_nat] :
      ( ( times_4850922872519784769et_nat @ ( set_el3528970498207131191et_nat @ A2 @ C2 ) @ ( set_el3528970498207131191et_nat @ B2 @ D2 ) )
      = ( set_el3528970498207131191et_nat @ ( times_times_set_nat @ A2 @ B2 ) @ ( times_4850922872519784769et_nat @ C2 @ D2 ) ) ) ).

% set_times_rearrange
thf(fact_174_set__times__rearrange,axiom,
    ! [A2: nat,C2: set_nat,B2: nat,D2: set_nat] :
      ( ( times_times_set_nat @ ( set_el2933305810450955905es_nat @ A2 @ C2 ) @ ( set_el2933305810450955905es_nat @ B2 @ D2 ) )
      = ( set_el2933305810450955905es_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_set_nat @ C2 @ D2 ) ) ) ).

% set_times_rearrange
thf(fact_175_set__times__rearrange,axiom,
    ! [A2: complex,C2: set_complex,B2: complex,D2: set_complex] :
      ( ( times_6048082448287401577omplex @ ( set_el8005228190238886239omplex @ A2 @ C2 ) @ ( set_el8005228190238886239omplex @ B2 @ D2 ) )
      = ( set_el8005228190238886239omplex @ ( times_times_complex @ A2 @ B2 ) @ ( times_6048082448287401577omplex @ C2 @ D2 ) ) ) ).

% set_times_rearrange
thf(fact_176_similar__mat__witD2_I3_J,axiom,
    ! [A: mat_nat,N: nat,M: nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ M ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( A
          = ( times_times_mat_nat @ ( times_times_mat_nat @ P2 @ B ) @ Q ) ) ) ) ).

% similar_mat_witD2(3)
thf(fact_177_similar__mat__witD2_I3_J,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( A
          = ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ P2 @ B ) @ Q ) ) ) ) ).

% similar_mat_witD2(3)
thf(fact_178_vec__space_Orow__space_Ocong,axiom,
    vS_vec3284807721666986142omplex = vS_vec3284807721666986142omplex ).

% vec_space.row_space.cong
thf(fact_179_similar__mat__wit__sym,axiom,
    ! [A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
     => ( simila5774310414453981135omplex @ B @ A @ Q @ P2 ) ) ).

% similar_mat_wit_sym
thf(fact_180_adjoint__dim,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( member_mat_complex @ ( schur_5982229384592763574omplex @ A ) @ ( carrier_mat_complex @ N @ N ) ) ) ).

% adjoint_dim
thf(fact_181_size__neq__size__imp__neq,axiom,
    ! [X: list_complex,Y: list_complex] :
      ( ( ( size_s3451745648224563538omplex @ X )
       != ( size_s3451745648224563538omplex @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_182_size__neq__size__imp__neq,axiom,
    ! [X: list_a,Y: list_a] :
      ( ( ( size_size_list_a @ X )
       != ( size_size_list_a @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_183_size__neq__size__imp__neq,axiom,
    ! [X: list_mat_complex,Y: list_mat_complex] :
      ( ( ( size_s5969786470865220249omplex @ X )
       != ( size_s5969786470865220249omplex @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_184_size__neq__size__imp__neq,axiom,
    ! [X: list_mat_a,Y: list_mat_a] :
      ( ( ( size_size_list_mat_a @ X )
       != ( size_size_list_mat_a @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_185_adjoint__dim_H,axiom,
    ! [A: mat_complex,N: nat,M: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( member_mat_complex @ ( schur_5982229384592763574omplex @ A ) @ ( carrier_mat_complex @ M @ N ) ) ) ).

% adjoint_dim'
thf(fact_186_set__times__rearranges_I2_J,axiom,
    ! [A2: set_complex,B2: set_complex,C2: set_set_complex] :
      ( ( set_el158709831744343061omplex @ A2 @ ( set_el158709831744343061omplex @ B2 @ C2 ) )
      = ( set_el158709831744343061omplex @ ( times_6048082448287401577omplex @ A2 @ B2 ) @ C2 ) ) ).

% set_times_rearranges(2)
thf(fact_187_set__times__rearranges_I2_J,axiom,
    ! [A2: set_nat,B2: set_nat,C2: set_set_nat] :
      ( ( set_el3528970498207131191et_nat @ A2 @ ( set_el3528970498207131191et_nat @ B2 @ C2 ) )
      = ( set_el3528970498207131191et_nat @ ( times_times_set_nat @ A2 @ B2 ) @ C2 ) ) ).

% set_times_rearranges(2)
thf(fact_188_set__times__rearranges_I2_J,axiom,
    ! [A2: a,B2: a,C2: set_a] :
      ( ( set_elt_set_times_a @ A2 @ ( set_elt_set_times_a @ B2 @ C2 ) )
      = ( set_elt_set_times_a @ ( times_times_a @ A2 @ B2 ) @ C2 ) ) ).

% set_times_rearranges(2)
thf(fact_189_set__times__rearranges_I2_J,axiom,
    ! [A2: nat,B2: nat,C2: set_nat] :
      ( ( set_el2933305810450955905es_nat @ A2 @ ( set_el2933305810450955905es_nat @ B2 @ C2 ) )
      = ( set_el2933305810450955905es_nat @ ( times_times_nat @ A2 @ B2 ) @ C2 ) ) ).

% set_times_rearranges(2)
thf(fact_190_set__times__rearranges_I2_J,axiom,
    ! [A2: complex,B2: complex,C2: set_complex] :
      ( ( set_el8005228190238886239omplex @ A2 @ ( set_el8005228190238886239omplex @ B2 @ C2 ) )
      = ( set_el8005228190238886239omplex @ ( times_times_complex @ A2 @ B2 ) @ C2 ) ) ).

% set_times_rearranges(2)
thf(fact_191_set__times__intro2,axiom,
    ! [B2: mat_nat,C2: set_mat_nat,A2: mat_nat] :
      ( ( member_mat_nat @ B2 @ C2 )
     => ( member_mat_nat @ ( times_times_mat_nat @ A2 @ B2 ) @ ( set_el1310594772197002200at_nat @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_192_set__times__intro2,axiom,
    ! [B2: set_complex,C2: set_set_complex,A2: set_complex] :
      ( ( member_set_complex @ B2 @ C2 )
     => ( member_set_complex @ ( times_6048082448287401577omplex @ A2 @ B2 ) @ ( set_el158709831744343061omplex @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_193_set__times__intro2,axiom,
    ! [B2: set_mat_complex,C2: set_set_mat_complex,A2: set_mat_complex] :
      ( ( member3612512168372279472omplex @ B2 @ C2 )
     => ( member3612512168372279472omplex @ ( times_6731331324747250370omplex @ A2 @ B2 ) @ ( set_el2325834261644174870omplex @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_194_set__times__intro2,axiom,
    ! [B2: set_mat_a,C2: set_set_mat_a,A2: set_mat_a] :
      ( ( member_set_mat_a @ B2 @ C2 )
     => ( member_set_mat_a @ ( times_1230744552615602198_mat_a @ A2 @ B2 ) @ ( set_el7210227519270355394_mat_a @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_195_set__times__intro2,axiom,
    ! [B2: set_nat,C2: set_set_nat,A2: set_nat] :
      ( ( member_set_nat @ B2 @ C2 )
     => ( member_set_nat @ ( times_times_set_nat @ A2 @ B2 ) @ ( set_el3528970498207131191et_nat @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_196_set__times__intro2,axiom,
    ! [B2: a,C2: set_a,A2: a] :
      ( ( member_a @ B2 @ C2 )
     => ( member_a @ ( times_times_a @ A2 @ B2 ) @ ( set_elt_set_times_a @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_197_set__times__intro2,axiom,
    ! [B2: mat_a,C2: set_mat_a,A2: mat_a] :
      ( ( member_mat_a @ B2 @ C2 )
     => ( member_mat_a @ ( times_times_mat_a @ A2 @ B2 ) @ ( set_el1062546952344711308_mat_a @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_198_set__times__intro2,axiom,
    ! [B2: nat,C2: set_nat,A2: nat] :
      ( ( member_nat @ B2 @ C2 )
     => ( member_nat @ ( times_times_nat @ A2 @ B2 ) @ ( set_el2933305810450955905es_nat @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_199_set__times__intro2,axiom,
    ! [B2: mat_complex,C2: set_mat_complex,A2: mat_complex] :
      ( ( member_mat_complex @ B2 @ C2 )
     => ( member_mat_complex @ ( times_8009071140041733218omplex @ A2 @ B2 ) @ ( set_el176066062795894710omplex @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_200_set__times__intro2,axiom,
    ! [B2: complex,C2: set_complex,A2: complex] :
      ( ( member_complex @ B2 @ C2 )
     => ( member_complex @ ( times_times_complex @ A2 @ B2 ) @ ( set_el8005228190238886239omplex @ A2 @ C2 ) ) ) ).

% set_times_intro2
thf(fact_201_similar__mat__witD2_I4_J,axiom,
    ! [A: mat_nat,N: nat,M: nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ M ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ N ) ) ) ) ).

% similar_mat_witD2(4)
thf(fact_202_similar__mat__witD2_I4_J,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) ) ) ) ).

% similar_mat_witD2(4)
thf(fact_203_similar__mat__witD2_I5_J,axiom,
    ! [A: mat_nat,N: nat,M: nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ M ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( member_mat_nat @ B @ ( carrier_mat_nat @ N @ N ) ) ) ) ).

% similar_mat_witD2(5)
thf(fact_204_similar__mat__witD2_I5_J,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) ) ) ) ).

% similar_mat_witD2(5)
thf(fact_205_similar__mat__witD2_I6_J,axiom,
    ! [A: mat_nat,N: nat,M: nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ M ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( member_mat_nat @ P2 @ ( carrier_mat_nat @ N @ N ) ) ) ) ).

% similar_mat_witD2(6)
thf(fact_206_similar__mat__witD2_I6_J,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) ) ) ) ).

% similar_mat_witD2(6)
thf(fact_207_similar__mat__witD2_I7_J,axiom,
    ! [A: mat_nat,N: nat,M: nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ M ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( member_mat_nat @ Q @ ( carrier_mat_nat @ N @ N ) ) ) ) ).

% similar_mat_witD2(7)
thf(fact_208_similar__mat__witD2_I7_J,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( member_mat_complex @ Q @ ( carrier_mat_complex @ N @ N ) ) ) ) ).

% similar_mat_witD2(7)
thf(fact_209_similar__mat__wit__trans,axiom,
    ! [A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex,C2: mat_complex,P3: mat_complex,Q2: mat_complex] :
      ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
     => ( ( simila5774310414453981135omplex @ B @ C2 @ P3 @ Q2 )
       => ( simila5774310414453981135omplex @ A @ C2 @ ( times_8009071140041733218omplex @ P2 @ P3 ) @ ( times_8009071140041733218omplex @ Q2 @ Q ) ) ) ) ).

% similar_mat_wit_trans
thf(fact_210_adjoint__mult,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex,L: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ M @ L ) )
       => ( ( schur_5982229384592763574omplex @ ( times_8009071140041733218omplex @ A @ B ) )
          = ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ B ) @ ( schur_5982229384592763574omplex @ A ) ) ) ) ) ).

% adjoint_mult
thf(fact_211_set__times__rearranges_I4_J,axiom,
    ! [C2: set_complex,A2: complex,D2: set_complex] :
      ( ( times_6048082448287401577omplex @ C2 @ ( set_el8005228190238886239omplex @ A2 @ D2 ) )
      = ( set_el8005228190238886239omplex @ A2 @ ( times_6048082448287401577omplex @ C2 @ D2 ) ) ) ).

% set_times_rearranges(4)
thf(fact_212_set__times__rearranges_I4_J,axiom,
    ! [C2: set_nat,A2: nat,D2: set_nat] :
      ( ( times_times_set_nat @ C2 @ ( set_el2933305810450955905es_nat @ A2 @ D2 ) )
      = ( set_el2933305810450955905es_nat @ A2 @ ( times_times_set_nat @ C2 @ D2 ) ) ) ).

% set_times_rearranges(4)
thf(fact_213_set__times__rearranges_I3_J,axiom,
    ! [A2: complex,B: set_complex,C2: set_complex] :
      ( ( times_6048082448287401577omplex @ ( set_el8005228190238886239omplex @ A2 @ B ) @ C2 )
      = ( set_el8005228190238886239omplex @ A2 @ ( times_6048082448287401577omplex @ B @ C2 ) ) ) ).

% set_times_rearranges(3)
thf(fact_214_set__times__rearranges_I3_J,axiom,
    ! [A2: nat,B: set_nat,C2: set_nat] :
      ( ( times_times_set_nat @ ( set_el2933305810450955905es_nat @ A2 @ B ) @ C2 )
      = ( set_el2933305810450955905es_nat @ A2 @ ( times_times_set_nat @ B @ C2 ) ) ) ).

% set_times_rearranges(3)
thf(fact_215_similar__mat__witD_I7_J,axiom,
    ! [N: nat,A: mat_nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( N
        = ( dim_row_nat @ A ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( member_mat_nat @ Q @ ( carrier_mat_nat @ N @ N ) ) ) ) ).

% similar_mat_witD(7)
thf(fact_216_similar__mat__witD_I7_J,axiom,
    ! [N: nat,A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( N
        = ( dim_row_complex @ A ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( member_mat_complex @ Q @ ( carrier_mat_complex @ N @ N ) ) ) ) ).

% similar_mat_witD(7)
thf(fact_217_similar__mat__witD_I6_J,axiom,
    ! [N: nat,A: mat_nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( N
        = ( dim_row_nat @ A ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( member_mat_nat @ P2 @ ( carrier_mat_nat @ N @ N ) ) ) ) ).

% similar_mat_witD(6)
thf(fact_218_similar__mat__witD_I6_J,axiom,
    ! [N: nat,A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( N
        = ( dim_row_complex @ A ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) ) ) ) ).

% similar_mat_witD(6)
thf(fact_219_similar__mat__witD_I5_J,axiom,
    ! [N: nat,A: mat_nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( N
        = ( dim_row_nat @ A ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( member_mat_nat @ B @ ( carrier_mat_nat @ N @ N ) ) ) ) ).

% similar_mat_witD(5)
thf(fact_220_similar__mat__witD_I5_J,axiom,
    ! [N: nat,A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( N
        = ( dim_row_complex @ A ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) ) ) ) ).

% similar_mat_witD(5)
thf(fact_221_similar__mat__witD_I4_J,axiom,
    ! [N: nat,A: mat_nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( N
        = ( dim_row_nat @ A ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ N ) ) ) ) ).

% similar_mat_witD(4)
thf(fact_222_similar__mat__witD_I4_J,axiom,
    ! [N: nat,A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( N
        = ( dim_row_complex @ A ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) ) ) ) ).

% similar_mat_witD(4)
thf(fact_223_similar__mat__wit__dim__row,axiom,
    ! [A: mat_nat,B: mat_nat,Q: mat_nat,R: mat_nat] :
      ( ( similar_mat_wit_nat @ A @ B @ Q @ R )
     => ( ( dim_row_nat @ B )
        = ( dim_row_nat @ A ) ) ) ).

% similar_mat_wit_dim_row
thf(fact_224_similar__mat__wit__dim__row,axiom,
    ! [A: mat_complex,B: mat_complex,Q: mat_complex,R: mat_complex] :
      ( ( simila5774310414453981135omplex @ A @ B @ Q @ R )
     => ( ( dim_row_complex @ B )
        = ( dim_row_complex @ A ) ) ) ).

% similar_mat_wit_dim_row
thf(fact_225_length__induct,axiom,
    ! [P2: list_complex > $o,Xs: list_complex] :
      ( ! [Xs2: list_complex] :
          ( ! [Ys: list_complex] :
              ( ( ord_less_nat @ ( size_s3451745648224563538omplex @ Ys ) @ ( size_s3451745648224563538omplex @ Xs2 ) )
             => ( P2 @ Ys ) )
         => ( P2 @ Xs2 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_226_length__induct,axiom,
    ! [P2: list_a > $o,Xs: list_a] :
      ( ! [Xs2: list_a] :
          ( ! [Ys: list_a] :
              ( ( ord_less_nat @ ( size_size_list_a @ Ys ) @ ( size_size_list_a @ Xs2 ) )
             => ( P2 @ Ys ) )
         => ( P2 @ Xs2 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_227_length__induct,axiom,
    ! [P2: list_mat_complex > $o,Xs: list_mat_complex] :
      ( ! [Xs2: list_mat_complex] :
          ( ! [Ys: list_mat_complex] :
              ( ( ord_less_nat @ ( size_s5969786470865220249omplex @ Ys ) @ ( size_s5969786470865220249omplex @ Xs2 ) )
             => ( P2 @ Ys ) )
         => ( P2 @ Xs2 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_228_length__induct,axiom,
    ! [P2: list_mat_a > $o,Xs: list_mat_a] :
      ( ! [Xs2: list_mat_a] :
          ( ! [Ys: list_mat_a] :
              ( ( ord_less_nat @ ( size_size_list_mat_a @ Ys ) @ ( size_size_list_mat_a @ Xs2 ) )
             => ( P2 @ Ys ) )
         => ( P2 @ Xs2 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_229_unitary__elim,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,P2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( comple6660659447773130958omplex @ P2 )
           => ( ( ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ P2 @ A ) @ ( schur_5982229384592763574omplex @ P2 ) )
                = ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ P2 @ B ) @ ( schur_5982229384592763574omplex @ P2 ) ) )
             => ( A = B ) ) ) ) ) ) ).

% unitary_elim
thf(fact_230_mult__adjoint__hermitian,axiom,
    ! [A: mat_complex,N: nat,M: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( comple8306762464034002205omplex @ ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ A ) @ A ) ) ) ).

% mult_adjoint_hermitian
thf(fact_231_mat__conj__def,axiom,
    ( spectr5699176650994449695omplex
    = ( ^ [U: mat_complex,V: mat_complex] : ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ U @ V ) @ ( schur_5982229384592763574omplex @ U ) ) ) ) ).

% mat_conj_def
thf(fact_232_mat__conj__adjoint,axiom,
    ! [U2: mat_complex,V2: mat_complex] :
      ( ( spectr5699176650994449695omplex @ ( schur_5982229384592763574omplex @ U2 ) @ V2 )
      = ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ U2 ) @ V2 ) @ U2 ) ) ).

% mat_conj_adjoint
thf(fact_233_unitary__adjoint,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( comple6660659447773130958omplex @ A )
       => ( comple6660659447773130958omplex @ ( schur_5982229384592763574omplex @ A ) ) ) ) ).

% unitary_adjoint
thf(fact_234_mat__conj__smult,axiom,
    ! [A: mat_complex,N: nat,U2: mat_complex,B: mat_complex,X: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ U2 @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
         => ( ( A
              = ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ U2 @ B ) @ ( schur_5982229384592763574omplex @ U2 ) ) )
           => ( ( smult_mat_complex @ X @ A )
              = ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ U2 @ ( smult_mat_complex @ X @ B ) ) @ ( schur_5982229384592763574omplex @ U2 ) ) ) ) ) ) ) ).

% mat_conj_smult
thf(fact_235_step__3__similar,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( similar_mat_complex @ ( jordan4501759426295633263omplex @ A ) @ A ) ) ).

% step_3_similar
thf(fact_236_similar__mat__trans,axiom,
    ! [A: mat_complex,B: mat_complex,C2: mat_complex] :
      ( ( similar_mat_complex @ A @ B )
     => ( ( similar_mat_complex @ B @ C2 )
       => ( similar_mat_complex @ A @ C2 ) ) ) ).

% similar_mat_trans
thf(fact_237_similar__mat__smult,axiom,
    ! [A: mat_complex,B: mat_complex,K: complex] :
      ( ( similar_mat_complex @ A @ B )
     => ( similar_mat_complex @ ( smult_mat_complex @ K @ A ) @ ( smult_mat_complex @ K @ B ) ) ) ).

% similar_mat_smult
thf(fact_238_similar__mat__sym,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( similar_mat_complex @ A @ B )
     => ( similar_mat_complex @ B @ A ) ) ).

% similar_mat_sym
thf(fact_239_hermitian__mat__conj,axiom,
    ! [A: mat_complex,N: nat,U2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ U2 @ ( carrier_mat_complex @ N @ N ) )
       => ( ( comple8306762464034002205omplex @ A )
         => ( comple8306762464034002205omplex @ ( spectr5699176650994449695omplex @ U2 @ A ) ) ) ) ) ).

% hermitian_mat_conj
thf(fact_240_smult__carrier__mat,axiom,
    ! [A: mat_nat,Nr: nat,Nc: nat,K: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( member_mat_nat @ ( smult_mat_nat @ K @ A ) @ ( carrier_mat_nat @ Nr @ Nc ) ) ) ).

% smult_carrier_mat
thf(fact_241_smult__carrier__mat,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat,K: a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( member_mat_a @ ( smult_mat_a @ K @ A ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% smult_carrier_mat
thf(fact_242_smult__carrier__mat,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,K: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( member_mat_complex @ ( smult_mat_complex @ K @ A ) @ ( carrier_mat_complex @ Nr @ Nc ) ) ) ).

% smult_carrier_mat
thf(fact_243_index__smult__mat_I2_J,axiom,
    ! [A2: nat,A: mat_nat] :
      ( ( dim_row_nat @ ( smult_mat_nat @ A2 @ A ) )
      = ( dim_row_nat @ A ) ) ).

% index_smult_mat(2)
thf(fact_244_index__smult__mat_I2_J,axiom,
    ! [A2: a,A: mat_a] :
      ( ( dim_row_a @ ( smult_mat_a @ A2 @ A ) )
      = ( dim_row_a @ A ) ) ).

% index_smult_mat(2)
thf(fact_245_index__smult__mat_I2_J,axiom,
    ! [A2: complex,A: mat_complex] :
      ( ( dim_row_complex @ ( smult_mat_complex @ A2 @ A ) )
      = ( dim_row_complex @ A ) ) ).

% index_smult_mat(2)
thf(fact_246_similar__mat__wit__smult,axiom,
    ! [A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex,K: complex] :
      ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
     => ( simila5774310414453981135omplex @ ( smult_mat_complex @ K @ A ) @ ( smult_mat_complex @ K @ B ) @ P2 @ Q ) ) ).

% similar_mat_wit_smult
thf(fact_247_similar__mat__refl,axiom,
    ! [A: mat_nat,N: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ N ) )
     => ( similar_mat_nat @ A @ A ) ) ).

% similar_mat_refl
thf(fact_248_similar__mat__refl,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( similar_mat_complex @ A @ A ) ) ).

% similar_mat_refl
thf(fact_249_diagonal__mat__smult,axiom,
    ! [A: mat_complex,X: complex] :
      ( ( diagonal_mat_complex @ A )
     => ( diagonal_mat_complex @ ( smult_mat_complex @ X @ A ) ) ) ).

% diagonal_mat_smult
thf(fact_250_diagonal__mat__smult,axiom,
    ! [A: mat_a,X: a] :
      ( ( diagonal_mat_a @ A )
     => ( diagonal_mat_a @ ( smult_mat_a @ X @ A ) ) ) ).

% diagonal_mat_smult
thf(fact_251_similar__mat__def,axiom,
    ( similar_mat_complex
    = ( ^ [A4: mat_complex,B5: mat_complex] :
        ? [P5: mat_complex,X6: mat_complex] : ( simila5774310414453981135omplex @ A4 @ B5 @ P5 @ X6 ) ) ) ).

% similar_mat_def
thf(fact_252_hermitian__square__hermitian,axiom,
    ! [A: mat_complex] :
      ( ( comple8306762464034002205omplex @ A )
     => ( comple8306762464034002205omplex @ ( times_8009071140041733218omplex @ A @ A ) ) ) ).

% hermitian_square_hermitian
thf(fact_253_hermitian__mat__conj_H,axiom,
    ! [A: mat_complex,N: nat,U2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ U2 @ ( carrier_mat_complex @ N @ N ) )
       => ( ( comple8306762464034002205omplex @ A )
         => ( comple8306762464034002205omplex @ ( spectr5699176650994449695omplex @ ( schur_5982229384592763574omplex @ U2 ) @ A ) ) ) ) ) ).

% hermitian_mat_conj'
thf(fact_254_mat__conj__unit__commute,axiom,
    ! [U2: mat_complex,A: mat_complex,N: nat] :
      ( ( comple6660659447773130958omplex @ U2 )
     => ( ( ( times_8009071140041733218omplex @ U2 @ A )
          = ( times_8009071140041733218omplex @ A @ U2 ) )
       => ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ U2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( spectr5699176650994449695omplex @ U2 @ A )
              = A ) ) ) ) ) ).

% mat_conj_unit_commute
thf(fact_255_mult__smult__assoc__mat,axiom,
    ! [A: mat_nat,Nr: nat,N: nat,B: mat_nat,Nc: nat,K: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ N ) )
     => ( ( member_mat_nat @ B @ ( carrier_mat_nat @ N @ Nc ) )
       => ( ( times_times_mat_nat @ ( smult_mat_nat @ K @ A ) @ B )
          = ( smult_mat_nat @ K @ ( times_times_mat_nat @ A @ B ) ) ) ) ) ).

% mult_smult_assoc_mat
thf(fact_256_mult__smult__assoc__mat,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,B: mat_complex,Nc: nat,K: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ Nc ) )
       => ( ( times_8009071140041733218omplex @ ( smult_mat_complex @ K @ A ) @ B )
          = ( smult_mat_complex @ K @ ( times_8009071140041733218omplex @ A @ B ) ) ) ) ) ).

% mult_smult_assoc_mat
thf(fact_257_mult__smult__distrib,axiom,
    ! [A: mat_nat,Nr: nat,N: nat,B: mat_nat,Nc: nat,K: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ N ) )
     => ( ( member_mat_nat @ B @ ( carrier_mat_nat @ N @ Nc ) )
       => ( ( times_times_mat_nat @ A @ ( smult_mat_nat @ K @ B ) )
          = ( smult_mat_nat @ K @ ( times_times_mat_nat @ A @ B ) ) ) ) ) ).

% mult_smult_distrib
thf(fact_258_mult__smult__distrib,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,B: mat_complex,Nc: nat,K: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ Nc ) )
       => ( ( times_8009071140041733218omplex @ A @ ( smult_mat_complex @ K @ B ) )
          = ( smult_mat_complex @ K @ ( times_8009071140041733218omplex @ A @ B ) ) ) ) ) ).

% mult_smult_distrib
thf(fact_259_hermitian__is__normal,axiom,
    ! [A: mat_complex] :
      ( ( comple8306762464034002205omplex @ A )
     => ( ( times_8009071140041733218omplex @ A @ ( schur_5982229384592763574omplex @ A ) )
        = ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ A ) @ A ) ) ) ).

% hermitian_is_normal
thf(fact_260_unitary__times__unitary,axiom,
    ! [P2: mat_complex,N: nat,Q: mat_complex] :
      ( ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ Q @ ( carrier_mat_complex @ N @ N ) )
       => ( ( comple6660659447773130958omplex @ P2 )
         => ( ( comple6660659447773130958omplex @ Q )
           => ( comple6660659447773130958omplex @ ( times_8009071140041733218omplex @ P2 @ Q ) ) ) ) ) ) ).

% unitary_times_unitary
thf(fact_261_hermitian__square,axiom,
    ! [M4: mat_complex] :
      ( ( comple8306762464034002205omplex @ M4 )
     => ( member_mat_complex @ M4 @ ( carrier_mat_complex @ ( dim_row_complex @ M4 ) @ ( dim_row_complex @ M4 ) ) ) ) ).

% hermitian_square
thf(fact_262_Complex__Matrix_Ounitary__def,axiom,
    ( comple6660659447773130958omplex
    = ( ^ [A4: mat_complex] :
          ( ( member_mat_complex @ A4 @ ( carrier_mat_complex @ ( dim_row_complex @ A4 ) @ ( dim_row_complex @ A4 ) ) )
          & ( inverts_mat_complex @ A4 @ ( schur_5982229384592763574omplex @ A4 ) ) ) ) ) ).

% Complex_Matrix.unitary_def
thf(fact_263_smult__smult__times,axiom,
    ! [A2: set_complex,K: set_complex,A: mat_set_complex] :
      ( ( smult_4557042052056852367omplex @ A2 @ ( smult_4557042052056852367omplex @ K @ A ) )
      = ( smult_4557042052056852367omplex @ ( times_6048082448287401577omplex @ A2 @ K ) @ A ) ) ).

% smult_smult_times
thf(fact_264_smult__smult__times,axiom,
    ! [A2: set_nat,K: set_nat,A: mat_set_nat] :
      ( ( smult_mat_set_nat @ A2 @ ( smult_mat_set_nat @ K @ A ) )
      = ( smult_mat_set_nat @ ( times_times_set_nat @ A2 @ K ) @ A ) ) ).

% smult_smult_times
thf(fact_265_smult__smult__times,axiom,
    ! [A2: a,K: a,A: mat_a] :
      ( ( smult_mat_a @ A2 @ ( smult_mat_a @ K @ A ) )
      = ( smult_mat_a @ ( times_times_a @ A2 @ K ) @ A ) ) ).

% smult_smult_times
thf(fact_266_smult__smult__times,axiom,
    ! [A2: nat,K: nat,A: mat_nat] :
      ( ( smult_mat_nat @ A2 @ ( smult_mat_nat @ K @ A ) )
      = ( smult_mat_nat @ ( times_times_nat @ A2 @ K ) @ A ) ) ).

% smult_smult_times
thf(fact_267_smult__smult__times,axiom,
    ! [A2: complex,K: complex,A: mat_complex] :
      ( ( smult_mat_complex @ A2 @ ( smult_mat_complex @ K @ A ) )
      = ( smult_mat_complex @ ( times_times_complex @ A2 @ K ) @ A ) ) ).

% smult_smult_times
thf(fact_268_unitaryD2,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( comple6660659447773130958omplex @ A )
       => ( inverts_mat_complex @ ( schur_5982229384592763574omplex @ A ) @ A ) ) ) ).

% unitaryD2
thf(fact_269_unitary__is__corthogonal,axiom,
    ! [U2: mat_complex,N: nat] :
      ( ( member_mat_complex @ U2 @ ( carrier_mat_complex @ N @ N ) )
     => ( ( comple6660659447773130958omplex @ U2 )
       => ( schur_549222400177443379omplex @ U2 ) ) ) ).

% unitary_is_corthogonal
thf(fact_270_step__1__similar,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( similar_mat_complex @ ( jordan2017415923357163885omplex @ A ) @ A ) ) ).

% step_1_similar
thf(fact_271_step__2__similar,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( similar_mat_complex @ ( jordan7871273693253786478omplex @ A ) @ A ) ) ).

% step_2_similar
thf(fact_272_trace__smult,axiom,
    ! [A: mat_a,N: nat,C: a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ N @ N ) )
     => ( ( complex_trace_a @ ( smult_mat_a @ C @ A ) )
        = ( times_times_a @ C @ ( complex_trace_a @ A ) ) ) ) ).

% trace_smult
thf(fact_273_trace__smult,axiom,
    ! [A: mat_complex,N: nat,C: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( comple3184165445352484367omplex @ ( smult_mat_complex @ C @ A ) )
        = ( times_times_complex @ C @ ( comple3184165445352484367omplex @ A ) ) ) ) ).

% trace_smult
thf(fact_274_inverts__mat__unique,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( inverts_mat_complex @ A @ B )
           => ( ( inverts_mat_complex @ A @ C2 )
             => ( B = C2 ) ) ) ) ) ) ).

% inverts_mat_unique
thf(fact_275_inverts__mat__symm,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( inverts_mat_complex @ A @ B )
         => ( inverts_mat_complex @ B @ A ) ) ) ) ).

% inverts_mat_symm
thf(fact_276_triangular__to__jnf__steps__dims_I3_J,axiom,
    ! [A: mat_complex] :
      ( ( dim_row_complex @ ( jordan7871273693253786478omplex @ A ) )
      = ( dim_row_complex @ A ) ) ).

% triangular_to_jnf_steps_dims(3)
thf(fact_277_triangular__to__jnf__steps__dims_I1_J,axiom,
    ! [A: mat_complex] :
      ( ( dim_row_complex @ ( jordan2017415923357163885omplex @ A ) )
      = ( dim_row_complex @ A ) ) ).

% triangular_to_jnf_steps_dims(1)
thf(fact_278_trace__comm,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ A @ B ) )
          = ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ B @ A ) ) ) ) ) ).

% trace_comm
thf(fact_279_step__1__2__inv_I3_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( upper_4850907204721561915omplex @ A )
       => ( ( B
            = ( jordan7871273693253786478omplex @ ( jordan2017415923357163885omplex @ A ) ) )
         => ( jordan4650062548456832493omplex @ N @ B ) ) ) ) ).

% step_1_2_inv(3)
thf(fact_280_projector__def,axiom,
    ( linear5633924348262549461omplex
    = ( ^ [M5: mat_complex] :
          ( ( comple8306762464034002205omplex @ M5 )
          & ( ( times_8009071140041733218omplex @ M5 @ M5 )
            = M5 ) ) ) ) ).

% projector_def
thf(fact_281_invertible__mat__def,axiom,
    ( invert2568027935824841882omplex
    = ( ^ [A4: mat_complex] :
          ( ( square_mat_complex @ A4 )
          & ? [B5: mat_complex] :
              ( ( inverts_mat_complex @ A4 @ B5 )
              & ( inverts_mat_complex @ B5 @ A4 ) ) ) ) ) ).

% invertible_mat_def
thf(fact_282_step__1__2__inv_I2_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( upper_4850907204721561915omplex @ A )
       => ( ( B
            = ( jordan7871273693253786478omplex @ ( jordan2017415923357163885omplex @ A ) ) )
         => ( jordan5244935068081719878omplex @ N @ jordan8650160714669549932omplex @ B ) ) ) ) ).

% step_1_2_inv(2)
thf(fact_283_step__1__2__inv_I1_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( upper_4850907204721561915omplex @ A )
       => ( ( B
            = ( jordan7871273693253786478omplex @ ( jordan2017415923357163885omplex @ A ) ) )
         => ( jordan5244935068081719878omplex @ N @ jordan3528196489273997576omplex @ B ) ) ) ) ).

% step_1_2_inv(1)
thf(fact_284_unitary__simps_I1_J,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( comple6660659447773130958omplex @ A )
       => ( ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ A ) @ A )
          = ( one_mat_complex @ N ) ) ) ) ).

% unitary_simps(1)
thf(fact_285_unitary__simps_I2_J,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( comple6660659447773130958omplex @ A )
       => ( ( times_8009071140041733218omplex @ A @ ( schur_5982229384592763574omplex @ A ) )
          = ( one_mat_complex @ N ) ) ) ) ).

% unitary_simps(2)
thf(fact_286_projector__square__eq,axiom,
    ! [M4: mat_complex] :
      ( ( linear5633924348262549461omplex @ M4 )
     => ( ( times_8009071140041733218omplex @ M4 @ M4 )
        = M4 ) ) ).

% projector_square_eq
thf(fact_287_one__carrier__mat,axiom,
    ! [N: nat] : ( member_mat_nat @ ( one_mat_nat @ N ) @ ( carrier_mat_nat @ N @ N ) ) ).

% one_carrier_mat
thf(fact_288_one__carrier__mat,axiom,
    ! [N: nat] : ( member_mat_complex @ ( one_mat_complex @ N ) @ ( carrier_mat_complex @ N @ N ) ) ).

% one_carrier_mat
thf(fact_289_index__one__mat_I2_J,axiom,
    ! [N: nat] :
      ( ( dim_row_nat @ ( one_mat_nat @ N ) )
      = N ) ).

% index_one_mat(2)
thf(fact_290_index__one__mat_I2_J,axiom,
    ! [N: nat] :
      ( ( dim_row_complex @ ( one_mat_complex @ N ) )
      = N ) ).

% index_one_mat(2)
thf(fact_291_upper__triangular__one,axiom,
    ! [N: nat] : ( upper_4850907204721561915omplex @ ( one_mat_complex @ N ) ) ).

% upper_triangular_one
thf(fact_292_inv__allD,axiom,
    ! [N: nat,P6: mat_complex > nat > nat > $o,A: mat_complex,I2: nat,J2: nat] :
      ( ( jordan5244935068081719878omplex @ N @ P6 @ A )
     => ( ( ord_less_nat @ I2 @ N )
       => ( ( ord_less_nat @ J2 @ N )
         => ( P6 @ A @ I2 @ J2 ) ) ) ) ).

% inv_allD
thf(fact_293_inv__all__def,axiom,
    ( jordan5244935068081719878omplex
    = ( ^ [N3: nat,P: mat_complex > nat > nat > $o,A4: mat_complex] :
        ! [I: nat,J: nat] :
          ( ( ord_less_nat @ I @ N3 )
         => ( ( ord_less_nat @ J @ N3 )
           => ( P @ A4 @ I @ J ) ) ) ) ) ).

% inv_all_def
thf(fact_294_right__mult__one__mat,axiom,
    ! [A: mat_nat,Nr: nat,Nc: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( ( times_times_mat_nat @ A @ ( one_mat_nat @ Nc ) )
        = A ) ) ).

% right_mult_one_mat
thf(fact_295_right__mult__one__mat,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( times_8009071140041733218omplex @ A @ ( one_mat_complex @ Nc ) )
        = A ) ) ).

% right_mult_one_mat
thf(fact_296_left__mult__one__mat,axiom,
    ! [A: mat_nat,Nr: nat,Nc: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( ( times_times_mat_nat @ ( one_mat_nat @ Nr ) @ A )
        = A ) ) ).

% left_mult_one_mat
thf(fact_297_left__mult__one__mat,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( times_8009071140041733218omplex @ ( one_mat_complex @ Nr ) @ A )
        = A ) ) ).

% left_mult_one_mat
thf(fact_298_left__mult__one__mat_H,axiom,
    ! [A: mat_nat,N: nat] :
      ( ( ( dim_row_nat @ A )
        = N )
     => ( ( times_times_mat_nat @ ( one_mat_nat @ N ) @ A )
        = A ) ) ).

% left_mult_one_mat'
thf(fact_299_left__mult__one__mat_H,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( ( dim_row_complex @ A )
        = N )
     => ( ( times_8009071140041733218omplex @ ( one_mat_complex @ N ) @ A )
        = A ) ) ).

% left_mult_one_mat'
thf(fact_300_similar__mat__wit__refl,axiom,
    ! [A: mat_nat,N: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ N ) )
     => ( similar_mat_wit_nat @ A @ A @ ( one_mat_nat @ N ) @ ( one_mat_nat @ N ) ) ) ).

% similar_mat_wit_refl
thf(fact_301_similar__mat__wit__refl,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( simila5774310414453981135omplex @ A @ A @ ( one_mat_complex @ N ) @ ( one_mat_complex @ N ) ) ) ).

% similar_mat_wit_refl
thf(fact_302_similar__mat__witD2_I2_J,axiom,
    ! [A: mat_nat,N: nat,M: nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ M ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( ( times_times_mat_nat @ Q @ P2 )
          = ( one_mat_nat @ N ) ) ) ) ).

% similar_mat_witD2(2)
thf(fact_303_similar__mat__witD2_I2_J,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( ( times_8009071140041733218omplex @ Q @ P2 )
          = ( one_mat_complex @ N ) ) ) ) ).

% similar_mat_witD2(2)
thf(fact_304_similar__mat__witD2_I1_J,axiom,
    ! [A: mat_nat,N: nat,M: nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ M ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( ( times_times_mat_nat @ P2 @ Q )
          = ( one_mat_nat @ N ) ) ) ) ).

% similar_mat_witD2(1)
thf(fact_305_similar__mat__witD2_I1_J,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( ( times_8009071140041733218omplex @ P2 @ Q )
          = ( one_mat_complex @ N ) ) ) ) ).

% similar_mat_witD2(1)
thf(fact_306_similar__mat__witI,axiom,
    ! [P2: mat_nat,Q: mat_nat,N: nat,A: mat_nat,B: mat_nat] :
      ( ( ( times_times_mat_nat @ P2 @ Q )
        = ( one_mat_nat @ N ) )
     => ( ( ( times_times_mat_nat @ Q @ P2 )
          = ( one_mat_nat @ N ) )
       => ( ( A
            = ( times_times_mat_nat @ ( times_times_mat_nat @ P2 @ B ) @ Q ) )
         => ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ N ) )
           => ( ( member_mat_nat @ B @ ( carrier_mat_nat @ N @ N ) )
             => ( ( member_mat_nat @ P2 @ ( carrier_mat_nat @ N @ N ) )
               => ( ( member_mat_nat @ Q @ ( carrier_mat_nat @ N @ N ) )
                 => ( similar_mat_wit_nat @ A @ B @ P2 @ Q ) ) ) ) ) ) ) ) ).

% similar_mat_witI
thf(fact_307_similar__mat__witI,axiom,
    ! [P2: mat_complex,Q: mat_complex,N: nat,A: mat_complex,B: mat_complex] :
      ( ( ( times_8009071140041733218omplex @ P2 @ Q )
        = ( one_mat_complex @ N ) )
     => ( ( ( times_8009071140041733218omplex @ Q @ P2 )
          = ( one_mat_complex @ N ) )
       => ( ( A
            = ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ P2 @ B ) @ Q ) )
         => ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
           => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
             => ( ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) )
               => ( ( member_mat_complex @ Q @ ( carrier_mat_complex @ N @ N ) )
                 => ( simila5774310414453981135omplex @ A @ B @ P2 @ Q ) ) ) ) ) ) ) ) ).

% similar_mat_witI
thf(fact_308_similar__mat__witD_I1_J,axiom,
    ! [N: nat,A: mat_nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( N
        = ( dim_row_nat @ A ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( ( times_times_mat_nat @ P2 @ Q )
          = ( one_mat_nat @ N ) ) ) ) ).

% similar_mat_witD(1)
thf(fact_309_similar__mat__witD_I1_J,axiom,
    ! [N: nat,A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( N
        = ( dim_row_complex @ A ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( ( times_8009071140041733218omplex @ P2 @ Q )
          = ( one_mat_complex @ N ) ) ) ) ).

% similar_mat_witD(1)
thf(fact_310_similar__mat__witD_I2_J,axiom,
    ! [N: nat,A: mat_nat,B: mat_nat,P2: mat_nat,Q: mat_nat] :
      ( ( N
        = ( dim_row_nat @ A ) )
     => ( ( similar_mat_wit_nat @ A @ B @ P2 @ Q )
       => ( ( times_times_mat_nat @ Q @ P2 )
          = ( one_mat_nat @ N ) ) ) ) ).

% similar_mat_witD(2)
thf(fact_311_similar__mat__witD_I2_J,axiom,
    ! [N: nat,A: mat_complex,B: mat_complex,P2: mat_complex,Q: mat_complex] :
      ( ( N
        = ( dim_row_complex @ A ) )
     => ( ( simila5774310414453981135omplex @ A @ B @ P2 @ Q )
       => ( ( times_8009071140041733218omplex @ Q @ P2 )
          = ( one_mat_complex @ N ) ) ) ) ).

% similar_mat_witD(2)
thf(fact_312_inverts__mat__def,axiom,
    ( inverts_mat_nat
    = ( ^ [A4: mat_nat,B5: mat_nat] :
          ( ( times_times_mat_nat @ A4 @ B5 )
          = ( one_mat_nat @ ( dim_row_nat @ A4 ) ) ) ) ) ).

% inverts_mat_def
thf(fact_313_inverts__mat__def,axiom,
    ( inverts_mat_complex
    = ( ^ [A4: mat_complex,B5: mat_complex] :
          ( ( times_8009071140041733218omplex @ A4 @ B5 )
          = ( one_mat_complex @ ( dim_row_complex @ A4 ) ) ) ) ) ).

% inverts_mat_def
thf(fact_314_mat__mult__left__right__inverse,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( ( times_8009071140041733218omplex @ A @ B )
            = ( one_mat_complex @ N ) )
         => ( ( times_8009071140041733218omplex @ B @ A )
            = ( one_mat_complex @ N ) ) ) ) ) ).

% mat_mult_left_right_inverse
thf(fact_315_ev__blocks__def,axiom,
    jordan4650062548456832493omplex = jordan4637981584770492064omplex ).

% ev_blocks_def
thf(fact_316_gauss__jordan__single_I4_J,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,C2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( ( gauss_4244865067341541924omplex @ A )
          = C2 )
       => ? [P7: mat_complex,Q3: mat_complex] :
            ( ( C2
              = ( times_8009071140041733218omplex @ P7 @ A ) )
            & ( member_mat_complex @ P7 @ ( carrier_mat_complex @ Nr @ Nr ) )
            & ( member_mat_complex @ Q3 @ ( carrier_mat_complex @ Nr @ Nr ) )
            & ( ( times_8009071140041733218omplex @ P7 @ Q3 )
              = ( one_mat_complex @ Nr ) )
            & ( ( times_8009071140041733218omplex @ Q3 @ P7 )
              = ( one_mat_complex @ Nr ) ) ) ) ) ).

% gauss_jordan_single(4)
thf(fact_317_jb__imp__diff__ev,axiom,
    ! [A: mat_complex,I2: nat,J2: nat] :
      ( ( jordan4971026570492200526omplex @ A @ I2 @ J2 )
     => ( jordan8650160714669549932omplex @ A @ I2 @ J2 ) ) ).

% jb_imp_diff_ev
thf(fact_318_swap__cols__rows__similar,axiom,
    ! [A: mat_nat,N: nat,K: nat,L: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ N ) )
     => ( ( ord_less_nat @ K @ N )
       => ( ( ord_less_nat @ L @ N )
         => ( similar_mat_nat @ ( column141131285749525182ws_nat @ K @ L @ A ) @ A ) ) ) ) ).

% swap_cols_rows_similar
thf(fact_319_swap__cols__rows__similar,axiom,
    ! [A: mat_complex,N: nat,K: nat,L: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( ord_less_nat @ K @ N )
       => ( ( ord_less_nat @ L @ N )
         => ( similar_mat_complex @ ( column7161609239796038556omplex @ K @ L @ A ) @ A ) ) ) ) ).

% swap_cols_rows_similar
thf(fact_320_jb__imp__uppert,axiom,
    ! [A: mat_complex,I2: nat,J2: nat] :
      ( ( jordan4971026570492200526omplex @ A @ I2 @ J2 )
     => ( jordan3528196489273997576omplex @ A @ I2 @ J2 ) ) ).

% jb_imp_uppert
thf(fact_321_partition__jb_I1_J,axiom,
    ! [A: mat_complex,N: nat,Bs: list_mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( jordan5244935068081719878omplex @ N @ jordan3528196489273997576omplex @ A )
       => ( ( jordan5244935068081719878omplex @ N @ jordan8650160714669549932omplex @ A )
         => ( ( jordan4650062548456832493omplex @ N @ A )
           => ( ( ( jordan5009815537632354121omplex @ A @ nil_mat_complex )
                = Bs )
             => ( A
                = ( diag_b9145358668110806138omplex @ Bs ) ) ) ) ) ) ) ).

% partition_jb(1)
thf(fact_322_hermitian__decomp__diag__mat,axiom,
    ! [A: mat_complex,B: mat_complex,U2: mat_complex] :
      ( ( projec5943904436471448624omplex @ A @ B @ U2 )
     => ( diagonal_mat_complex @ B ) ) ).

% hermitian_decomp_diag_mat
thf(fact_323_swap__cols__rows__carrier_I3_J,axiom,
    ! [A: mat_nat,N: nat,K: nat,L: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ N ) )
     => ( member_mat_nat @ ( column141131285749525182ws_nat @ K @ L @ A ) @ ( carrier_mat_nat @ N @ N ) ) ) ).

% swap_cols_rows_carrier(3)
thf(fact_324_swap__cols__rows__carrier_I3_J,axiom,
    ! [A: mat_a,N: nat,K: nat,L: nat] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ N @ N ) )
     => ( member_mat_a @ ( column5129559316938501008rows_a @ K @ L @ A ) @ ( carrier_mat_a @ N @ N ) ) ) ).

% swap_cols_rows_carrier(3)
thf(fact_325_swap__cols__rows__carrier_I3_J,axiom,
    ! [A: mat_complex,N: nat,K: nat,L: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( member_mat_complex @ ( column7161609239796038556omplex @ K @ L @ A ) @ ( carrier_mat_complex @ N @ N ) ) ) ).

% swap_cols_rows_carrier(3)
thf(fact_326_swap__cols__rows__carrier_I1_J,axiom,
    ! [K: nat,L: nat,A: mat_nat] :
      ( ( dim_row_nat @ ( column141131285749525182ws_nat @ K @ L @ A ) )
      = ( dim_row_nat @ A ) ) ).

% swap_cols_rows_carrier(1)
thf(fact_327_swap__cols__rows__carrier_I1_J,axiom,
    ! [K: nat,L: nat,A: mat_a] :
      ( ( dim_row_a @ ( column5129559316938501008rows_a @ K @ L @ A ) )
      = ( dim_row_a @ A ) ) ).

% swap_cols_rows_carrier(1)
thf(fact_328_swap__cols__rows__carrier_I1_J,axiom,
    ! [K: nat,L: nat,A: mat_complex] :
      ( ( dim_row_complex @ ( column7161609239796038556omplex @ K @ L @ A ) )
      = ( dim_row_complex @ A ) ) ).

% swap_cols_rows_carrier(1)
thf(fact_329_gauss__jordan__single_I2_J,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,C2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( ( gauss_4244865067341541924omplex @ A )
          = C2 )
       => ( member_mat_complex @ C2 @ ( carrier_mat_complex @ Nr @ Nc ) ) ) ) ).

% gauss_jordan_single(2)
thf(fact_330_partition__jb_I2_J,axiom,
    ! [A: mat_complex,N: nat,Bs: list_mat_complex,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( jordan5244935068081719878omplex @ N @ jordan3528196489273997576omplex @ A )
       => ( ( jordan5244935068081719878omplex @ N @ jordan8650160714669549932omplex @ A )
         => ( ( jordan4650062548456832493omplex @ N @ A )
           => ( ( ( jordan5009815537632354121omplex @ A @ nil_mat_complex )
                = Bs )
             => ( ( member_mat_complex @ B @ ( set_mat_complex2 @ Bs ) )
               => ( ( jordan5032732407113867375omplex @ jordan3528196489273997576omplex @ B )
                  & ( jordan8042990603089931364omplex @ ( dim_col_complex @ B ) @ B )
                  & ( ( dim_row_complex @ B )
                    = ( dim_col_complex @ B ) ) ) ) ) ) ) ) ) ).

% partition_jb(2)
thf(fact_331_add__col__sub__row__similar,axiom,
    ! [A: mat_complex,N: nat,K: nat,L: nat,A2: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( ord_less_nat @ K @ N )
       => ( ( ord_less_nat @ L @ N )
         => ( ( K != L )
           => ( similar_mat_complex @ ( column6029646570091773654omplex @ A2 @ K @ L @ A ) @ A ) ) ) ) ) ).

% add_col_sub_row_similar
thf(fact_332_uppert__to__jb,axiom,
    ! [N: nat,A: mat_complex] :
      ( ( jordan5244935068081719878omplex @ N @ jordan3528196489273997576omplex @ A )
     => ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
       => ( jordan5475473882837061487omplex @ N @ jordan4971026570492200526omplex @ A @ one_one_nat ) ) ) ).

% uppert_to_jb
thf(fact_333_swaprows__mat__inv,axiom,
    ! [K: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ K @ N )
     => ( ( ord_less_nat @ L @ N )
       => ( ( times_8009071140041733218omplex @ ( gauss_8970452565587180529omplex @ N @ K @ L ) @ ( gauss_8970452565587180529omplex @ N @ K @ L ) )
          = ( one_mat_complex @ N ) ) ) ) ).

% swaprows_mat_inv
thf(fact_334_gauss__jordan__single_I3_J,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,C2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( ( gauss_4244865067341541924omplex @ A )
          = C2 )
       => ( gauss_194721375535881179omplex @ C2 ) ) ) ).

% gauss_jordan_single(3)
thf(fact_335_length__greater__0__conv,axiom,
    ! [Xs: list_complex] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs ) )
      = ( Xs != nil_complex ) ) ).

% length_greater_0_conv
thf(fact_336_length__greater__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_a @ Xs ) )
      = ( Xs != nil_a ) ) ).

% length_greater_0_conv
thf(fact_337_length__greater__0__conv,axiom,
    ! [Xs: list_mat_complex] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_s5969786470865220249omplex @ Xs ) )
      = ( Xs != nil_mat_complex ) ) ).

% length_greater_0_conv
thf(fact_338_length__greater__0__conv,axiom,
    ! [Xs: list_mat_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_mat_a @ Xs ) )
      = ( Xs != nil_mat_a ) ) ).

% length_greater_0_conv
thf(fact_339_hermitian__decomp__dim__carrier,axiom,
    ! [A: mat_complex,B: mat_complex,U2: mat_complex] :
      ( ( projec5943904436471448624omplex @ A @ B @ U2 )
     => ( member_mat_complex @ B @ ( carrier_mat_complex @ ( dim_row_complex @ A ) @ ( dim_col_complex @ A ) ) ) ) ).

% hermitian_decomp_dim_carrier
thf(fact_340_verit__eq__simplify_I7_J,axiom,
    zero_zero_nat != one_one_nat ).

% verit_eq_simplify(7)
thf(fact_341_verit__eq__simplify_I7_J,axiom,
    zero_zero_complex != one_one_complex ).

% verit_eq_simplify(7)
thf(fact_342_verit__comp__simplify_I28_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% verit_comp_simplify(28)
thf(fact_343_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_344_less__numeral__extra_I2_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% less_numeral_extra(2)
thf(fact_345_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_346_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_347_zero__reorient,axiom,
    ! [X: complex] :
      ( ( zero_zero_complex = X )
      = ( X = zero_zero_complex ) ) ).

% zero_reorient
thf(fact_348_one__reorient,axiom,
    ! [X: complex] :
      ( ( one_one_complex = X )
      = ( X = one_one_complex ) ) ).

% one_reorient
thf(fact_349_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_350_mult__cancel__left1,axiom,
    ! [C: complex,B2: complex] :
      ( ( C
        = ( times_times_complex @ C @ B2 ) )
      = ( ( C = zero_zero_complex )
        | ( B2 = one_one_complex ) ) ) ).

% mult_cancel_left1
thf(fact_351_mult__cancel__left2,axiom,
    ! [C: complex,A2: complex] :
      ( ( ( times_times_complex @ C @ A2 )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A2 = one_one_complex ) ) ) ).

% mult_cancel_left2
thf(fact_352_mult__cancel__right1,axiom,
    ! [C: complex,B2: complex] :
      ( ( C
        = ( times_times_complex @ B2 @ C ) )
      = ( ( C = zero_zero_complex )
        | ( B2 = one_one_complex ) ) ) ).

% mult_cancel_right1
thf(fact_353_mult__cancel__right2,axiom,
    ! [A2: complex,C: complex] :
      ( ( ( times_times_complex @ A2 @ C )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A2 = one_one_complex ) ) ) ).

% mult_cancel_right2
thf(fact_354_class__field_Ozero__not__one,axiom,
    zero_zero_complex != one_one_complex ).

% class_field.zero_not_one
thf(fact_355_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_356_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_357_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_358_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_359_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_360_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_361_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_362_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_363_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_364_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_365_length__pos__if__in__set,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat @ X @ ( set_nat2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_366_length__pos__if__in__set,axiom,
    ! [X: mat_nat,Xs: list_mat_nat] :
      ( ( member_mat_nat @ X @ ( set_mat_nat2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s66138613738048955at_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_367_length__pos__if__in__set,axiom,
    ! [X: complex,Xs: list_complex] :
      ( ( member_complex @ X @ ( set_complex2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_368_length__pos__if__in__set,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_a @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_369_length__pos__if__in__set,axiom,
    ! [X: mat_a,Xs: list_mat_a] :
      ( ( member_mat_a @ X @ ( set_mat_a2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_mat_a @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_370_length__pos__if__in__set,axiom,
    ! [X: mat_complex,Xs: list_mat_complex] :
      ( ( member_mat_complex @ X @ ( set_mat_complex2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s5969786470865220249omplex @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_371_carrier__matD_I2_J,axiom,
    ! [A: mat_nat,Nr: nat,Nc: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( ( dim_col_nat @ A )
        = Nc ) ) ).

% carrier_matD(2)
thf(fact_372_carrier__matD_I2_J,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( dim_col_a @ A )
        = Nc ) ) ).

% carrier_matD(2)
thf(fact_373_carrier__matD_I2_J,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( dim_col_complex @ A )
        = Nc ) ) ).

% carrier_matD(2)
thf(fact_374_index__mult__mat_I3_J,axiom,
    ! [A: mat_nat,B: mat_nat] :
      ( ( dim_col_nat @ ( times_times_mat_nat @ A @ B ) )
      = ( dim_col_nat @ B ) ) ).

% index_mult_mat(3)
thf(fact_375_index__mult__mat_I3_J,axiom,
    ! [A: mat_a,B: mat_a] :
      ( ( dim_col_a @ ( times_times_mat_a @ A @ B ) )
      = ( dim_col_a @ B ) ) ).

% index_mult_mat(3)
thf(fact_376_index__mult__mat_I3_J,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( dim_col_complex @ ( times_8009071140041733218omplex @ A @ B ) )
      = ( dim_col_complex @ B ) ) ).

% index_mult_mat(3)
thf(fact_377_index__one__mat_I3_J,axiom,
    ! [N: nat] :
      ( ( dim_col_nat @ ( one_mat_nat @ N ) )
      = N ) ).

% index_one_mat(3)
thf(fact_378_index__one__mat_I3_J,axiom,
    ! [N: nat] :
      ( ( dim_col_complex @ ( one_mat_complex @ N ) )
      = N ) ).

% index_one_mat(3)
thf(fact_379_index__smult__mat_I3_J,axiom,
    ! [A2: a,A: mat_a] :
      ( ( dim_col_a @ ( smult_mat_a @ A2 @ A ) )
      = ( dim_col_a @ A ) ) ).

% index_smult_mat(3)
thf(fact_380_index__smult__mat_I3_J,axiom,
    ! [A2: nat,A: mat_nat] :
      ( ( dim_col_nat @ ( smult_mat_nat @ A2 @ A ) )
      = ( dim_col_nat @ A ) ) ).

% index_smult_mat(3)
thf(fact_381_index__smult__mat_I3_J,axiom,
    ! [A2: complex,A: mat_complex] :
      ( ( dim_col_complex @ ( smult_mat_complex @ A2 @ A ) )
      = ( dim_col_complex @ A ) ) ).

% index_smult_mat(3)
thf(fact_382_mult__1,axiom,
    ! [A2: set_complex] :
      ( ( times_6048082448287401577omplex @ one_one_set_complex @ A2 )
      = A2 ) ).

% mult_1
thf(fact_383_mult__1,axiom,
    ! [A2: set_nat] :
      ( ( times_times_set_nat @ one_one_set_nat @ A2 )
      = A2 ) ).

% mult_1
thf(fact_384_mult__1,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ one_one_nat @ A2 )
      = A2 ) ).

% mult_1
thf(fact_385_mult__1,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ one_one_complex @ A2 )
      = A2 ) ).

% mult_1
thf(fact_386_vector__space__over__itself_Oscale__one,axiom,
    ! [X: complex] :
      ( ( times_times_complex @ one_one_complex @ X )
      = X ) ).

% vector_space_over_itself.scale_one
thf(fact_387_mult_Ocomm__neutral,axiom,
    ! [A2: set_complex] :
      ( ( times_6048082448287401577omplex @ A2 @ one_one_set_complex )
      = A2 ) ).

% mult.comm_neutral
thf(fact_388_mult_Ocomm__neutral,axiom,
    ! [A2: set_nat] :
      ( ( times_times_set_nat @ A2 @ one_one_set_nat )
      = A2 ) ).

% mult.comm_neutral
thf(fact_389_mult_Ocomm__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ one_one_nat )
      = A2 ) ).

% mult.comm_neutral
thf(fact_390_mult_Ocomm__neutral,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ A2 @ one_one_complex )
      = A2 ) ).

% mult.comm_neutral
thf(fact_391_mult_Oright__neutral,axiom,
    ! [A2: set_complex] :
      ( ( times_6048082448287401577omplex @ A2 @ one_one_set_complex )
      = A2 ) ).

% mult.right_neutral
thf(fact_392_mult_Oright__neutral,axiom,
    ! [A2: set_nat] :
      ( ( times_times_set_nat @ A2 @ one_one_set_nat )
      = A2 ) ).

% mult.right_neutral
thf(fact_393_mult_Oright__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ one_one_nat )
      = A2 ) ).

% mult.right_neutral
thf(fact_394_mult_Oright__neutral,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ A2 @ one_one_complex )
      = A2 ) ).

% mult.right_neutral
thf(fact_395_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: set_complex] :
      ( ( times_6048082448287401577omplex @ one_one_set_complex @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_396_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: set_nat] :
      ( ( times_times_set_nat @ one_one_set_nat @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_397_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ one_one_nat @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_398_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ one_one_complex @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_399_rel__simps_I71_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% rel_simps(71)
thf(fact_400_mult__right__cancel,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A2 @ C )
          = ( times_times_nat @ B2 @ C ) )
        = ( A2 = B2 ) ) ) ).

% mult_right_cancel
thf(fact_401_mult__right__cancel,axiom,
    ! [C: complex,A2: complex,B2: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A2 @ C )
          = ( times_times_complex @ B2 @ C ) )
        = ( A2 = B2 ) ) ) ).

% mult_right_cancel
thf(fact_402_mult__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ C )
        = ( times_times_nat @ B2 @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_right
thf(fact_403_mult__cancel__right,axiom,
    ! [A2: complex,C: complex,B2: complex] :
      ( ( ( times_times_complex @ A2 @ C )
        = ( times_times_complex @ B2 @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_right
thf(fact_404_mult__left__cancel,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A2 )
          = ( times_times_nat @ C @ B2 ) )
        = ( A2 = B2 ) ) ) ).

% mult_left_cancel
thf(fact_405_mult__left__cancel,axiom,
    ! [C: complex,A2: complex,B2: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ C @ A2 )
          = ( times_times_complex @ C @ B2 ) )
        = ( A2 = B2 ) ) ) ).

% mult_left_cancel
thf(fact_406_mult__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ( times_times_nat @ C @ A2 )
        = ( times_times_nat @ C @ B2 ) )
      = ( ( C = zero_zero_nat )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_left
thf(fact_407_mult__cancel__left,axiom,
    ! [C: complex,A2: complex,B2: complex] :
      ( ( ( times_times_complex @ C @ A2 )
        = ( times_times_complex @ C @ B2 ) )
      = ( ( C = zero_zero_complex )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_left
thf(fact_408_no__zero__divisors,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( B2 != zero_zero_nat )
       => ( ( times_times_nat @ A2 @ B2 )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_409_no__zero__divisors,axiom,
    ! [A2: complex,B2: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( B2 != zero_zero_complex )
       => ( ( times_times_complex @ A2 @ B2 )
         != zero_zero_complex ) ) ) ).

% no_zero_divisors
thf(fact_410_mult__eq__0__iff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
        = zero_zero_nat )
      = ( ( A2 = zero_zero_nat )
        | ( B2 = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_411_mult__eq__0__iff,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ( times_times_complex @ A2 @ B2 )
        = zero_zero_complex )
      = ( ( A2 = zero_zero_complex )
        | ( B2 = zero_zero_complex ) ) ) ).

% mult_eq_0_iff
thf(fact_412_divisors__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
        = zero_zero_nat )
     => ( ( A2 = zero_zero_nat )
        | ( B2 = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_413_divisors__zero,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ( times_times_complex @ A2 @ B2 )
        = zero_zero_complex )
     => ( ( A2 = zero_zero_complex )
        | ( B2 = zero_zero_complex ) ) ) ).

% divisors_zero
thf(fact_414_mult__zero__right,axiom,
    ! [A2: a] :
      ( ( times_times_a @ A2 @ zero_zero_a )
      = zero_zero_a ) ).

% mult_zero_right
thf(fact_415_mult__zero__right,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_416_mult__zero__right,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ A2 @ zero_zero_complex )
      = zero_zero_complex ) ).

% mult_zero_right
thf(fact_417_mult__zero__left,axiom,
    ! [A2: a] :
      ( ( times_times_a @ zero_zero_a @ A2 )
      = zero_zero_a ) ).

% mult_zero_left
thf(fact_418_mult__zero__left,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_419_mult__zero__left,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ zero_zero_complex @ A2 )
      = zero_zero_complex ) ).

% mult_zero_left
thf(fact_420_mult__not__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
       != zero_zero_nat )
     => ( ( A2 != zero_zero_nat )
        & ( B2 != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_421_mult__not__zero,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ( times_times_complex @ A2 @ B2 )
       != zero_zero_complex )
     => ( ( A2 != zero_zero_complex )
        & ( B2 != zero_zero_complex ) ) ) ).

% mult_not_zero
thf(fact_422_vector__space__over__itself_Oscale__right__imp__eq,axiom,
    ! [X: complex,A2: complex,B2: complex] :
      ( ( X != zero_zero_complex )
     => ( ( ( times_times_complex @ A2 @ X )
          = ( times_times_complex @ B2 @ X ) )
       => ( A2 = B2 ) ) ) ).

% vector_space_over_itself.scale_right_imp_eq
thf(fact_423_vector__space__over__itself_Oscale__cancel__right,axiom,
    ! [A2: complex,X: complex,B2: complex] :
      ( ( ( times_times_complex @ A2 @ X )
        = ( times_times_complex @ B2 @ X ) )
      = ( ( A2 = B2 )
        | ( X = zero_zero_complex ) ) ) ).

% vector_space_over_itself.scale_cancel_right
thf(fact_424_vector__space__over__itself_Oscale__left__imp__eq,axiom,
    ! [A2: complex,X: complex,Y: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( ( times_times_complex @ A2 @ X )
          = ( times_times_complex @ A2 @ Y ) )
       => ( X = Y ) ) ) ).

% vector_space_over_itself.scale_left_imp_eq
thf(fact_425_vector__space__over__itself_Oscale__cancel__left,axiom,
    ! [A2: complex,X: complex,Y: complex] :
      ( ( ( times_times_complex @ A2 @ X )
        = ( times_times_complex @ A2 @ Y ) )
      = ( ( X = Y )
        | ( A2 = zero_zero_complex ) ) ) ).

% vector_space_over_itself.scale_cancel_left
thf(fact_426_vector__space__over__itself_Oscale__zero__right,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ A2 @ zero_zero_complex )
      = zero_zero_complex ) ).

% vector_space_over_itself.scale_zero_right
thf(fact_427_vector__space__over__itself_Oscale__zero__left,axiom,
    ! [X: complex] :
      ( ( times_times_complex @ zero_zero_complex @ X )
      = zero_zero_complex ) ).

% vector_space_over_itself.scale_zero_left
thf(fact_428_vector__space__over__itself_Oscale__eq__0__iff,axiom,
    ! [A2: complex,X: complex] :
      ( ( ( times_times_complex @ A2 @ X )
        = zero_zero_complex )
      = ( ( A2 = zero_zero_complex )
        | ( X = zero_zero_complex ) ) ) ).

% vector_space_over_itself.scale_eq_0_iff
thf(fact_429_rel__simps_I70_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% rel_simps(70)
thf(fact_430_zero__order_I5_J,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% zero_order(5)
thf(fact_431_zero__order_I4_J,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_order(4)
thf(fact_432_zero__order_I3_J,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% zero_order(3)
thf(fact_433_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_434_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_435_bot__nat__0_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_436_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_437_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_438_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_439_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_440_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_441_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_442_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_443_mult__less__mono1,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_444_mult__less__mono2,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J2 ) ) ) ) ).

% mult_less_mono2
thf(fact_445_infinite__descent0,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P2 @ N2 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N2 )
                  & ~ ( P2 @ M2 ) ) ) )
       => ( P2 @ N ) ) ) ).

% infinite_descent0
thf(fact_446_mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel1
thf(fact_447_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_448_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_449_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_450_set__one__times,axiom,
    ! [C2: set_nat] :
      ( ( set_el2933305810450955905es_nat @ one_one_nat @ C2 )
      = C2 ) ).

% set_one_times
thf(fact_451_triangular__to__jnf__steps__dims_I2_J,axiom,
    ! [A: mat_complex] :
      ( ( dim_col_complex @ ( jordan2017415923357163885omplex @ A ) )
      = ( dim_col_complex @ A ) ) ).

% triangular_to_jnf_steps_dims(2)
thf(fact_452_triangular__to__jnf__steps__dims_I4_J,axiom,
    ! [A: mat_complex] :
      ( ( dim_col_complex @ ( jordan7871273693253786478omplex @ A ) )
      = ( dim_col_complex @ A ) ) ).

% triangular_to_jnf_steps_dims(4)
thf(fact_453_add__col__sub__row__carrier_I3_J,axiom,
    ! [A: mat_complex,N: nat,A2: complex,K: nat,L: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( member_mat_complex @ ( column6029646570091773654omplex @ A2 @ K @ L @ A ) @ ( carrier_mat_complex @ N @ N ) ) ) ).

% add_col_sub_row_carrier(3)
thf(fact_454_swaprows__mat__carrier,axiom,
    ! [N: nat,K: nat,L: nat] : ( member_mat_complex @ ( gauss_8970452565587180529omplex @ N @ K @ L ) @ ( carrier_mat_complex @ N @ N ) ) ).

% swaprows_mat_carrier
thf(fact_455_index__mat__swaprows__mat_I2_J,axiom,
    ! [N: nat,K: nat,L: nat] :
      ( ( dim_row_complex @ ( gauss_8970452565587180529omplex @ N @ K @ L ) )
      = N ) ).

% index_mat_swaprows_mat(2)
thf(fact_456_add__col__sub__row__carrier_I1_J,axiom,
    ! [A2: complex,K: nat,L: nat,A: mat_complex] :
      ( ( dim_row_complex @ ( column6029646570091773654omplex @ A2 @ K @ L @ A ) )
      = ( dim_row_complex @ A ) ) ).

% add_col_sub_row_carrier(1)
thf(fact_457_triangular__to__jnf__steps__dims_I6_J,axiom,
    ! [A: mat_complex] :
      ( ( dim_col_complex @ ( jordan4501759426295633263omplex @ A ) )
      = ( dim_col_complex @ A ) ) ).

% triangular_to_jnf_steps_dims(6)
thf(fact_458_dim__update__mat_I2_J,axiom,
    ! [A: mat_complex,Ij: product_prod_nat_nat,A2: complex] :
      ( ( dim_col_complex @ ( update_mat_complex @ A @ Ij @ A2 ) )
      = ( dim_col_complex @ A ) ) ).

% dim_update_mat(2)
thf(fact_459_carrier__mat__triv,axiom,
    ! [M: mat_a] : ( member_mat_a @ M @ ( carrier_mat_a @ ( dim_row_a @ M ) @ ( dim_col_a @ M ) ) ) ).

% carrier_mat_triv
thf(fact_460_carrier__mat__triv,axiom,
    ! [M: mat_complex] : ( member_mat_complex @ M @ ( carrier_mat_complex @ ( dim_row_complex @ M ) @ ( dim_col_complex @ M ) ) ) ).

% carrier_mat_triv
thf(fact_461_carrier__matI,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat] :
      ( ( ( dim_row_a @ A )
        = Nr )
     => ( ( ( dim_col_a @ A )
          = Nc )
       => ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) ) ) ) ).

% carrier_matI
thf(fact_462_carrier__matI,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat] :
      ( ( ( dim_row_complex @ A )
        = Nr )
     => ( ( ( dim_col_complex @ A )
          = Nc )
       => ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) ) ) ) ).

% carrier_matI
thf(fact_463_right__mult__one__mat_H,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( ( dim_col_complex @ A )
        = N )
     => ( ( times_8009071140041733218omplex @ A @ ( one_mat_complex @ N ) )
        = A ) ) ).

% right_mult_one_mat'
thf(fact_464_adjoint__dim__row,axiom,
    ! [A: mat_complex] :
      ( ( dim_row_complex @ ( schur_5982229384592763574omplex @ A ) )
      = ( dim_col_complex @ A ) ) ).

% adjoint_dim_row
thf(fact_465_adjoint__dim__col,axiom,
    ! [A: mat_complex] :
      ( ( dim_col_complex @ ( schur_5982229384592763574omplex @ A ) )
      = ( dim_row_complex @ A ) ) ).

% adjoint_dim_col
thf(fact_466_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_467_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_468_linordered__semiring__strict__class_Omult__strict__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_right_mono
thf(fact_469_linordered__semiring__strict__class_Omult__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_left_mono
thf(fact_470_zero__less__mult__pos2,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B2 @ A2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A2 )
       => ( ord_less_nat @ zero_zero_nat @ B2 ) ) ) ).

% zero_less_mult_pos2
thf(fact_471_zero__less__mult__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A2 )
       => ( ord_less_nat @ zero_zero_nat @ B2 ) ) ) ).

% zero_less_mult_pos
thf(fact_472_linordered__semiring__strict__class_Omult__pos__neg2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B2 @ A2 ) @ zero_zero_nat ) ) ) ).

% linordered_semiring_strict_class.mult_pos_neg2
thf(fact_473_linordered__semiring__strict__class_Omult__pos__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) ) ) ) ).

% linordered_semiring_strict_class.mult_pos_pos
thf(fact_474_linordered__semiring__strict__class_Omult__pos__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% linordered_semiring_strict_class.mult_pos_neg
thf(fact_475_linordered__semiring__strict__class_Omult__neg__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% linordered_semiring_strict_class.mult_neg_pos
thf(fact_476_square__mat_Osimps,axiom,
    ( square_mat_a
    = ( ^ [A4: mat_a] :
          ( ( dim_col_a @ A4 )
          = ( dim_row_a @ A4 ) ) ) ) ).

% square_mat.simps
thf(fact_477_square__mat_Osimps,axiom,
    ( square_mat_complex
    = ( ^ [A4: mat_complex] :
          ( ( dim_col_complex @ A4 )
          = ( dim_row_complex @ A4 ) ) ) ) ).

% square_mat.simps
thf(fact_478_square__mat_Oelims_I1_J,axiom,
    ! [X: mat_a,Y: $o] :
      ( ( ( square_mat_a @ X )
        = Y )
     => ( Y
        = ( ( dim_col_a @ X )
          = ( dim_row_a @ X ) ) ) ) ).

% square_mat.elims(1)
thf(fact_479_square__mat_Oelims_I1_J,axiom,
    ! [X: mat_complex,Y: $o] :
      ( ( ( square_mat_complex @ X )
        = Y )
     => ( Y
        = ( ( dim_col_complex @ X )
          = ( dim_row_complex @ X ) ) ) ) ).

% square_mat.elims(1)
thf(fact_480_square__mat_Oelims_I2_J,axiom,
    ! [X: mat_a] :
      ( ( square_mat_a @ X )
     => ( ( dim_col_a @ X )
        = ( dim_row_a @ X ) ) ) ).

% square_mat.elims(2)
thf(fact_481_square__mat_Oelims_I2_J,axiom,
    ! [X: mat_complex] :
      ( ( square_mat_complex @ X )
     => ( ( dim_col_complex @ X )
        = ( dim_row_complex @ X ) ) ) ).

% square_mat.elims(2)
thf(fact_482_square__mat_Oelims_I3_J,axiom,
    ! [X: mat_a] :
      ( ~ ( square_mat_a @ X )
     => ( ( dim_col_a @ X )
       != ( dim_row_a @ X ) ) ) ).

% square_mat.elims(3)
thf(fact_483_square__mat_Oelims_I3_J,axiom,
    ! [X: mat_complex] :
      ( ~ ( square_mat_complex @ X )
     => ( ( dim_col_complex @ X )
       != ( dim_row_complex @ X ) ) ) ).

% square_mat.elims(3)
thf(fact_484_unitary__zero,axiom,
    ! [A: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ zero_zero_nat @ zero_zero_nat ) )
     => ( comple6660659447773130958omplex @ A ) ) ).

% unitary_zero
thf(fact_485_mk__diagonal__dim_I2_J,axiom,
    ! [As: list_complex] :
      ( ( dim_col_complex @ ( mk_diagonal_complex @ As ) )
      = ( size_s3451745648224563538omplex @ As ) ) ).

% mk_diagonal_dim(2)
thf(fact_486_step__3__main__inv,axiom,
    ! [A: mat_complex,N: nat,K: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( jordan5244935068081719878omplex @ N @ jordan3528196489273997576omplex @ A )
         => ( ( jordan8042990603089931364omplex @ N @ A )
           => ( ( jordan5475473882837061487omplex @ N @ jordan4971026570492200526omplex @ A @ K )
             => ( ( jordan5244935068081719878omplex @ N @ jordan4971026570492200526omplex @ ( jordan4702481308941288104omplex @ N @ K @ A ) )
                & ( jordan2620430285385836103omplex @ N @ A @ ( jordan4702481308941288104omplex @ N @ K @ A ) ) ) ) ) ) ) ) ).

% step_3_main_inv
thf(fact_487_mult__if__delta,axiom,
    ! [P2: $o,Q4: nat] :
      ( ( P2
       => ( ( times_times_nat @ ( if_nat @ P2 @ one_one_nat @ zero_zero_nat ) @ Q4 )
          = Q4 ) )
      & ( ~ P2
       => ( ( times_times_nat @ ( if_nat @ P2 @ one_one_nat @ zero_zero_nat ) @ Q4 )
          = zero_zero_nat ) ) ) ).

% mult_if_delta
thf(fact_488_mult__if__delta,axiom,
    ! [P2: $o,Q4: complex] :
      ( ( P2
       => ( ( times_times_complex @ ( if_complex @ P2 @ one_one_complex @ zero_zero_complex ) @ Q4 )
          = Q4 ) )
      & ( ~ P2
       => ( ( times_times_complex @ ( if_complex @ P2 @ one_one_complex @ zero_zero_complex ) @ Q4 )
          = zero_zero_complex ) ) ) ).

% mult_if_delta
thf(fact_489_step__3__main__dims_I1_J,axiom,
    ! [N: nat,J2: nat,A: mat_complex] :
      ( ( dim_row_complex @ ( jordan4702481308941288104omplex @ N @ J2 @ A ) )
      = ( dim_row_complex @ A ) ) ).

% step_3_main_dims(1)
thf(fact_490_step__3__main__dims_I2_J,axiom,
    ! [N: nat,J2: nat,A: mat_complex] :
      ( ( dim_col_complex @ ( jordan4702481308941288104omplex @ N @ J2 @ A ) )
      = ( dim_col_complex @ A ) ) ).

% step_3_main_dims(2)
thf(fact_491_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_492_step__3__main__dims__main,axiom,
    ! [N: nat,K: nat,A: mat_complex] :
      ( ( ( dim_row_complex @ ( jordan4702481308941288104omplex @ N @ K @ A ) )
        = ( dim_row_complex @ A ) )
      & ( ( dim_col_complex @ ( jordan4702481308941288104omplex @ N @ K @ A ) )
        = ( dim_col_complex @ A ) ) ) ).

% step_3_main_dims_main
thf(fact_493_step__3__def,axiom,
    ( jordan4501759426295633263omplex
    = ( ^ [A4: mat_complex] : ( jordan4702481308941288104omplex @ ( dim_row_complex @ A4 ) @ one_one_nat @ A4 ) ) ) ).

% step_3_def
thf(fact_494_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_495_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_496_swapcols__mat,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,K: nat,L: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( ord_less_nat @ K @ N )
       => ( ( ord_less_nat @ L @ N )
         => ( ( column4357519492343924999omplex @ K @ L @ A )
            = ( times_8009071140041733218omplex @ A @ ( gauss_8970452565587180529omplex @ N @ K @ L ) ) ) ) ) ) ).

% swapcols_mat
thf(fact_497_mult__col__div__row__similar,axiom,
    ! [A: mat_complex,N: nat,K: nat,A2: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( ord_less_nat @ K @ N )
       => ( ( A2 != zero_zero_complex )
         => ( similar_mat_complex @ ( column217142795681433722omplex @ A2 @ K @ A ) @ A ) ) ) ) ).

% mult_col_div_row_similar
thf(fact_498_swapcols__carrier,axiom,
    ! [L: nat,K: nat,A: mat_a,N: nat,M: nat] :
      ( ( member_mat_a @ ( column2528828918332591333cols_a @ L @ K @ A ) @ ( carrier_mat_a @ N @ M ) )
      = ( member_mat_a @ A @ ( carrier_mat_a @ N @ M ) ) ) ).

% swapcols_carrier
thf(fact_499_swapcols__carrier,axiom,
    ! [L: nat,K: nat,A: mat_complex,N: nat,M: nat] :
      ( ( member_mat_complex @ ( column4357519492343924999omplex @ L @ K @ A ) @ ( carrier_mat_complex @ N @ M ) )
      = ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) ) ) ).

% swapcols_carrier
thf(fact_500_index__mat__swapcols_I2_J,axiom,
    ! [K: nat,L: nat,A: mat_a] :
      ( ( dim_row_a @ ( column2528828918332591333cols_a @ K @ L @ A ) )
      = ( dim_row_a @ A ) ) ).

% index_mat_swapcols(2)
thf(fact_501_index__mat__swapcols_I2_J,axiom,
    ! [K: nat,L: nat,A: mat_complex] :
      ( ( dim_row_complex @ ( column4357519492343924999omplex @ K @ L @ A ) )
      = ( dim_row_complex @ A ) ) ).

% index_mat_swapcols(2)
thf(fact_502_mult__col__div__row__carrier_I3_J,axiom,
    ! [A: mat_complex,N: nat,A2: complex,K: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( member_mat_complex @ ( column217142795681433722omplex @ A2 @ K @ A ) @ ( carrier_mat_complex @ N @ N ) ) ) ).

% mult_col_div_row_carrier(3)
thf(fact_503_mult__col__div__row__carrier_I1_J,axiom,
    ! [A2: complex,K: nat,A: mat_complex] :
      ( ( dim_row_complex @ ( column217142795681433722omplex @ A2 @ K @ A ) )
      = ( dim_row_complex @ A ) ) ).

% mult_col_div_row_carrier(1)
thf(fact_504_density__collapse__carrier,axiom,
    ! [R: mat_complex,P2: mat_complex,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( dim_row_complex @ R ) )
     => ( ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ R @ ( carrier_mat_complex @ N @ N ) )
         => ( member_mat_complex @ ( projec3470689467825365843llapse @ R @ P2 ) @ ( carrier_mat_complex @ N @ N ) ) ) ) ) ).

% density_collapse_carrier
thf(fact_505_unitary__operator__keep__trace,axiom,
    ! [U2: mat_complex,N: nat,A: mat_complex] :
      ( ( member_mat_complex @ U2 @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
       => ( ( comple6660659447773130958omplex @ U2 )
         => ( ( comple3184165445352484367omplex @ A )
            = ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ U2 ) @ A ) @ U2 ) ) ) ) ) ) ).

% unitary_operator_keep_trace
thf(fact_506_mat__assoc__test_I10_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex,D2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ D2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ A @ B ) @ C2 ) )
              = ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ B @ C2 ) @ A ) ) ) ) ) ) ) ).

% mat_assoc_test(10)
thf(fact_507_mat__assoc__test_I11_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex,D2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ D2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ A @ B ) @ C2 ) @ D2 ) )
              = ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ C2 @ D2 ) @ A ) @ B ) ) ) ) ) ) ) ).

% mat_assoc_test(11)
thf(fact_508_mat__assoc__test_I2_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex,D2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ D2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ ( times_8009071140041733218omplex @ A @ ( schur_5982229384592763574omplex @ B ) ) ) @ C2 )
              = ( times_8009071140041733218omplex @ B @ ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ A ) @ C2 ) ) ) ) ) ) ) ).

% mat_assoc_test(2)
thf(fact_509_mat__assoc__test_I1_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex,D2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ D2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ A @ B ) @ ( times_8009071140041733218omplex @ C2 @ D2 ) )
              = ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ A @ B ) @ C2 ) @ D2 ) ) ) ) ) ) ).

% mat_assoc_test(1)
thf(fact_510_smult__smult__mat,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,K: complex,L: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( smult_mat_complex @ K @ ( smult_mat_complex @ L @ A ) )
        = ( smult_mat_complex @ ( times_times_complex @ K @ L ) @ A ) ) ) ).

% smult_smult_mat
thf(fact_511_mat__assoc__test_I3_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex,D2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ D2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ A @ ( one_mat_complex @ N ) ) @ ( one_mat_complex @ N ) ) @ B ) @ ( one_mat_complex @ N ) )
              = ( times_8009071140041733218omplex @ A @ B ) ) ) ) ) ) ).

% mat_assoc_test(3)
thf(fact_512_projector__collapse__trace,axiom,
    ! [P2: mat_complex,N: nat,R: mat_complex] :
      ( ( linear5633924348262549461omplex @ P2 )
     => ( ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ R @ ( carrier_mat_complex @ N @ N ) )
         => ( ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ P2 @ R ) @ P2 ) )
            = ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ R @ P2 ) ) ) ) ) ) ).

% projector_collapse_trace
thf(fact_513_density__collapse__operator,axiom,
    ! [P2: mat_complex,R: mat_complex,N: nat] :
      ( ( linear5633924348262549461omplex @ P2 )
     => ( ( comple5220265106149225959erator @ R )
       => ( ( ord_less_nat @ zero_zero_nat @ ( dim_row_complex @ R ) )
         => ( ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( member_mat_complex @ R @ ( carrier_mat_complex @ N @ N ) )
             => ( comple5220265106149225959erator @ ( projec3470689467825365843llapse @ R @ P2 ) ) ) ) ) ) ) ).

% density_collapse_operator
thf(fact_514_mult__delta__right,axiom,
    ! [B2: $o,X: nat,Y: nat] :
      ( ( B2
       => ( ( times_times_nat @ X @ ( if_nat @ B2 @ Y @ zero_zero_nat ) )
          = ( times_times_nat @ X @ Y ) ) )
      & ( ~ B2
       => ( ( times_times_nat @ X @ ( if_nat @ B2 @ Y @ zero_zero_nat ) )
          = zero_zero_nat ) ) ) ).

% mult_delta_right
thf(fact_515_mult__delta__right,axiom,
    ! [B2: $o,X: complex,Y: complex] :
      ( ( B2
       => ( ( times_times_complex @ X @ ( if_complex @ B2 @ Y @ zero_zero_complex ) )
          = ( times_times_complex @ X @ Y ) ) )
      & ( ~ B2
       => ( ( times_times_complex @ X @ ( if_complex @ B2 @ Y @ zero_zero_complex ) )
          = zero_zero_complex ) ) ) ).

% mult_delta_right
thf(fact_516_mult__delta__left,axiom,
    ! [B2: $o,X: nat,Y: nat] :
      ( ( B2
       => ( ( times_times_nat @ ( if_nat @ B2 @ X @ zero_zero_nat ) @ Y )
          = ( times_times_nat @ X @ Y ) ) )
      & ( ~ B2
       => ( ( times_times_nat @ ( if_nat @ B2 @ X @ zero_zero_nat ) @ Y )
          = zero_zero_nat ) ) ) ).

% mult_delta_left
thf(fact_517_mult__delta__left,axiom,
    ! [B2: $o,X: complex,Y: complex] :
      ( ( B2
       => ( ( times_times_complex @ ( if_complex @ B2 @ X @ zero_zero_complex ) @ Y )
          = ( times_times_complex @ X @ Y ) ) )
      & ( ~ B2
       => ( ( times_times_complex @ ( if_complex @ B2 @ X @ zero_zero_complex ) @ Y )
          = zero_zero_complex ) ) ) ).

% mult_delta_left
thf(fact_518_mult__hom_Ohom__zero,axiom,
    ! [C: nat] :
      ( ( times_times_nat @ C @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_hom.hom_zero
thf(fact_519_mult__hom_Ohom__zero,axiom,
    ! [C: complex] :
      ( ( times_times_complex @ C @ zero_zero_complex )
      = zero_zero_complex ) ).

% mult_hom.hom_zero
thf(fact_520_step__2__def,axiom,
    ( jordan7871273693253786478omplex
    = ( ^ [A4: mat_complex] : ( jordan6916311984355858983omplex @ ( dim_row_complex @ A4 ) @ zero_zero_nat @ A4 ) ) ) ).

% step_2_def
thf(fact_521_step__2__main__dims_I1_J,axiom,
    ! [N: nat,J2: nat,A: mat_complex] :
      ( ( dim_row_complex @ ( jordan6916311984355858983omplex @ N @ J2 @ A ) )
      = ( dim_row_complex @ A ) ) ).

% step_2_main_dims(1)
thf(fact_522_step__2__main__dims_I2_J,axiom,
    ! [N: nat,J2: nat,A: mat_complex] :
      ( ( dim_col_complex @ ( jordan6916311984355858983omplex @ N @ J2 @ A ) )
      = ( dim_col_complex @ A ) ) ).

% step_2_main_dims(2)
thf(fact_523_unitary__density,axiom,
    ! [R: mat_complex,U2: mat_complex,N: nat] :
      ( ( comple5220265106149225959erator @ R )
     => ( ( comple6660659447773130958omplex @ U2 )
       => ( ( member_mat_complex @ R @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ U2 @ ( carrier_mat_complex @ N @ N ) )
           => ( comple5220265106149225959erator @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ U2 @ R ) @ ( schur_5982229384592763574omplex @ U2 ) ) ) ) ) ) ) ).

% unitary_density
thf(fact_524_step__2__main__dims__main,axiom,
    ! [N: nat,J2: nat,A: mat_complex] :
      ( ( ( dim_row_complex @ ( jordan6916311984355858983omplex @ N @ J2 @ A ) )
        = ( dim_row_complex @ A ) )
      & ( ( dim_col_complex @ ( jordan6916311984355858983omplex @ N @ J2 @ A ) )
        = ( dim_col_complex @ A ) ) ) ).

% step_2_main_dims_main
thf(fact_525_max__mix__is__density,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( comple5220265106149225959erator @ ( projec8360710381328234318ensity @ N ) ) ) ).

% max_mix_is_density
thf(fact_526_trace__pdo__eq__imp__eq,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ! [Rho: mat_complex] :
              ( ( member_mat_complex @ Rho @ ( carrier_mat_complex @ N @ N ) )
             => ( ( comple1169154605998056944erator @ Rho )
               => ( ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ A @ Rho ) )
                  = ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ B @ Rho ) ) ) ) )
         => ( A = B ) ) ) ) ).

% trace_pdo_eq_imp_eq
thf(fact_527_swaprows__mat,axiom,
    ! [A: mat_complex,N: nat,Nc: nat,K: nat,L: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ Nc ) )
     => ( ( ord_less_nat @ K @ N )
       => ( ( ord_less_nat @ L @ N )
         => ( ( gauss_1020679828357514249omplex @ K @ L @ A )
            = ( times_8009071140041733218omplex @ ( gauss_8970452565587180529omplex @ N @ K @ L ) @ A ) ) ) ) ) ).

% swaprows_mat
thf(fact_528_step__1__def,axiom,
    ( jordan2017415923357163885omplex
    = ( ^ [A4: mat_complex] : ( jordan9130142659770429862omplex @ ( dim_row_complex @ A4 ) @ zero_zero_nat @ zero_zero_nat @ A4 ) ) ) ).

% step_1_def
thf(fact_529_cpx__sq__mat__axioms__def,axiom,
    ( linear2040860143340867312axioms
    = ( ^ [DimR: nat,DimC: nat] :
          ( ( DimR = DimC )
          & ( ord_less_nat @ zero_zero_nat @ DimR ) ) ) ) ).

% cpx_sq_mat_axioms_def
thf(fact_530_swaprows__carrier,axiom,
    ! [K: nat,L: nat,A: mat_a,N: nat,Nc: nat] :
      ( ( member_mat_a @ ( gauss_2482569599970757219rows_a @ K @ L @ A ) @ ( carrier_mat_a @ N @ Nc ) )
      = ( member_mat_a @ A @ ( carrier_mat_a @ N @ Nc ) ) ) ).

% swaprows_carrier
thf(fact_531_swaprows__carrier,axiom,
    ! [K: nat,L: nat,A: mat_complex,N: nat,Nc: nat] :
      ( ( member_mat_complex @ ( gauss_1020679828357514249omplex @ K @ L @ A ) @ ( carrier_mat_complex @ N @ Nc ) )
      = ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ Nc ) ) ) ).

% swaprows_carrier
thf(fact_532_index__mat__swaprows_I2_J,axiom,
    ! [K: nat,L: nat,A: mat_a] :
      ( ( dim_row_a @ ( gauss_2482569599970757219rows_a @ K @ L @ A ) )
      = ( dim_row_a @ A ) ) ).

% index_mat_swaprows(2)
thf(fact_533_index__mat__swaprows_I2_J,axiom,
    ! [K: nat,L: nat,A: mat_complex] :
      ( ( dim_row_complex @ ( gauss_1020679828357514249omplex @ K @ L @ A ) )
      = ( dim_row_complex @ A ) ) ).

% index_mat_swaprows(2)
thf(fact_534_step__1__main__dims_I1_J,axiom,
    ! [N: nat,I2: nat,J2: nat,A: mat_complex] :
      ( ( dim_row_complex @ ( jordan9130142659770429862omplex @ N @ I2 @ J2 @ A ) )
      = ( dim_row_complex @ A ) ) ).

% step_1_main_dims(1)
thf(fact_535_step__1__main__dims_I2_J,axiom,
    ! [N: nat,I2: nat,J2: nat,A: mat_complex] :
      ( ( dim_col_complex @ ( jordan9130142659770429862omplex @ N @ I2 @ J2 @ A ) )
      = ( dim_col_complex @ A ) ) ).

% step_1_main_dims(2)
thf(fact_536_step__1__main__dims__main,axiom,
    ! [N: nat,I2: nat,J2: nat,A: mat_complex] :
      ( ( ( dim_row_complex @ ( jordan9130142659770429862omplex @ N @ I2 @ J2 @ A ) )
        = ( dim_row_complex @ A ) )
      & ( ( dim_col_complex @ ( jordan9130142659770429862omplex @ N @ I2 @ J2 @ A ) )
        = ( dim_col_complex @ A ) ) ) ).

% step_1_main_dims_main
thf(fact_537_cpx__sq__mat__axioms_Ointro,axiom,
    ! [DimR2: nat,DimC2: nat] :
      ( ( DimR2 = DimC2 )
     => ( ( ord_less_nat @ zero_zero_nat @ DimR2 )
       => ( linear2040860143340867312axioms @ DimR2 @ DimC2 ) ) ) ).

% cpx_sq_mat_axioms.intro
thf(fact_538_tensor__mat__unitary,axiom,
    ! [U2: mat_complex,V2: mat_complex] :
      ( ( comple6660659447773130958omplex @ U2 )
     => ( ( comple6660659447773130958omplex @ V2 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( dim_row_complex @ U2 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( dim_row_complex @ V2 ) )
           => ( comple6660659447773130958omplex @ ( tensor_mat @ U2 @ V2 ) ) ) ) ) ) ).

% tensor_mat_unitary
thf(fact_539_swapcols__is__transp__swap__rows,axiom,
    ! [A: mat_a,N: nat,M: nat,K: nat,L: nat] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ N @ M ) )
     => ( ( ord_less_nat @ K @ M )
       => ( ( ord_less_nat @ L @ M )
         => ( ( column2528828918332591333cols_a @ K @ L @ A )
            = ( transpose_mat_a @ ( gauss_2482569599970757219rows_a @ K @ L @ ( transpose_mat_a @ A ) ) ) ) ) ) ) ).

% swapcols_is_transp_swap_rows
thf(fact_540_swapcols__is__transp__swap__rows,axiom,
    ! [A: mat_complex,N: nat,M: nat,K: nat,L: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( ord_less_nat @ K @ M )
       => ( ( ord_less_nat @ L @ M )
         => ( ( column4357519492343924999omplex @ K @ L @ A )
            = ( transp3074176993011536131omplex @ ( gauss_1020679828357514249omplex @ K @ L @ ( transp3074176993011536131omplex @ A ) ) ) ) ) ) ) ).

% swapcols_is_transp_swap_rows
thf(fact_541_tensor__mat__adjoint,axiom,
    ! [M1: mat_complex,R1: nat,C1: nat,M22: mat_complex,R2: nat,C22: nat] :
      ( ( member_mat_complex @ M1 @ ( carrier_mat_complex @ R1 @ C1 ) )
     => ( ( member_mat_complex @ M22 @ ( carrier_mat_complex @ R2 @ C22 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ C1 )
         => ( ( ord_less_nat @ zero_zero_nat @ C22 )
           => ( ( ord_less_nat @ zero_zero_nat @ R1 )
             => ( ( ord_less_nat @ zero_zero_nat @ R2 )
               => ( ( schur_5982229384592763574omplex @ ( tensor_mat @ M1 @ M22 ) )
                  = ( tensor_mat @ ( schur_5982229384592763574omplex @ M1 ) @ ( schur_5982229384592763574omplex @ M22 ) ) ) ) ) ) ) ) ) ).

% tensor_mat_adjoint
thf(fact_542_tensor__mat__id,axiom,
    ! [D1: nat,D22: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ D1 )
     => ( ( ord_less_nat @ zero_zero_nat @ D22 )
       => ( ( tensor_mat @ ( one_mat_complex @ D1 ) @ ( one_mat_complex @ D22 ) )
          = ( one_mat_complex @ ( times_times_nat @ D1 @ D22 ) ) ) ) ) ).

% tensor_mat_id
thf(fact_543_jnf__vector_I1_J,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ! [I3: nat,J3: nat] :
            ( ( ord_less_nat @ I3 @ N )
           => ( ( ord_less_nat @ J3 @ N )
             => ( jordan4971026570492200526omplex @ A @ I3 @ J3 ) ) )
       => ( ( jordan8042990603089931364omplex @ N @ A )
         => ( ( jordan5739059635872469039omplex @ ( jordan387279176131498413omplex @ A ) )
            = A ) ) ) ) ).

% jnf_vector(1)
thf(fact_544_Matrix_Otranspose__transpose,axiom,
    ! [A: mat_complex] :
      ( ( transp3074176993011536131omplex @ ( transp3074176993011536131omplex @ A ) )
      = A ) ).

% Matrix.transpose_transpose
thf(fact_545_transpose__mat__eq,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( ( transp3074176993011536131omplex @ A )
        = ( transp3074176993011536131omplex @ B ) )
      = ( A = B ) ) ).

% transpose_mat_eq
thf(fact_546_transpose__carrier__mat,axiom,
    ! [A: mat_a,Nc: nat,Nr: nat] :
      ( ( member_mat_a @ ( transpose_mat_a @ A ) @ ( carrier_mat_a @ Nc @ Nr ) )
      = ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% transpose_carrier_mat
thf(fact_547_transpose__carrier__mat,axiom,
    ! [A: mat_complex,Nc: nat,Nr: nat] :
      ( ( member_mat_complex @ ( transp3074176993011536131omplex @ A ) @ ( carrier_mat_complex @ Nc @ Nr ) )
      = ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) ) ) ).

% transpose_carrier_mat
thf(fact_548_transpose__one,axiom,
    ! [N: nat] :
      ( ( transp3074176993011536131omplex @ ( one_mat_complex @ N ) )
      = ( one_mat_complex @ N ) ) ).

% transpose_one
thf(fact_549_transpose__mult,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,B: mat_complex,Nc: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ Nc ) )
       => ( ( transp3074176993011536131omplex @ ( times_8009071140041733218omplex @ A @ B ) )
          = ( times_8009071140041733218omplex @ ( transp3074176993011536131omplex @ B ) @ ( transp3074176993011536131omplex @ A ) ) ) ) ) ).

% transpose_mult
thf(fact_550_index__transpose__mat_I2_J,axiom,
    ! [A: mat_a] :
      ( ( dim_row_a @ ( transpose_mat_a @ A ) )
      = ( dim_col_a @ A ) ) ).

% index_transpose_mat(2)
thf(fact_551_index__transpose__mat_I2_J,axiom,
    ! [A: mat_complex] :
      ( ( dim_row_complex @ ( transp3074176993011536131omplex @ A ) )
      = ( dim_col_complex @ A ) ) ).

% index_transpose_mat(2)
thf(fact_552_index__transpose__mat_I3_J,axiom,
    ! [A: mat_a] :
      ( ( dim_col_a @ ( transpose_mat_a @ A ) )
      = ( dim_row_a @ A ) ) ).

% index_transpose_mat(3)
thf(fact_553_index__transpose__mat_I3_J,axiom,
    ! [A: mat_complex] :
      ( ( dim_col_complex @ ( transp3074176993011536131omplex @ A ) )
      = ( dim_row_complex @ A ) ) ).

% index_transpose_mat(3)
thf(fact_554_tensor__mat__hermitian,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,N4: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N4 @ N4 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_nat @ zero_zero_nat @ N4 )
           => ( ( comple8306762464034002205omplex @ A )
             => ( ( comple8306762464034002205omplex @ B )
               => ( comple8306762464034002205omplex @ ( tensor_mat @ A @ B ) ) ) ) ) ) ) ) ).

% tensor_mat_hermitian
thf(fact_555_tensor__mat__carrier,axiom,
    ! [U2: mat_complex,V2: mat_complex] : ( member_mat_complex @ ( tensor_mat @ U2 @ V2 ) @ ( carrier_mat_complex @ ( times_times_nat @ ( dim_row_complex @ U2 ) @ ( dim_row_complex @ V2 ) ) @ ( times_times_nat @ ( dim_col_complex @ U2 ) @ ( dim_col_complex @ V2 ) ) ) ) ).

% tensor_mat_carrier
thf(fact_556_mult__distr__tensor,axiom,
    ! [A: mat_complex,B: mat_complex,C2: mat_complex,D2: mat_complex] :
      ( ( ( dim_col_complex @ A )
        = ( dim_row_complex @ B ) )
     => ( ( ( dim_col_complex @ C2 )
          = ( dim_row_complex @ D2 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( dim_col_complex @ A ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( dim_col_complex @ B ) )
           => ( ( ord_less_nat @ zero_zero_nat @ ( dim_col_complex @ C2 ) )
             => ( ( ord_less_nat @ zero_zero_nat @ ( dim_col_complex @ D2 ) )
               => ( ( tensor_mat @ ( times_8009071140041733218omplex @ A @ B ) @ ( times_8009071140041733218omplex @ C2 @ D2 ) )
                  = ( times_8009071140041733218omplex @ ( tensor_mat @ A @ C2 ) @ ( tensor_mat @ B @ D2 ) ) ) ) ) ) ) ) ) ).

% mult_distr_tensor
thf(fact_557_dim__row__tensor__mat,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( dim_row_complex @ ( tensor_mat @ A @ B ) )
      = ( times_times_nat @ ( dim_row_complex @ A ) @ ( dim_row_complex @ B ) ) ) ).

% dim_row_tensor_mat
thf(fact_558_dim__col__tensor__mat,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( dim_col_complex @ ( tensor_mat @ A @ B ) )
      = ( times_times_nat @ ( dim_col_complex @ A ) @ ( dim_col_complex @ B ) ) ) ).

% dim_col_tensor_mat
thf(fact_559_transpose__of__prod,axiom,
    ! [M4: mat_complex,N5: mat_complex] :
      ( ( ( dim_col_complex @ M4 )
        = ( dim_row_complex @ N5 ) )
     => ( ( transp3074176993011536131omplex @ ( times_8009071140041733218omplex @ M4 @ N5 ) )
        = ( times_8009071140041733218omplex @ ( transp3074176993011536131omplex @ N5 ) @ ( transp3074176993011536131omplex @ M4 ) ) ) ) ).

% transpose_of_prod
thf(fact_560_vec__space_Orow__space__eq__col__space__transpose,axiom,
    ( vS_vec3284807721666986142omplex
    = ( ^ [N3: nat,A4: mat_complex] : ( vS_vec1879987866596122552omplex @ N3 @ ( transp3074176993011536131omplex @ A4 ) ) ) ) ).

% vec_space.row_space_eq_col_space_transpose
thf(fact_561_vec__space_Ocol__space__eq__row__space__transpose,axiom,
    ( vS_vec1879987866596122552omplex
    = ( ^ [N3: nat,A4: mat_complex] : ( vS_vec3284807721666986142omplex @ N3 @ ( transp3074176993011536131omplex @ A4 ) ) ) ) ).

% vec_space.col_space_eq_row_space_transpose
thf(fact_562_cpx__mat__cnj__prod,axiom,
    ! [M4: mat_complex,N5: mat_complex] :
      ( ( ( dim_col_complex @ M4 )
        = ( dim_row_complex @ N5 ) )
     => ( ( cpx_mat_cnj @ ( times_8009071140041733218omplex @ M4 @ N5 ) )
        = ( times_8009071140041733218omplex @ ( cpx_mat_cnj @ M4 ) @ ( cpx_mat_cnj @ N5 ) ) ) ) ).

% cpx_mat_cnj_prod
thf(fact_563_jnf__vector__def,axiom,
    ( jordan387279176131498413omplex
    = ( ^ [A4: mat_complex] : ( jordan4459423482773701094omplex @ ( dim_row_complex @ A4 ) @ A4 ) ) ) ).

% jnf_vector_def
thf(fact_564_dim__col__of__cjn__prod,axiom,
    ! [M4: mat_complex,N5: mat_complex] :
      ( ( dim_col_complex @ ( times_8009071140041733218omplex @ ( cpx_mat_cnj @ M4 ) @ ( cpx_mat_cnj @ N5 ) ) )
      = ( dim_col_complex @ N5 ) ) ).

% dim_col_of_cjn_prod
thf(fact_565_dim__row__of__cjn__prod,axiom,
    ! [M4: mat_complex,N5: mat_complex] :
      ( ( dim_row_complex @ ( times_8009071140041733218omplex @ ( cpx_mat_cnj @ M4 ) @ ( cpx_mat_cnj @ N5 ) ) )
      = ( dim_row_complex @ M4 ) ) ).

% dim_row_of_cjn_prod
thf(fact_566_mat__incr__mult__adjoint__mat__incr,axiom,
    ! [N: nat] :
      ( ( times_8009071140041733218omplex @ ( mat_incr @ N ) @ ( schur_5982229384592763574omplex @ ( mat_incr @ N ) ) )
      = ( one_mat_complex @ N ) ) ).

% mat_incr_mult_adjoint_mat_incr
thf(fact_567_lowner__le__keep__under__measurement,axiom,
    ! [M4: mat_complex,N: nat,A: mat_complex,B: mat_complex] :
      ( ( member_mat_complex @ M4 @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
         => ( ( complex_lowner_le @ A @ B )
           => ( complex_lowner_le @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ M4 ) @ A ) @ M4 ) @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ ( schur_5982229384592763574omplex @ M4 ) @ B ) @ M4 ) ) ) ) ) ) ).

% lowner_le_keep_under_measurement
thf(fact_568_dvd__mult__cancel2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel2
thf(fact_569_dvd__mult__cancel1,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel1
thf(fact_570_dvd__triv__right,axiom,
    ! [A2: nat,B2: nat] : ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B2 @ A2 ) ) ).

% dvd_triv_right
thf(fact_571_dvd__triv__right,axiom,
    ! [A2: complex,B2: complex] : ( dvd_dvd_complex @ A2 @ ( times_times_complex @ B2 @ A2 ) ) ).

% dvd_triv_right
thf(fact_572_dvd__mult__right,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
     => ( dvd_dvd_nat @ B2 @ C ) ) ).

% dvd_mult_right
thf(fact_573_dvd__mult__right,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ A2 @ B2 ) @ C )
     => ( dvd_dvd_complex @ B2 @ C ) ) ).

% dvd_mult_right
thf(fact_574_mult__dvd__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( dvd_dvd_nat @ A2 @ B2 )
     => ( ( dvd_dvd_nat @ C @ D )
       => ( dvd_dvd_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_575_mult__dvd__mono,axiom,
    ! [A2: complex,B2: complex,C: complex,D: complex] :
      ( ( dvd_dvd_complex @ A2 @ B2 )
     => ( ( dvd_dvd_complex @ C @ D )
       => ( dvd_dvd_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_576_dvd__triv__left,axiom,
    ! [A2: nat,B2: nat] : ( dvd_dvd_nat @ A2 @ ( times_times_nat @ A2 @ B2 ) ) ).

% dvd_triv_left
thf(fact_577_dvd__triv__left,axiom,
    ! [A2: complex,B2: complex] : ( dvd_dvd_complex @ A2 @ ( times_times_complex @ A2 @ B2 ) ) ).

% dvd_triv_left
thf(fact_578_dvd__mult__left,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
     => ( dvd_dvd_nat @ A2 @ C ) ) ).

% dvd_mult_left
thf(fact_579_dvd__mult__left,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ A2 @ B2 ) @ C )
     => ( dvd_dvd_complex @ A2 @ C ) ) ).

% dvd_mult_left
thf(fact_580_dvd__mult2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B2 )
     => ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% dvd_mult2
thf(fact_581_dvd__mult2,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ A2 @ B2 )
     => ( dvd_dvd_complex @ A2 @ ( times_times_complex @ B2 @ C ) ) ) ).

% dvd_mult2
thf(fact_582_dvd__mult,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ C )
     => ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% dvd_mult
thf(fact_583_dvd__mult,axiom,
    ! [A2: complex,C: complex,B2: complex] :
      ( ( dvd_dvd_complex @ A2 @ C )
     => ( dvd_dvd_complex @ A2 @ ( times_times_complex @ B2 @ C ) ) ) ).

% dvd_mult
thf(fact_584_dvd__def,axiom,
    ( dvd_dvd_nat
    = ( ^ [B3: nat,A3: nat] :
        ? [K2: nat] :
          ( A3
          = ( times_times_nat @ B3 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_585_dvd__def,axiom,
    ( dvd_dvd_complex
    = ( ^ [B3: complex,A3: complex] :
        ? [K2: complex] :
          ( A3
          = ( times_times_complex @ B3 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_586_dvdI,axiom,
    ! [A2: nat,B2: nat,K: nat] :
      ( ( A2
        = ( times_times_nat @ B2 @ K ) )
     => ( dvd_dvd_nat @ B2 @ A2 ) ) ).

% dvdI
thf(fact_587_dvdI,axiom,
    ! [A2: complex,B2: complex,K: complex] :
      ( ( A2
        = ( times_times_complex @ B2 @ K ) )
     => ( dvd_dvd_complex @ B2 @ A2 ) ) ).

% dvdI
thf(fact_588_dvdE,axiom,
    ! [B2: nat,A2: nat] :
      ( ( dvd_dvd_nat @ B2 @ A2 )
     => ~ ! [K3: nat] :
            ( A2
           != ( times_times_nat @ B2 @ K3 ) ) ) ).

% dvdE
thf(fact_589_dvdE,axiom,
    ! [B2: complex,A2: complex] :
      ( ( dvd_dvd_complex @ B2 @ A2 )
     => ~ ! [K3: complex] :
            ( A2
           != ( times_times_complex @ B2 @ K3 ) ) ) ).

% dvdE
thf(fact_590_dvd__field__iff,axiom,
    ( dvd_dvd_complex
    = ( ^ [A3: complex,B3: complex] :
          ( ( A3 = zero_zero_complex )
         => ( B3 = zero_zero_complex ) ) ) ) ).

% dvd_field_iff
thf(fact_591_dvd__0__left,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
     => ( A2 = zero_zero_nat ) ) ).

% dvd_0_left
thf(fact_592_dvd__0__left,axiom,
    ! [A2: complex] :
      ( ( dvd_dvd_complex @ zero_zero_complex @ A2 )
     => ( A2 = zero_zero_complex ) ) ).

% dvd_0_left
thf(fact_593_dvd__0__right,axiom,
    ! [A2: nat] : ( dvd_dvd_nat @ A2 @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_594_dvd__0__right,axiom,
    ! [A2: complex] : ( dvd_dvd_complex @ A2 @ zero_zero_complex ) ).

% dvd_0_right
thf(fact_595_dvd__0__left__iff,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
      = ( A2 = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_596_dvd__0__left__iff,axiom,
    ! [A2: complex] :
      ( ( dvd_dvd_complex @ zero_zero_complex @ A2 )
      = ( A2 = zero_zero_complex ) ) ).

% dvd_0_left_iff
thf(fact_597_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_598_dvd__refl,axiom,
    ! [A2: nat] : ( dvd_dvd_nat @ A2 @ A2 ) ).

% dvd_refl
thf(fact_599_dvd__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B2 )
     => ( ( dvd_dvd_nat @ B2 @ C )
       => ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% dvd_trans
thf(fact_600_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_601_dvd__unit__imp__unit,axiom,
    ! [A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ B2 )
     => ( ( dvd_dvd_nat @ B2 @ one_one_nat )
       => ( dvd_dvd_nat @ A2 @ one_one_nat ) ) ) ).

% dvd_unit_imp_unit
thf(fact_602_algebraic__semidom__class_Ounit__imp__dvd,axiom,
    ! [B2: nat,A2: nat] :
      ( ( dvd_dvd_nat @ B2 @ one_one_nat )
     => ( dvd_dvd_nat @ B2 @ A2 ) ) ).

% algebraic_semidom_class.unit_imp_dvd
thf(fact_603_one__dvd,axiom,
    ! [A2: nat] : ( dvd_dvd_nat @ one_one_nat @ A2 ) ).

% one_dvd
thf(fact_604_algebraic__semidom__class_Odvd__times__right__cancel__iff,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ B2 @ A2 ) @ ( times_times_nat @ C @ A2 ) )
        = ( dvd_dvd_nat @ B2 @ C ) ) ) ).

% algebraic_semidom_class.dvd_times_right_cancel_iff
thf(fact_605_algebraic__semidom__class_Odvd__times__left__cancel__iff,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_nat @ A2 @ C ) )
        = ( dvd_dvd_nat @ B2 @ C ) ) ) ).

% algebraic_semidom_class.dvd_times_left_cancel_iff
thf(fact_606_dvd__mult__cancel__right,axiom,
    ! [A2: complex,C: complex,B2: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ C ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A2 @ B2 ) ) ) ).

% dvd_mult_cancel_right
thf(fact_607_dvd__mult__cancel__left,axiom,
    ! [C: complex,A2: complex,B2: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ C @ A2 ) @ ( times_times_complex @ C @ B2 ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A2 @ B2 ) ) ) ).

% dvd_mult_cancel_left
thf(fact_608_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_609_algebraic__semidom__class_Ounit__mult__right__cancel,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( ( times_times_nat @ B2 @ A2 )
          = ( times_times_nat @ C @ A2 ) )
        = ( B2 = C ) ) ) ).

% algebraic_semidom_class.unit_mult_right_cancel
thf(fact_610_algebraic__semidom__class_Ounit__mult__left__cancel,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( ( times_times_nat @ A2 @ B2 )
          = ( times_times_nat @ A2 @ C ) )
        = ( B2 = C ) ) ) ).

% algebraic_semidom_class.unit_mult_left_cancel
thf(fact_611_algebraic__semidom__class_Omult__unit__dvd__iff_H,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
        = ( dvd_dvd_nat @ B2 @ C ) ) ) ).

% algebraic_semidom_class.mult_unit_dvd_iff'
thf(fact_612_algebraic__semidom__class_Odvd__mult__unit__iff_H,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( dvd_dvd_nat @ B2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B2 @ C ) )
        = ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% algebraic_semidom_class.dvd_mult_unit_iff'
thf(fact_613_algebraic__semidom__class_Omult__unit__dvd__iff,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( dvd_dvd_nat @ B2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
        = ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% algebraic_semidom_class.mult_unit_dvd_iff
thf(fact_614_algebraic__semidom__class_Odvd__mult__unit__iff,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( dvd_dvd_nat @ B2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ A2 @ ( times_times_nat @ C @ B2 ) )
        = ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% algebraic_semidom_class.dvd_mult_unit_iff
thf(fact_615_algebraic__semidom__class_Ois__unit__mult__iff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A2 @ one_one_nat )
        & ( dvd_dvd_nat @ B2 @ one_one_nat ) ) ) ).

% algebraic_semidom_class.is_unit_mult_iff
thf(fact_616_algebraic__semidom__class_Ounit__prod,axiom,
    ! [A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ B2 @ one_one_nat )
       => ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ one_one_nat ) ) ) ).

% algebraic_semidom_class.unit_prod
thf(fact_617_nat__dvd__not__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_618_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_619_unit__dvdE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ~ ( ( A2 != zero_zero_nat )
         => ! [C3: nat] :
              ( B2
             != ( times_times_nat @ A2 @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_620_nat__mult__dvd__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel1
thf(fact_621_dvd__mult__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_mult_cancel
thf(fact_622_dvd__pos__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ M @ N )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_623_idom__class_Odvd__mult__unit__iff,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( dvd_dvd_complex @ B2 @ one_one_complex )
     => ( ( dvd_dvd_complex @ A2 @ ( times_times_complex @ C @ B2 ) )
        = ( dvd_dvd_complex @ A2 @ C ) ) ) ).

% idom_class.dvd_mult_unit_iff
thf(fact_624_idom__class_Odvd__mult__unit__iff_H,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( dvd_dvd_complex @ B2 @ one_one_complex )
     => ( ( dvd_dvd_complex @ A2 @ ( times_times_complex @ B2 @ C ) )
        = ( dvd_dvd_complex @ A2 @ C ) ) ) ).

% idom_class.dvd_mult_unit_iff'
thf(fact_625_comm__monoid__mult__class_Ounit__prod,axiom,
    ! [A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ B2 @ one_one_nat )
       => ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ one_one_nat ) ) ) ).

% comm_monoid_mult_class.unit_prod
thf(fact_626_comm__monoid__mult__class_Ounit__prod,axiom,
    ! [A2: complex,B2: complex] :
      ( ( dvd_dvd_complex @ A2 @ one_one_complex )
     => ( ( dvd_dvd_complex @ B2 @ one_one_complex )
       => ( dvd_dvd_complex @ ( times_times_complex @ A2 @ B2 ) @ one_one_complex ) ) ) ).

% comm_monoid_mult_class.unit_prod
thf(fact_627_division__decomp,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B2 @ C ) )
     => ? [B6: nat,C4: nat] :
          ( ( A2
            = ( times_times_nat @ B6 @ C4 ) )
          & ( dvd_dvd_nat @ B6 @ B2 )
          & ( dvd_dvd_nat @ C4 @ C ) ) ) ).

% division_decomp
thf(fact_628_dvd__productE,axiom,
    ! [P6: nat,A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ P6 @ ( times_times_nat @ A2 @ B2 ) )
     => ~ ! [X2: nat,Y2: nat] :
            ( ( P6
              = ( times_times_nat @ X2 @ Y2 ) )
           => ( ( dvd_dvd_nat @ X2 @ A2 )
             => ~ ( dvd_dvd_nat @ Y2 @ B2 ) ) ) ) ).

% dvd_productE
thf(fact_629_idom__class_Odvd__times__right__cancel__iff,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( dvd_dvd_complex @ ( times_times_complex @ B2 @ A2 ) @ ( times_times_complex @ C @ A2 ) )
        = ( dvd_dvd_complex @ B2 @ C ) ) ) ).

% idom_class.dvd_times_right_cancel_iff
thf(fact_630_idom__class_Odvd__times__left__cancel__iff,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( dvd_dvd_complex @ ( times_times_complex @ A2 @ B2 ) @ ( times_times_complex @ A2 @ C ) )
        = ( dvd_dvd_complex @ B2 @ C ) ) ) ).

% idom_class.dvd_times_left_cancel_iff
thf(fact_631_comm__semiring__1__class_Omult__unit__dvd__iff_H,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
        = ( dvd_dvd_nat @ B2 @ C ) ) ) ).

% comm_semiring_1_class.mult_unit_dvd_iff'
thf(fact_632_comm__semiring__1__class_Omult__unit__dvd__iff_H,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ A2 @ one_one_complex )
     => ( ( dvd_dvd_complex @ ( times_times_complex @ A2 @ B2 ) @ C )
        = ( dvd_dvd_complex @ B2 @ C ) ) ) ).

% comm_semiring_1_class.mult_unit_dvd_iff'
thf(fact_633_comm__semiring__1__class_Omult__unit__dvd__iff,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( dvd_dvd_nat @ B2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
        = ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% comm_semiring_1_class.mult_unit_dvd_iff
thf(fact_634_comm__semiring__1__class_Omult__unit__dvd__iff,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( dvd_dvd_complex @ B2 @ one_one_complex )
     => ( ( dvd_dvd_complex @ ( times_times_complex @ A2 @ B2 ) @ C )
        = ( dvd_dvd_complex @ A2 @ C ) ) ) ).

% comm_semiring_1_class.mult_unit_dvd_iff
thf(fact_635_comm__monoid__mult__class_Ois__unit__mult__iff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B2 ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A2 @ one_one_nat )
        & ( dvd_dvd_nat @ B2 @ one_one_nat ) ) ) ).

% comm_monoid_mult_class.is_unit_mult_iff
thf(fact_636_comm__monoid__mult__class_Ois__unit__mult__iff,axiom,
    ! [A2: complex,B2: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ A2 @ B2 ) @ one_one_complex )
      = ( ( dvd_dvd_complex @ A2 @ one_one_complex )
        & ( dvd_dvd_complex @ B2 @ one_one_complex ) ) ) ).

% comm_monoid_mult_class.is_unit_mult_iff
thf(fact_637_idom__class_Ounit__mult__right__cancel,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ A2 @ one_one_complex )
     => ( ( ( times_times_complex @ B2 @ A2 )
          = ( times_times_complex @ C @ A2 ) )
        = ( B2 = C ) ) ) ).

% idom_class.unit_mult_right_cancel
thf(fact_638_idom__class_Ounit__mult__left__cancel,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ A2 @ one_one_complex )
     => ( ( ( times_times_complex @ A2 @ B2 )
          = ( times_times_complex @ A2 @ C ) )
        = ( B2 = C ) ) ) ).

% idom_class.unit_mult_left_cancel
thf(fact_639_lowner__le__traceI,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ! [Rho: mat_complex] :
              ( ( member_mat_complex @ Rho @ ( carrier_mat_complex @ N @ N ) )
             => ( ( comple1169154605998056944erator @ Rho )
               => ( ord_less_eq_complex @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ A @ Rho ) ) @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ B @ Rho ) ) ) ) )
         => ( complex_lowner_le @ A @ B ) ) ) ) ).

% lowner_le_traceI
thf(fact_640_lowner__le__traceD,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,Rho2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ Rho2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( complex_lowner_le @ A @ B )
           => ( ( comple1169154605998056944erator @ Rho2 )
             => ( ord_less_eq_complex @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ A @ Rho2 ) ) @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ B @ Rho2 ) ) ) ) ) ) ) ) ).

% lowner_le_traceD
thf(fact_641_lowner__le__trace,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( complex_lowner_le @ A @ B )
          = ( ! [X4: mat_complex] :
                ( ( member_mat_complex @ X4 @ ( carrier_mat_complex @ N @ N ) )
               => ( ( comple1169154605998056944erator @ X4 )
                 => ( ord_less_eq_complex @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ A @ X4 ) ) @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ B @ X4 ) ) ) ) ) ) ) ) ) ).

% lowner_le_trace
thf(fact_642_not__irreducibleE,axiom,
    ! [X: nat] :
      ( ~ ( factor4388943552880185071le_nat @ X )
     => ( ( X != zero_zero_nat )
       => ( ~ ( dvd_dvd_nat @ X @ one_one_nat )
         => ~ ! [A5: nat,B4: nat] :
                ( ( X
                  = ( times_times_nat @ A5 @ B4 ) )
               => ( ~ ( dvd_dvd_nat @ A5 @ one_one_nat )
                 => ( dvd_dvd_nat @ B4 @ one_one_nat ) ) ) ) ) ) ).

% not_irreducibleE
thf(fact_643_not__irreducibleE,axiom,
    ! [X: complex] :
      ( ~ ( factor4870819777162427853omplex @ X )
     => ( ( X != zero_zero_complex )
       => ( ~ ( dvd_dvd_complex @ X @ one_one_complex )
         => ~ ! [A5: complex,B4: complex] :
                ( ( X
                  = ( times_times_complex @ A5 @ B4 ) )
               => ( ~ ( dvd_dvd_complex @ A5 @ one_one_complex )
                 => ( dvd_dvd_complex @ B4 @ one_one_complex ) ) ) ) ) ) ).

% not_irreducibleE
thf(fact_644_rel__simps_I46_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% rel_simps(46)
thf(fact_645_zero__order_I2_J,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% zero_order(2)
thf(fact_646_zero__order_I1_J,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_order(1)
thf(fact_647_complete__interval,axiom,
    ! [A2: nat,B2: nat,P2: nat > $o] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( P2 @ A2 )
       => ( ~ ( P2 @ B2 )
         => ? [C3: nat] :
              ( ( ord_less_eq_nat @ A2 @ C3 )
              & ( ord_less_eq_nat @ C3 @ B2 )
              & ! [X3: nat] :
                  ( ( ( ord_less_eq_nat @ A2 @ X3 )
                    & ( ord_less_nat @ X3 @ C3 ) )
                 => ( P2 @ X3 ) )
              & ! [D3: nat] :
                  ( ! [X2: nat] :
                      ( ( ( ord_less_eq_nat @ A2 @ X2 )
                        & ( ord_less_nat @ X2 @ D3 ) )
                     => ( P2 @ X2 ) )
                 => ( ord_less_eq_nat @ D3 @ C3 ) ) ) ) ) ) ).

% complete_interval
thf(fact_648_order__trans__rules_I22_J,axiom,
    ! [X: complex,Y: complex,Z3: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ( ( ord_less_eq_complex @ Y @ Z3 )
       => ( ord_less_complex @ X @ Z3 ) ) ) ).

% order_trans_rules(22)
thf(fact_649_order__trans__rules_I22_J,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_trans_rules(22)
thf(fact_650_order__trans__rules_I21_J,axiom,
    ! [X: complex,Y: complex,Z3: complex] :
      ( ( ord_less_eq_complex @ X @ Y )
     => ( ( ord_less_complex @ Y @ Z3 )
       => ( ord_less_complex @ X @ Z3 ) ) ) ).

% order_trans_rules(21)
thf(fact_651_order__trans__rules_I21_J,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_trans_rules(21)
thf(fact_652_order__trans__rules_I18_J,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_complex @ A2 @ B2 ) ) ) ).

% order_trans_rules(18)
thf(fact_653_order__trans__rules_I18_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_trans_rules(18)
thf(fact_654_order__trans__rules_I17_J,axiom,
    ! [A2: complex,B2: complex] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_complex @ A2 @ B2 )
       => ( ord_less_complex @ A2 @ B2 ) ) ) ).

% order_trans_rules(17)
thf(fact_655_order__trans__rules_I17_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_trans_rules(17)
thf(fact_656_order__trans__rules_I6_J,axiom,
    ! [A2: complex,F: complex > complex,B2: complex,C: complex] :
      ( ( ord_less_complex @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(6)
thf(fact_657_order__trans__rules_I6_J,axiom,
    ! [A2: nat,F: complex > nat,B2: complex,C: complex] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(6)
thf(fact_658_order__trans__rules_I6_J,axiom,
    ! [A2: complex,F: nat > complex,B2: nat,C: nat] :
      ( ( ord_less_complex @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(6)
thf(fact_659_order__trans__rules_I6_J,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(6)
thf(fact_660_order__trans__rules_I5_J,axiom,
    ! [A2: nat,B2: nat,F: nat > complex,C: complex] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(5)
thf(fact_661_order__trans__rules_I5_J,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(5)
thf(fact_662_order__trans__rules_I4_J,axiom,
    ! [A2: complex,F: nat > complex,B2: nat,C: nat] :
      ( ( ord_less_eq_complex @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(4)
thf(fact_663_order__trans__rules_I4_J,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(4)
thf(fact_664_order__trans__rules_I3_J,axiom,
    ! [A2: complex,B2: complex,F: complex > complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_complex @ ( F @ B2 ) @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(3)
thf(fact_665_order__trans__rules_I3_J,axiom,
    ! [A2: complex,B2: complex,F: complex > nat,C: nat] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(3)
thf(fact_666_order__trans__rules_I3_J,axiom,
    ! [A2: nat,B2: nat,F: nat > complex,C: complex] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_complex @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(3)
thf(fact_667_order__trans__rules_I3_J,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(3)
thf(fact_668_leD,axiom,
    ! [Y: complex,X: complex] :
      ( ( ord_less_eq_complex @ Y @ X )
     => ~ ( ord_less_complex @ X @ Y ) ) ).

% leD
thf(fact_669_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_670_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_671_le__less,axiom,
    ( ord_less_eq_complex
    = ( ^ [X4: complex,Y4: complex] :
          ( ( ord_less_complex @ X4 @ Y4 )
          | ( X4 = Y4 ) ) ) ) ).

% le_less
thf(fact_672_le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_nat @ X4 @ Y4 )
          | ( X4 = Y4 ) ) ) ) ).

% le_less
thf(fact_673_less__le,axiom,
    ( ord_less_complex
    = ( ^ [X4: complex,Y4: complex] :
          ( ( ord_less_eq_complex @ X4 @ Y4 )
          & ( X4 != Y4 ) ) ) ) ).

% less_le
thf(fact_674_less__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ( X4 != Y4 ) ) ) ) ).

% less_le
thf(fact_675_nless__le,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ~ ( ord_less_complex @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_complex @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_676_nless__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_nat @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_nat @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_677_not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% not_le
thf(fact_678_not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% not_less
thf(fact_679_antisym__conv1,axiom,
    ! [X: complex,Y: complex] :
      ( ~ ( ord_less_complex @ X @ Y )
     => ( ( ord_less_eq_complex @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_680_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_681_antisym__conv2,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_eq_complex @ X @ Y )
     => ( ( ~ ( ord_less_complex @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_682_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_683_less__imp__le,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_complex @ X @ Y )
     => ( ord_less_eq_complex @ X @ Y ) ) ).

% less_imp_le
thf(fact_684_less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% less_imp_le
thf(fact_685_le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% le_less_linear
thf(fact_686_le__imp__less__or__eq,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_eq_complex @ X @ Y )
     => ( ( ord_less_complex @ X @ Y )
        | ( X = Y ) ) ) ).

% le_imp_less_or_eq
thf(fact_687_le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% le_imp_less_or_eq
thf(fact_688_less__le__not__le,axiom,
    ( ord_less_complex
    = ( ^ [X4: complex,Y4: complex] :
          ( ( ord_less_eq_complex @ X4 @ Y4 )
          & ~ ( ord_less_eq_complex @ Y4 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_689_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ~ ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_690_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_691_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_complex
    = ( ^ [A3: complex,B3: complex] :
          ( ( ord_less_complex @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_692_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_693_order_Ostrict__iff__order,axiom,
    ( ord_less_complex
    = ( ^ [A3: complex,B3: complex] :
          ( ( ord_less_eq_complex @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_694_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_695_order_Ostrict__trans1,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_complex @ B2 @ C )
       => ( ord_less_complex @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_696_order_Ostrict__trans1,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_697_order_Ostrict__trans2,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ord_less_complex @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_698_order_Ostrict__trans2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_699_order_Ostrict__iff__not,axiom,
    ( ord_less_complex
    = ( ^ [A3: complex,B3: complex] :
          ( ( ord_less_eq_complex @ A3 @ B3 )
          & ~ ( ord_less_eq_complex @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_700_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_701_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_complex
    = ( ^ [B3: complex,A3: complex] :
          ( ( ord_less_complex @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_702_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_nat @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_703_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_complex
    = ( ^ [B3: complex,A3: complex] :
          ( ( ord_less_eq_complex @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_704_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_705_dual__order_Ostrict__trans1,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ord_less_eq_complex @ B2 @ A2 )
     => ( ( ord_less_complex @ C @ B2 )
       => ( ord_less_complex @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_706_dual__order_Ostrict__trans1,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_707_dual__order_Ostrict__trans2,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ord_less_complex @ B2 @ A2 )
     => ( ( ord_less_eq_complex @ C @ B2 )
       => ( ord_less_complex @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_708_dual__order_Ostrict__trans2,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_709_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_complex
    = ( ^ [B3: complex,A3: complex] :
          ( ( ord_less_eq_complex @ B3 @ A3 )
          & ~ ( ord_less_eq_complex @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_710_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_711_order_Ostrict__implies__order,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_complex @ A2 @ B2 )
     => ( ord_less_eq_complex @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_712_order_Ostrict__implies__order,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_713_dual__order_Ostrict__implies__order,axiom,
    ! [B2: complex,A2: complex] :
      ( ( ord_less_complex @ B2 @ A2 )
     => ( ord_less_eq_complex @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_714_dual__order_Ostrict__implies__order,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_715_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ~ ( ord_less_eq_nat @ T @ X3 ) ) ).

% minf(8)
thf(fact_716_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ( ord_less_eq_nat @ X3 @ T ) ) ).

% minf(6)
thf(fact_717_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ( ord_less_eq_nat @ T @ X3 ) ) ).

% pinf(8)
thf(fact_718_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ~ ( ord_less_eq_nat @ X3 @ T ) ) ).

% pinf(6)
thf(fact_719_verit__comp__simplify_I3_J,axiom,
    ! [B7: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B7 @ A6 ) )
      = ( ord_less_nat @ A6 @ B7 ) ) ).

% verit_comp_simplify(3)
thf(fact_720_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_721_order__trans__rules_I26_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ord_less_eq_complex @ A2 @ C ) ) ) ).

% order_trans_rules(26)
thf(fact_722_order__trans__rules_I26_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order_trans_rules(26)
thf(fact_723_order__trans__rules_I25_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_complex @ A2 @ C ) ) ) ).

% order_trans_rules(25)
thf(fact_724_order__trans__rules_I25_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order_trans_rules(25)
thf(fact_725_order__trans__rules_I24_J,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% order_trans_rules(24)
thf(fact_726_order__trans__rules_I24_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% order_trans_rules(24)
thf(fact_727_order__trans__rules_I23_J,axiom,
    ! [X: complex,Y: complex,Z3: complex] :
      ( ( ord_less_eq_complex @ X @ Y )
     => ( ( ord_less_eq_complex @ Y @ Z3 )
       => ( ord_less_eq_complex @ X @ Z3 ) ) ) ).

% order_trans_rules(23)
thf(fact_728_order__trans__rules_I23_J,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z3 )
       => ( ord_less_eq_nat @ X @ Z3 ) ) ) ).

% order_trans_rules(23)
thf(fact_729_order__trans__rules_I10_J,axiom,
    ! [A2: complex,F: complex > complex,B2: complex,C: complex] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(10)
thf(fact_730_order__trans__rules_I10_J,axiom,
    ! [A2: nat,F: complex > nat,B2: complex,C: complex] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(10)
thf(fact_731_order__trans__rules_I10_J,axiom,
    ! [A2: complex,F: nat > complex,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(10)
thf(fact_732_order__trans__rules_I10_J,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(10)
thf(fact_733_order__trans__rules_I9_J,axiom,
    ! [A2: complex,B2: complex,F: complex > complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(9)
thf(fact_734_order__trans__rules_I9_J,axiom,
    ! [A2: complex,B2: complex,F: complex > nat,C: nat] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(9)
thf(fact_735_order__trans__rules_I9_J,axiom,
    ! [A2: nat,B2: nat,F: nat > complex,C: complex] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(9)
thf(fact_736_order__trans__rules_I9_J,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(9)
thf(fact_737_order__trans__rules_I8_J,axiom,
    ! [A2: complex,F: complex > complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(8)
thf(fact_738_order__trans__rules_I8_J,axiom,
    ! [A2: complex,F: nat > complex,B2: nat,C: nat] :
      ( ( ord_less_eq_complex @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_complex @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(8)
thf(fact_739_order__trans__rules_I8_J,axiom,
    ! [A2: nat,F: complex > nat,B2: complex,C: complex] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(8)
thf(fact_740_order__trans__rules_I8_J,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_trans_rules(8)
thf(fact_741_order__trans__rules_I7_J,axiom,
    ! [A2: complex,B2: complex,F: complex > complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ ( F @ B2 ) @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(7)
thf(fact_742_order__trans__rules_I7_J,axiom,
    ! [A2: complex,B2: complex,F: complex > nat,C: nat] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: complex,Y2: complex] :
              ( ( ord_less_eq_complex @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(7)
thf(fact_743_order__trans__rules_I7_J,axiom,
    ! [A2: nat,B2: nat,F: nat > complex,C: complex] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_complex @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_complex @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(7)
thf(fact_744_order__trans__rules_I7_J,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_trans_rules(7)
thf(fact_745_linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linear
thf(fact_746_nle__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B2 ) )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_747_eq__refl,axiom,
    ! [X: complex,Y: complex] :
      ( ( X = Y )
     => ( ord_less_eq_complex @ X @ Y ) ) ).

% eq_refl
thf(fact_748_eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% eq_refl
thf(fact_749_le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% le_cases
thf(fact_750_le__cases3,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z3 ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z3 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z3 )
           => ~ ( ord_less_eq_nat @ Z3 @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z3 @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z3 )
               => ~ ( ord_less_eq_nat @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z3 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_751_antisym__conv,axiom,
    ! [Y: complex,X: complex] :
      ( ( ord_less_eq_complex @ Y @ X )
     => ( ( ord_less_eq_complex @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv
thf(fact_752_antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv
thf(fact_753_order_Oeq__iff,axiom,
    ( ( ^ [Y5: complex,Z4: complex] : ( Y5 = Z4 ) )
    = ( ^ [A3: complex,B3: complex] :
          ( ( ord_less_eq_complex @ A3 @ B3 )
          & ( ord_less_eq_complex @ B3 @ A3 ) ) ) ) ).

% order.eq_iff
thf(fact_754_order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% order.eq_iff
thf(fact_755_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: complex,Z4: complex] : ( Y5 = Z4 ) )
    = ( ^ [X4: complex,Y4: complex] :
          ( ( ord_less_eq_complex @ X4 @ Y4 )
          & ( ord_less_eq_complex @ Y4 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_756_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_757_order__antisym,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_eq_complex @ X @ Y )
     => ( ( ord_less_eq_complex @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_758_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_759_order_Orefl,axiom,
    ! [A2: complex] : ( ord_less_eq_complex @ A2 @ A2 ) ).

% order.refl
thf(fact_760_order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% order.refl
thf(fact_761_order__refl,axiom,
    ! [X: complex] : ( ord_less_eq_complex @ X @ X ) ).

% order_refl
thf(fact_762_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_763_order_Otrans,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ord_less_eq_complex @ A2 @ C ) ) ) ).

% order.trans
thf(fact_764_order_Otrans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_765_linorder__wlog,axiom,
    ! [P2: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A5 @ B4 )
         => ( P2 @ A5 @ B4 ) )
     => ( ! [A5: nat,B4: nat] :
            ( ( P2 @ B4 @ A5 )
           => ( P2 @ A5 @ B4 ) )
       => ( P2 @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_766_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: complex,Z4: complex] : ( Y5 = Z4 ) )
    = ( ^ [A3: complex,B3: complex] :
          ( ( ord_less_eq_complex @ B3 @ A3 )
          & ( ord_less_eq_complex @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_767_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_768_dual__order_Oantisym,axiom,
    ! [B2: complex,A2: complex] :
      ( ( ord_less_eq_complex @ B2 @ A2 )
     => ( ( ord_less_eq_complex @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_769_dual__order_Oantisym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_770_dual__order_Otrans,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ord_less_eq_complex @ B2 @ A2 )
     => ( ( ord_less_eq_complex @ C @ B2 )
       => ( ord_less_eq_complex @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_771_dual__order_Otrans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_772_verit__comp__simplify_I2_J,axiom,
    ! [A2: complex] : ( ord_less_eq_complex @ A2 @ A2 ) ).

% verit_comp_simplify(2)
thf(fact_773_verit__comp__simplify_I2_J,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% verit_comp_simplify(2)
thf(fact_774_verit__la__disequality,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_nat @ A2 @ B2 )
      | ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_775_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ zero_zero_complex @ C )
       => ( ord_less_eq_complex @ ( times_times_complex @ C @ A2 ) @ ( times_times_complex @ C @ B2 ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_776_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_777_mult__nonneg__nonpos2,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
     => ( ( ord_less_eq_complex @ B2 @ zero_zero_complex )
       => ( ord_less_eq_complex @ ( times_times_complex @ B2 @ A2 ) @ zero_zero_complex ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_778_mult__nonneg__nonpos2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B2 @ A2 ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_779_mult__nonpos__nonneg,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ A2 @ zero_zero_complex )
     => ( ( ord_less_eq_complex @ zero_zero_complex @ B2 )
       => ( ord_less_eq_complex @ ( times_times_complex @ A2 @ B2 ) @ zero_zero_complex ) ) ) ).

% mult_nonpos_nonneg
thf(fact_780_mult__nonpos__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_781_mult__nonneg__nonpos,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
     => ( ( ord_less_eq_complex @ B2 @ zero_zero_complex )
       => ( ord_less_eq_complex @ ( times_times_complex @ A2 @ B2 ) @ zero_zero_complex ) ) ) ).

% mult_nonneg_nonpos
thf(fact_782_mult__nonneg__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_783_mult__nonneg__nonneg,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
     => ( ( ord_less_eq_complex @ zero_zero_complex @ B2 )
       => ( ord_less_eq_complex @ zero_zero_complex @ ( times_times_complex @ A2 @ B2 ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_784_mult__nonneg__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_785_split__mult__neg__le,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
          & ( ord_less_eq_complex @ B2 @ zero_zero_complex ) )
        | ( ( ord_less_eq_complex @ A2 @ zero_zero_complex )
          & ( ord_less_eq_complex @ zero_zero_complex @ B2 ) ) )
     => ( ord_less_eq_complex @ ( times_times_complex @ A2 @ B2 ) @ zero_zero_complex ) ) ).

% split_mult_neg_le
thf(fact_786_split__mult__neg__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
          & ( ord_less_eq_nat @ B2 @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_787_mult__right__mono,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ zero_zero_complex @ C )
       => ( ord_less_eq_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ C ) ) ) ) ).

% mult_right_mono
thf(fact_788_mult__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ) ).

% mult_right_mono
thf(fact_789_mult__right__mono__neg,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ord_less_eq_complex @ B2 @ A2 )
     => ( ( ord_less_eq_complex @ C @ zero_zero_complex )
       => ( ord_less_eq_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_790_mult__left__mono,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ zero_zero_complex @ C )
       => ( ord_less_eq_complex @ ( times_times_complex @ C @ A2 ) @ ( times_times_complex @ C @ B2 ) ) ) ) ).

% mult_left_mono
thf(fact_791_mult__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% mult_left_mono
thf(fact_792_mult__nonpos__nonpos,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ A2 @ zero_zero_complex )
     => ( ( ord_less_eq_complex @ B2 @ zero_zero_complex )
       => ( ord_less_eq_complex @ zero_zero_complex @ ( times_times_complex @ A2 @ B2 ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_793_mult__left__mono__neg,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ord_less_eq_complex @ B2 @ A2 )
     => ( ( ord_less_eq_complex @ C @ zero_zero_complex )
       => ( ord_less_eq_complex @ ( times_times_complex @ C @ A2 ) @ ( times_times_complex @ C @ B2 ) ) ) ) ).

% mult_left_mono_neg
thf(fact_794_split__mult__pos__le,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
          & ( ord_less_eq_complex @ zero_zero_complex @ B2 ) )
        | ( ( ord_less_eq_complex @ A2 @ zero_zero_complex )
          & ( ord_less_eq_complex @ B2 @ zero_zero_complex ) ) )
     => ( ord_less_eq_complex @ zero_zero_complex @ ( times_times_complex @ A2 @ B2 ) ) ) ).

% split_mult_pos_le
thf(fact_795_mult__mono_H,axiom,
    ! [A2: complex,B2: complex,C: complex,D: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ C @ D )
       => ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
         => ( ( ord_less_eq_complex @ zero_zero_complex @ C )
           => ( ord_less_eq_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_796_mult__mono_H,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_797_mult__mono,axiom,
    ! [A2: complex,B2: complex,C: complex,D: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ C @ D )
       => ( ( ord_less_eq_complex @ zero_zero_complex @ B2 )
         => ( ( ord_less_eq_complex @ zero_zero_complex @ C )
           => ( ord_less_eq_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_798_mult__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_799_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_800_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_801_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_802_linordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_803_linordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_804_mult__right__le__imp__le,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A2 @ B2 ) ) ) ).

% mult_right_le_imp_le
thf(fact_805_mult__left__le__imp__le,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A2 @ B2 ) ) ) ).

% mult_left_le_imp_le
thf(fact_806_linordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono'
thf(fact_807_mult__right__less__imp__less,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% mult_right_less_imp_less
thf(fact_808_linordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono
thf(fact_809_mult__left__less__imp__less,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% mult_left_less_imp_less
thf(fact_810_mult__left__le,axiom,
    ! [C: nat,A2: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ A2 ) ) ) ).

% mult_left_le
thf(fact_811_mult__le__one,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ( ord_less_eq_nat @ B2 @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_812_irreducible__mult,axiom,
    ! [A2: complex,B2: complex] :
      ( ( factor4870819777162427853omplex @ ( times_times_complex @ A2 @ B2 ) )
      = ( ( ( dvd_dvd_complex @ A2 @ one_one_complex )
          & ( factor4870819777162427853omplex @ B2 ) )
        | ( ( dvd_dvd_complex @ B2 @ one_one_complex )
          & ( factor4870819777162427853omplex @ A2 ) ) ) ) ).

% irreducible_mult
thf(fact_813_irreducible__multD,axiom,
    ! [A2: complex,B2: complex] :
      ( ( factor4870819777162427853omplex @ ( times_times_complex @ A2 @ B2 ) )
     => ( ( ( dvd_dvd_complex @ A2 @ one_one_complex )
          & ( factor4870819777162427853omplex @ B2 ) )
        | ( ( dvd_dvd_complex @ B2 @ one_one_complex )
          & ( factor4870819777162427853omplex @ A2 ) ) ) ) ).

% irreducible_multD
thf(fact_814_idom__class_Oirreducible__mult__unit__left,axiom,
    ! [A2: complex,P6: complex] :
      ( ( dvd_dvd_complex @ A2 @ one_one_complex )
     => ( ( factor4870819777162427853omplex @ ( times_times_complex @ A2 @ P6 ) )
        = ( factor4870819777162427853omplex @ P6 ) ) ) ).

% idom_class.irreducible_mult_unit_left
thf(fact_815_irreducible__mult__unit__right,axiom,
    ! [A2: complex,P6: complex] :
      ( ( dvd_dvd_complex @ A2 @ one_one_complex )
     => ( ( factor4870819777162427853omplex @ ( times_times_complex @ P6 @ A2 ) )
        = ( factor4870819777162427853omplex @ P6 ) ) ) ).

% irreducible_mult_unit_right
thf(fact_816_trace__adjoint__positive,axiom,
    ! [A: mat_complex] : ( ord_less_eq_complex @ zero_zero_complex @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ A @ ( schur_5982229384592763574omplex @ A ) ) ) ) ).

% trace_adjoint_positive
thf(fact_817_irreducibleE,axiom,
    ! [P6: nat] :
      ( ( factor4388943552880185071le_nat @ P6 )
     => ~ ( ( P6 != zero_zero_nat )
         => ( ~ ( dvd_dvd_nat @ P6 @ one_one_nat )
           => ~ ! [A7: nat,B8: nat] :
                  ( ( P6
                    = ( times_times_nat @ A7 @ B8 ) )
                 => ( ( dvd_dvd_nat @ A7 @ one_one_nat )
                    | ( dvd_dvd_nat @ B8 @ one_one_nat ) ) ) ) ) ) ).

% irreducibleE
thf(fact_818_irreducibleE,axiom,
    ! [P6: complex] :
      ( ( factor4870819777162427853omplex @ P6 )
     => ~ ( ( P6 != zero_zero_complex )
         => ( ~ ( dvd_dvd_complex @ P6 @ one_one_complex )
           => ~ ! [A7: complex,B8: complex] :
                  ( ( P6
                    = ( times_times_complex @ A7 @ B8 ) )
                 => ( ( dvd_dvd_complex @ A7 @ one_one_complex )
                    | ( dvd_dvd_complex @ B8 @ one_one_complex ) ) ) ) ) ) ).

% irreducibleE
thf(fact_819_irreducibleI,axiom,
    ! [P6: nat] :
      ( ( P6 != zero_zero_nat )
     => ( ~ ( dvd_dvd_nat @ P6 @ one_one_nat )
       => ( ! [A5: nat,B4: nat] :
              ( ( P6
                = ( times_times_nat @ A5 @ B4 ) )
             => ( ( dvd_dvd_nat @ A5 @ one_one_nat )
                | ( dvd_dvd_nat @ B4 @ one_one_nat ) ) )
         => ( factor4388943552880185071le_nat @ P6 ) ) ) ) ).

% irreducibleI
thf(fact_820_irreducibleI,axiom,
    ! [P6: complex] :
      ( ( P6 != zero_zero_complex )
     => ( ~ ( dvd_dvd_complex @ P6 @ one_one_complex )
       => ( ! [A5: complex,B4: complex] :
              ( ( P6
                = ( times_times_complex @ A5 @ B4 ) )
             => ( ( dvd_dvd_complex @ A5 @ one_one_complex )
                | ( dvd_dvd_complex @ B4 @ one_one_complex ) ) )
         => ( factor4870819777162427853omplex @ P6 ) ) ) ) ).

% irreducibleI
thf(fact_821_irreducible__def,axiom,
    ( factor4388943552880185071le_nat
    = ( ^ [P: nat] :
          ( ( P != zero_zero_nat )
          & ~ ( dvd_dvd_nat @ P @ one_one_nat )
          & ! [A3: nat,B3: nat] :
              ( ( P
                = ( times_times_nat @ A3 @ B3 ) )
             => ( ( dvd_dvd_nat @ A3 @ one_one_nat )
                | ( dvd_dvd_nat @ B3 @ one_one_nat ) ) ) ) ) ) ).

% irreducible_def
thf(fact_822_irreducible__def,axiom,
    ( factor4870819777162427853omplex
    = ( ^ [P: complex] :
          ( ( P != zero_zero_complex )
          & ~ ( dvd_dvd_complex @ P @ one_one_complex )
          & ! [A3: complex,B3: complex] :
              ( ( P
                = ( times_times_complex @ A3 @ B3 ) )
             => ( ( dvd_dvd_complex @ A3 @ one_one_complex )
                | ( dvd_dvd_complex @ B3 @ one_one_complex ) ) ) ) ) ) ).

% irreducible_def
thf(fact_823_irreducibleD,axiom,
    ! [P6: nat,A2: nat,B2: nat] :
      ( ( factor4388943552880185071le_nat @ P6 )
     => ( ( P6
          = ( times_times_nat @ A2 @ B2 ) )
       => ( ( dvd_dvd_nat @ A2 @ one_one_nat )
          | ( dvd_dvd_nat @ B2 @ one_one_nat ) ) ) ) ).

% irreducibleD
thf(fact_824_irreducibleD,axiom,
    ! [P6: complex,A2: complex,B2: complex] :
      ( ( factor4870819777162427853omplex @ P6 )
     => ( ( P6
          = ( times_times_complex @ A2 @ B2 ) )
       => ( ( dvd_dvd_complex @ A2 @ one_one_complex )
          | ( dvd_dvd_complex @ B2 @ one_one_complex ) ) ) ) ).

% irreducibleD
thf(fact_825_algebraic__semidom__class_Oirreducible__mult__unit__left,axiom,
    ! [A2: nat,P6: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( factor4388943552880185071le_nat @ ( times_times_nat @ A2 @ P6 ) )
        = ( factor4388943552880185071le_nat @ P6 ) ) ) ).

% algebraic_semidom_class.irreducible_mult_unit_left
thf(fact_826_mult__le__mono2,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J2 ) ) ) ).

% mult_le_mono2
thf(fact_827_mult__le__mono1,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ K ) ) ) ).

% mult_le_mono1
thf(fact_828_mult__le__mono,axiom,
    ! [I2: nat,J2: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ L ) ) ) ) ).

% mult_le_mono
thf(fact_829_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_830_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_831_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_832_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_833_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_834_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_835_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_836_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_837_le__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% le_simps(1)
thf(fact_838_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M3 @ N3 )
          & ( M3 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_839_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
          | ( M3 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_840_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_841_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_842_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I2: nat,J2: nat] :
      ( ! [I3: nat,J3: nat] :
          ( ( ord_less_nat @ I3 @ J3 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J3 ) ) )
     => ( ( ord_less_eq_nat @ I2 @ J2 )
       => ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J2 ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_843_ex__least__nat__le,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K3 )
               => ~ ( P2 @ I4 ) )
            & ( P2 @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_844_set__times__mono5,axiom,
    ! [A2: mat_a,C2: set_mat_a,B: set_mat_a,D2: set_mat_a] :
      ( ( member_mat_a @ A2 @ C2 )
     => ( ( ord_le3318621148231462513_mat_a @ B @ D2 )
       => ( ord_le3318621148231462513_mat_a @ ( set_el1062546952344711308_mat_a @ A2 @ B ) @ ( times_1230744552615602198_mat_a @ C2 @ D2 ) ) ) ) ).

% set_times_mono5
thf(fact_845_set__times__mono5,axiom,
    ! [A2: mat_complex,C2: set_mat_complex,B: set_mat_complex,D2: set_mat_complex] :
      ( ( member_mat_complex @ A2 @ C2 )
     => ( ( ord_le3632134057777142183omplex @ B @ D2 )
       => ( ord_le3632134057777142183omplex @ ( set_el176066062795894710omplex @ A2 @ B ) @ ( times_6731331324747250370omplex @ C2 @ D2 ) ) ) ) ).

% set_times_mono5
thf(fact_846_set__times__mono3,axiom,
    ! [A2: mat_a,C2: set_mat_a,D2: set_mat_a] :
      ( ( member_mat_a @ A2 @ C2 )
     => ( ord_le3318621148231462513_mat_a @ ( set_el1062546952344711308_mat_a @ A2 @ D2 ) @ ( times_1230744552615602198_mat_a @ C2 @ D2 ) ) ) ).

% set_times_mono3
thf(fact_847_set__times__mono3,axiom,
    ! [A2: mat_complex,C2: set_mat_complex,D2: set_mat_complex] :
      ( ( member_mat_complex @ A2 @ C2 )
     => ( ord_le3632134057777142183omplex @ ( set_el176066062795894710omplex @ A2 @ D2 ) @ ( times_6731331324747250370omplex @ C2 @ D2 ) ) ) ).

% set_times_mono3
thf(fact_848_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_849_mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel1
thf(fact_850_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_851_dvd__imp__le,axiom,
    ! [K: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ K @ N ) ) ) ).

% dvd_imp_le
thf(fact_852_mult__eq__1,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
     => ( ( ord_less_eq_complex @ A2 @ one_one_complex )
       => ( ( ord_less_eq_complex @ B2 @ one_one_complex )
         => ( ( ( times_times_complex @ A2 @ B2 )
              = one_one_complex )
            = ( ( A2 = one_one_complex )
              & ( B2 = one_one_complex ) ) ) ) ) ) ).

% mult_eq_1
thf(fact_853_mult__eq__1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ one_one_nat )
       => ( ( ord_less_eq_nat @ B2 @ one_one_nat )
         => ( ( ( times_times_nat @ A2 @ B2 )
              = one_one_nat )
            = ( ( A2 = one_one_nat )
              & ( B2 = one_one_nat ) ) ) ) ) ) ).

% mult_eq_1
thf(fact_854_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_855_le__trans,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ( ord_less_eq_nat @ J2 @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_856_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_857_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_858_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_859_Nat_Oex__has__greatest__nat,axiom,
    ! [P2: nat > $o,K: nat,B2: nat] :
      ( ( P2 @ K )
     => ( ! [Y2: nat] :
            ( ( P2 @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B2 ) )
       => ? [X2: nat] :
            ( ( P2 @ X2 )
            & ! [Y3: nat] :
                ( ( P2 @ Y3 )
               => ( ord_less_eq_nat @ Y3 @ X2 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_860_Set_Obasic__monos_I7_J,axiom,
    ! [A: set_mat_a,B: set_mat_a,X: mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A @ B )
     => ( ( member_mat_a @ X @ A )
       => ( member_mat_a @ X @ B ) ) ) ).

% Set.basic_monos(7)
thf(fact_861_Set_Obasic__monos_I7_J,axiom,
    ! [A: set_mat_complex,B: set_mat_complex,X: mat_complex] :
      ( ( ord_le3632134057777142183omplex @ A @ B )
     => ( ( member_mat_complex @ X @ A )
       => ( member_mat_complex @ X @ B ) ) ) ).

% Set.basic_monos(7)
thf(fact_862_basic__trans__rules_I31_J,axiom,
    ! [A: set_mat_a,B: set_mat_a,C: mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A @ B )
     => ( ( member_mat_a @ C @ A )
       => ( member_mat_a @ C @ B ) ) ) ).

% basic_trans_rules(31)
thf(fact_863_basic__trans__rules_I31_J,axiom,
    ! [A: set_mat_complex,B: set_mat_complex,C: mat_complex] :
      ( ( ord_le3632134057777142183omplex @ A @ B )
     => ( ( member_mat_complex @ C @ A )
       => ( member_mat_complex @ C @ B ) ) ) ).

% basic_trans_rules(31)
thf(fact_864_subsetI,axiom,
    ! [A: set_mat_a,B: set_mat_a] :
      ( ! [X2: mat_a] :
          ( ( member_mat_a @ X2 @ A )
         => ( member_mat_a @ X2 @ B ) )
     => ( ord_le3318621148231462513_mat_a @ A @ B ) ) ).

% subsetI
thf(fact_865_subsetI,axiom,
    ! [A: set_mat_complex,B: set_mat_complex] :
      ( ! [X2: mat_complex] :
          ( ( member_mat_complex @ X2 @ A )
         => ( member_mat_complex @ X2 @ B ) )
     => ( ord_le3632134057777142183omplex @ A @ B ) ) ).

% subsetI
thf(fact_866_subset__eq,axiom,
    ( ord_le3318621148231462513_mat_a
    = ( ^ [A4: set_mat_a,B5: set_mat_a] :
        ! [X4: mat_a] :
          ( ( member_mat_a @ X4 @ A4 )
         => ( member_mat_a @ X4 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_867_subset__eq,axiom,
    ( ord_le3632134057777142183omplex
    = ( ^ [A4: set_mat_complex,B5: set_mat_complex] :
        ! [X4: mat_complex] :
          ( ( member_mat_complex @ X4 @ A4 )
         => ( member_mat_complex @ X4 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_868_subset__iff,axiom,
    ( ord_le3318621148231462513_mat_a
    = ( ^ [A4: set_mat_a,B5: set_mat_a] :
        ! [T2: mat_a] :
          ( ( member_mat_a @ T2 @ A4 )
         => ( member_mat_a @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_869_subset__iff,axiom,
    ( ord_le3632134057777142183omplex
    = ( ^ [A4: set_mat_complex,B5: set_mat_complex] :
        ! [T2: mat_complex] :
          ( ( member_mat_complex @ T2 @ A4 )
         => ( member_mat_complex @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_870_positive__proj__trace,axiom,
    ! [P2: mat_complex,R: mat_complex,N: nat] :
      ( ( linear5633924348262549461omplex @ P2 )
     => ( ( complex_positive @ R )
       => ( ( member_mat_complex @ P2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ R @ ( carrier_mat_complex @ N @ N ) )
           => ( ord_less_eq_complex @ zero_zero_complex @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ R @ P2 ) ) ) ) ) ) ) ).

% positive_proj_trace
thf(fact_871_positive__close__under__left__right__mult__adjoint,axiom,
    ! [M4: mat_complex,N: nat,A: mat_complex] :
      ( ( member_mat_complex @ M4 @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
       => ( ( complex_positive @ A )
         => ( complex_positive @ ( times_8009071140041733218omplex @ ( times_8009071140041733218omplex @ M4 @ A ) @ ( schur_5982229384592763574omplex @ M4 ) ) ) ) ) ) ).

% positive_close_under_left_right_mult_adjoint
thf(fact_872_positive__only__if__decomp,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( complex_positive @ A )
       => ? [X2: mat_complex] :
            ( ( member_mat_complex @ X2 @ ( carrier_mat_complex @ N @ N ) )
            & ( ( times_8009071140041733218omplex @ X2 @ ( schur_5982229384592763574omplex @ X2 ) )
              = A ) ) ) ) ).

% positive_only_if_decomp
thf(fact_873_positive__iff__decomp,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( complex_positive @ A )
        = ( ? [X4: mat_complex] :
              ( ( member_mat_complex @ X4 @ ( carrier_mat_complex @ N @ N ) )
              & ( ( times_8009071140041733218omplex @ X4 @ ( schur_5982229384592763574omplex @ X4 ) )
                = A ) ) ) ) ) ).

% positive_iff_decomp
thf(fact_874_positive__if__decomp,axiom,
    ! [A: mat_complex,N: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ? [M6: mat_complex] :
            ( ( times_8009071140041733218omplex @ M6 @ ( schur_5982229384592763574omplex @ M6 ) )
            = A )
       => ( complex_positive @ A ) ) ) ).

% positive_if_decomp
thf(fact_875_inf__pigeonhole__principle,axiom,
    ! [N: nat,F: nat > nat > $o] :
      ( ! [K3: nat] :
        ? [I4: nat] :
          ( ( ord_less_nat @ I4 @ N )
          & ( F @ K3 @ I4 ) )
     => ? [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
          & ! [K4: nat] :
            ? [K5: nat] :
              ( ( ord_less_eq_nat @ K4 @ K5 )
              & ( F @ K5 @ I3 ) ) ) ) ).

% inf_pigeonhole_principle
thf(fact_876_nat__descend__induct,axiom,
    ! [N: nat,P2: nat > $o,M: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N @ K3 )
         => ( P2 @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K3 @ I4 )
                 => ( P2 @ I4 ) )
             => ( P2 @ K3 ) ) )
       => ( P2 @ M ) ) ) ).

% nat_descend_induct
thf(fact_877_pivot__fun__swaprows,axiom,
    ! [A: mat_complex,F: nat > nat,Jj: nat,Nr: nat,Nc: nat,L: nat,K: nat] :
      ( ( gauss_2609248829700396350omplex @ A @ F @ Jj )
     => ( ( ( dim_row_complex @ A )
          = Nr )
       => ( ( ( dim_col_complex @ A )
            = Nc )
         => ( ( ( F @ L )
              = Jj )
           => ( ( ( F @ K )
                = Jj )
             => ( ( ord_less_nat @ L @ Nr )
               => ( ( ord_less_nat @ K @ Nr )
                 => ( ( ord_less_eq_nat @ Jj @ Nc )
                   => ( gauss_2609248829700396350omplex @ ( gauss_1020679828357514249omplex @ L @ K @ A ) @ F @ Jj ) ) ) ) ) ) ) ) ) ).

% pivot_fun_swaprows
thf(fact_878_pivot__funD_I1_J,axiom,
    ! [A: mat_complex,Nr: nat,F: nat > nat,Nc: nat,I2: nat] :
      ( ( ( dim_row_complex @ A )
        = Nr )
     => ( ( gauss_2609248829700396350omplex @ A @ F @ Nc )
       => ( ( ord_less_nat @ I2 @ Nr )
         => ( ord_less_eq_nat @ ( F @ I2 ) @ Nc ) ) ) ) ).

% pivot_funD(1)
thf(fact_879_pivot__fun__multrow,axiom,
    ! [A: mat_nat,F: nat > nat,Jj: nat,Nr: nat,Nc: nat,I0: nat,A2: nat] :
      ( ( gauss_8416567519840421984un_nat @ A @ F @ Jj )
     => ( ( ( dim_row_nat @ A )
          = Nr )
       => ( ( ( dim_col_nat @ A )
            = Nc )
         => ( ( ( F @ I0 )
              = Jj )
           => ( ( ord_less_eq_nat @ Jj @ Nc )
             => ( gauss_8416567519840421984un_nat @ ( gauss_2409696420326117733en_nat @ times_times_nat @ I0 @ A2 @ A ) @ F @ Jj ) ) ) ) ) ) ).

% pivot_fun_multrow
thf(fact_880_pivot__fun__multrow,axiom,
    ! [A: mat_complex,F: nat > nat,Jj: nat,Nr: nat,Nc: nat,I0: nat,A2: complex] :
      ( ( gauss_2609248829700396350omplex @ A @ F @ Jj )
     => ( ( ( dim_row_complex @ A )
          = Nr )
       => ( ( ( dim_col_complex @ A )
            = Nc )
         => ( ( ( F @ I0 )
              = Jj )
           => ( ( ord_less_eq_nat @ Jj @ Nc )
             => ( gauss_2609248829700396350omplex @ ( gauss_2324787009747932227omplex @ times_times_complex @ I0 @ A2 @ A ) @ F @ Jj ) ) ) ) ) ) ).

% pivot_fun_multrow
thf(fact_881_index__mat__multrow_I4_J,axiom,
    ! [Mul: a > a > a,K: nat,A2: a,A: mat_a] :
      ( ( dim_row_a @ ( gauss_5154200947219177641_gen_a @ Mul @ K @ A2 @ A ) )
      = ( dim_row_a @ A ) ) ).

% index_mat_multrow(4)
thf(fact_882_index__mat__multrow_I4_J,axiom,
    ! [Mul: complex > complex > complex,K: nat,A2: complex,A: mat_complex] :
      ( ( dim_row_complex @ ( gauss_2324787009747932227omplex @ Mul @ K @ A2 @ A ) )
      = ( dim_row_complex @ A ) ) ).

% index_mat_multrow(4)
thf(fact_883_multrow__carrier,axiom,
    ! [Mul: a > a > a,K: nat,A2: a,A: mat_a,N: nat,Nc: nat] :
      ( ( member_mat_a @ ( gauss_5154200947219177641_gen_a @ Mul @ K @ A2 @ A ) @ ( carrier_mat_a @ N @ Nc ) )
      = ( member_mat_a @ A @ ( carrier_mat_a @ N @ Nc ) ) ) ).

% multrow_carrier
thf(fact_884_multrow__carrier,axiom,
    ! [Mul: complex > complex > complex,K: nat,A2: complex,A: mat_complex,N: nat,Nc: nat] :
      ( ( member_mat_complex @ ( gauss_2324787009747932227omplex @ Mul @ K @ A2 @ A ) @ ( carrier_mat_complex @ N @ Nc ) )
      = ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ Nc ) ) ) ).

% multrow_carrier
thf(fact_885_multrow__mat,axiom,
    ! [A: mat_nat,N: nat,Nc: nat,K: nat,A2: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ N @ Nc ) )
     => ( ( gauss_2409696420326117733en_nat @ times_times_nat @ K @ A2 @ A )
        = ( times_times_mat_nat @ ( gauss_3195076542185637913at_nat @ N @ K @ A2 ) @ A ) ) ) ).

% multrow_mat
thf(fact_886_multrow__mat,axiom,
    ! [A: mat_complex,N: nat,Nc: nat,K: nat,A2: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ Nc ) )
     => ( ( gauss_2324787009747932227omplex @ times_times_complex @ K @ A2 @ A )
        = ( times_8009071140041733218omplex @ ( gauss_6868829418328711927omplex @ N @ K @ A2 ) @ A ) ) ) ).

% multrow_mat
thf(fact_887_multrow__mat__carrier,axiom,
    ! [N: nat,K: nat,A2: complex] : ( member_mat_complex @ ( gauss_6868829418328711927omplex @ N @ K @ A2 ) @ ( carrier_mat_complex @ N @ N ) ) ).

% multrow_mat_carrier
thf(fact_888_index__mat__multrow__mat_I2_J,axiom,
    ! [N: nat,K: nat,A2: complex] :
      ( ( dim_row_complex @ ( gauss_6868829418328711927omplex @ N @ K @ A2 ) )
      = N ) ).

% index_mat_multrow_mat(2)
thf(fact_889_multcol__mat,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,K: nat,A2: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( column4410001698458707789omplex @ K @ A2 @ A )
        = ( times_8009071140041733218omplex @ A @ ( gauss_6868829418328711927omplex @ N @ K @ A2 ) ) ) ) ).

% multcol_mat
thf(fact_890_index__mat__multcol_I4_J,axiom,
    ! [K: nat,A2: complex,A: mat_complex] :
      ( ( dim_row_complex @ ( column4410001698458707789omplex @ K @ A2 @ A ) )
      = ( dim_row_complex @ A ) ) ).

% index_mat_multcol(4)
thf(fact_891_multrow__mat__inv,axiom,
    ! [K: nat,N: nat,A2: complex] :
      ( ( ord_less_nat @ K @ N )
     => ( ( A2 != zero_zero_complex )
       => ( ( times_8009071140041733218omplex @ ( gauss_6868829418328711927omplex @ N @ K @ A2 ) @ ( gauss_6868829418328711927omplex @ N @ K @ ( invers8013647133539491842omplex @ A2 ) ) )
          = ( one_mat_complex @ N ) ) ) ) ).

% multrow_mat_inv
thf(fact_892_nonzero__imp__inverse__nonzero,axiom,
    ! [A2: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ A2 )
       != zero_zero_complex ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_893_inverse__nonzero__iff__nonzero,axiom,
    ! [A2: complex] :
      ( ( ( invers8013647133539491842omplex @ A2 )
        = zero_zero_complex )
      = ( A2 = zero_zero_complex ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_894_nonzero__inverse__inverse__eq,axiom,
    ! [A2: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A2 ) )
        = A2 ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_895_nonzero__inverse__eq__imp__eq,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ( invers8013647133539491842omplex @ A2 )
        = ( invers8013647133539491842omplex @ B2 ) )
     => ( ( A2 != zero_zero_complex )
       => ( ( B2 != zero_zero_complex )
         => ( A2 = B2 ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_896_inverse__zero__imp__zero,axiom,
    ! [A2: complex] :
      ( ( ( invers8013647133539491842omplex @ A2 )
        = zero_zero_complex )
     => ( A2 = zero_zero_complex ) ) ).

% inverse_zero_imp_zero
thf(fact_897_inverse__zero,axiom,
    ( ( invers8013647133539491842omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% inverse_zero
thf(fact_898_field__class_Ofield__inverse__zero,axiom,
    ( ( invers8013647133539491842omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% field_class.field_inverse_zero
thf(fact_899_nonzero__inverse__mult__distrib,axiom,
    ! [A2: complex,B2: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( B2 != zero_zero_complex )
       => ( ( invers8013647133539491842omplex @ ( times_times_complex @ A2 @ B2 ) )
          = ( times_times_complex @ ( invers8013647133539491842omplex @ B2 ) @ ( invers8013647133539491842omplex @ A2 ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_900_inverse__unique,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ( times_times_complex @ A2 @ B2 )
        = one_one_complex )
     => ( ( invers8013647133539491842omplex @ A2 )
        = B2 ) ) ).

% inverse_unique
thf(fact_901_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: complex,X: complex] :
      ( ( ( times_times_complex @ Y @ X )
        = ( times_times_complex @ X @ Y ) )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ Y ) @ X )
        = ( times_times_complex @ X @ ( invers8013647133539491842omplex @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_902_inverse__mult__distrib,axiom,
    ! [A2: complex,B2: complex] :
      ( ( invers8013647133539491842omplex @ ( times_times_complex @ A2 @ B2 ) )
      = ( times_times_complex @ ( invers8013647133539491842omplex @ A2 ) @ ( invers8013647133539491842omplex @ B2 ) ) ) ).

% inverse_mult_distrib
thf(fact_903_right__inverse,axiom,
    ! [A2: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( times_times_complex @ A2 @ ( invers8013647133539491842omplex @ A2 ) )
        = one_one_complex ) ) ).

% right_inverse
thf(fact_904_left__inverse,axiom,
    ! [A2: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ A2 ) @ A2 )
        = one_one_complex ) ) ).

% left_inverse
thf(fact_905_field__class_Ofield__inverse,axiom,
    ! [A2: complex] :
      ( ( A2 != zero_zero_complex )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ A2 ) @ A2 )
        = one_one_complex ) ) ).

% field_class.field_inverse
thf(fact_906_mult__col__div__row__def,axiom,
    ( column217142795681433722omplex
    = ( ^ [A3: complex,K2: nat,A4: mat_complex] : ( gauss_2324787009747932227omplex @ times_times_complex @ K2 @ ( invers8013647133539491842omplex @ A3 ) @ ( column4410001698458707789omplex @ K2 @ A3 @ A4 ) ) ) ) ).

% mult_col_div_row_def
thf(fact_907_power__strict__mono,axiom,
    ! [A2: nat,B2: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B2 @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_908_set__zero__plus2,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( member_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_set_nat @ B @ ( plus_plus_set_nat @ A @ B ) ) ) ).

% set_zero_plus2
thf(fact_909_set__zero__plus2,axiom,
    ! [A: set_complex,B: set_complex] :
      ( ( member_complex @ zero_zero_complex @ A )
     => ( ord_le211207098394363844omplex @ B @ ( plus_p7052360327008956141omplex @ A @ B ) ) ) ).

% set_zero_plus2
thf(fact_910_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: complex,J2: complex,K: complex,L: complex] :
      ( ( ( ord_less_eq_complex @ I2 @ J2 )
        & ( K = L ) )
     => ( ord_less_eq_complex @ ( plus_plus_complex @ I2 @ K ) @ ( plus_plus_complex @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_911_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J2 )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_912_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: complex,J2: complex,K: complex,L: complex] :
      ( ( ( I2 = J2 )
        & ( ord_less_eq_complex @ K @ L ) )
     => ( ord_less_eq_complex @ ( plus_plus_complex @ I2 @ K ) @ ( plus_plus_complex @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_913_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: nat,J2: nat,K: nat,L: nat] :
      ( ( ( I2 = J2 )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_914_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: complex,J2: complex,K: complex,L: complex] :
      ( ( ( ord_less_eq_complex @ I2 @ J2 )
        & ( ord_less_eq_complex @ K @ L ) )
     => ( ord_less_eq_complex @ ( plus_plus_complex @ I2 @ K ) @ ( plus_plus_complex @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_915_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J2 )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_916_add__mono,axiom,
    ! [A2: complex,B2: complex,C: complex,D: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ( ord_less_eq_complex @ C @ D )
       => ( ord_less_eq_complex @ ( plus_plus_complex @ A2 @ C ) @ ( plus_plus_complex @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_917_add__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_918_add__left__mono,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ord_less_eq_complex @ ( plus_plus_complex @ C @ A2 ) @ ( plus_plus_complex @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_919_add__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_920_less__eqE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ~ ! [C3: nat] :
            ( B2
           != ( plus_plus_nat @ A2 @ C3 ) ) ) ).

% less_eqE
thf(fact_921_add__right__mono,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ A2 @ B2 )
     => ( ord_less_eq_complex @ ( plus_plus_complex @ A2 @ C ) @ ( plus_plus_complex @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_922_add__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_923_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
        ? [C5: nat] :
          ( B3
          = ( plus_plus_nat @ A3 @ C5 ) ) ) ) ).

% le_iff_add
thf(fact_924_add__le__cancel__left,axiom,
    ! [C: complex,A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ ( plus_plus_complex @ C @ A2 ) @ ( plus_plus_complex @ C @ B2 ) )
      = ( ord_less_eq_complex @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_925_add__le__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_926_add__le__imp__le__left,axiom,
    ! [C: complex,A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ ( plus_plus_complex @ C @ A2 ) @ ( plus_plus_complex @ C @ B2 ) )
     => ( ord_less_eq_complex @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_927_add__le__imp__le__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_928_add__le__cancel__right,axiom,
    ! [A2: complex,C: complex,B2: complex] :
      ( ( ord_less_eq_complex @ ( plus_plus_complex @ A2 @ C ) @ ( plus_plus_complex @ B2 @ C ) )
      = ( ord_less_eq_complex @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_929_add__le__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_930_add__le__imp__le__right,axiom,
    ! [A2: complex,C: complex,B2: complex] :
      ( ( ord_less_eq_complex @ ( plus_plus_complex @ A2 @ C ) @ ( plus_plus_complex @ B2 @ C ) )
     => ( ord_less_eq_complex @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_931_add__le__imp__le__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_932_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_933_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_934_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_935_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_936_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_937_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_938_add__le__mono,axiom,
    ! [I2: nat,J2: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ) ).

% add_le_mono
thf(fact_939_add__le__mono1,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% add_le_mono1
thf(fact_940_trans__le__add1,axiom,
    ! [I2: nat,J2: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ J2 @ M ) ) ) ).

% trans_le_add1
thf(fact_941_trans__le__add2,axiom,
    ! [I2: nat,J2: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ M @ J2 ) ) ) ).

% trans_le_add2
thf(fact_942_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( plus_plus_nat @ M3 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_943_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_944_add__sign__intros_I8_J,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ A2 @ zero_zero_complex )
     => ( ( ord_less_eq_complex @ B2 @ zero_zero_complex )
       => ( ord_less_eq_complex @ ( plus_plus_complex @ A2 @ B2 ) @ zero_zero_complex ) ) ) ).

% add_sign_intros(8)
thf(fact_945_add__sign__intros_I8_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_sign_intros(8)
thf(fact_946_add__sign__intros_I4_J,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
     => ( ( ord_less_eq_complex @ zero_zero_complex @ B2 )
       => ( ord_less_eq_complex @ zero_zero_complex @ ( plus_plus_complex @ A2 @ B2 ) ) ) ) ).

% add_sign_intros(4)
thf(fact_947_add__sign__intros_I4_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_sign_intros(4)
thf(fact_948_add__decreasing,axiom,
    ! [A2: complex,C: complex,B2: complex] :
      ( ( ord_less_eq_complex @ A2 @ zero_zero_complex )
     => ( ( ord_less_eq_complex @ C @ B2 )
       => ( ord_less_eq_complex @ ( plus_plus_complex @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_949_add__decreasing,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_950_add__increasing,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ord_less_eq_complex @ zero_zero_complex @ A2 )
     => ( ( ord_less_eq_complex @ B2 @ C )
       => ( ord_less_eq_complex @ B2 @ ( plus_plus_complex @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_951_add__increasing,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_952_add__decreasing2,axiom,
    ! [C: complex,A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ C @ zero_zero_complex )
     => ( ( ord_less_eq_complex @ A2 @ B2 )
       => ( ord_less_eq_complex @ ( plus_plus_complex @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_953_add__decreasing2,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_954_add__increasing2,axiom,
    ! [C: complex,B2: complex,A2: complex] :
      ( ( ord_less_eq_complex @ zero_zero_complex @ C )
     => ( ( ord_less_eq_complex @ B2 @ A2 )
       => ( ord_less_eq_complex @ B2 @ ( plus_plus_complex @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_955_add__increasing2,axiom,
    ! [C: nat,B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_956_add__nonneg__eq__0__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_eq_complex @ zero_zero_complex @ X )
     => ( ( ord_less_eq_complex @ zero_zero_complex @ Y )
       => ( ( ( plus_plus_complex @ X @ Y )
            = zero_zero_complex )
          = ( ( X = zero_zero_complex )
            & ( Y = zero_zero_complex ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_957_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_958_add__nonpos__eq__0__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( ord_less_eq_complex @ X @ zero_zero_complex )
     => ( ( ord_less_eq_complex @ Y @ zero_zero_complex )
       => ( ( ( plus_plus_complex @ X @ Y )
            = zero_zero_complex )
          = ( ( X = zero_zero_complex )
            & ( Y = zero_zero_complex ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_959_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_960_add__le__same__cancel1,axiom,
    ! [B2: complex,A2: complex] :
      ( ( ord_less_eq_complex @ ( plus_plus_complex @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_complex @ A2 @ zero_zero_complex ) ) ).

% add_le_same_cancel1
thf(fact_961_add__le__same__cancel1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_962_add__le__same__cancel2,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ ( plus_plus_complex @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_complex @ A2 @ zero_zero_complex ) ) ).

% add_le_same_cancel2
thf(fact_963_add__le__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_964_le__add__same__cancel1,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ A2 @ ( plus_plus_complex @ A2 @ B2 ) )
      = ( ord_less_eq_complex @ zero_zero_complex @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_965_le__add__same__cancel1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_966_le__add__same__cancel2,axiom,
    ! [A2: complex,B2: complex] :
      ( ( ord_less_eq_complex @ A2 @ ( plus_plus_complex @ B2 @ A2 ) )
      = ( ord_less_eq_complex @ zero_zero_complex @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_967_le__add__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_968_add__smult__distrib__left__mat,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat,B: mat_a,K: a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( smult_mat_a @ K @ ( plus_plus_mat_a @ A @ B ) )
          = ( plus_plus_mat_a @ ( smult_mat_a @ K @ A ) @ ( smult_mat_a @ K @ B ) ) ) ) ) ).

% add_smult_distrib_left_mat
thf(fact_969_add__smult__distrib__left__mat,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,B: mat_complex,K: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ Nr @ Nc ) )
       => ( ( smult_mat_complex @ K @ ( plus_p8323303612493835998omplex @ A @ B ) )
          = ( plus_p8323303612493835998omplex @ ( smult_mat_complex @ K @ A ) @ ( smult_mat_complex @ K @ B ) ) ) ) ) ).

% add_smult_distrib_left_mat
thf(fact_970_adjoint__add,axiom,
    ! [A: mat_complex,N: nat,M: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ M ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ M ) )
       => ( ( schur_5982229384592763574omplex @ ( plus_p8323303612493835998omplex @ A @ B ) )
          = ( plus_p8323303612493835998omplex @ ( schur_5982229384592763574omplex @ A ) @ ( schur_5982229384592763574omplex @ B ) ) ) ) ) ).

% adjoint_add
thf(fact_971_mat__assoc__test_I7_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex,D2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ D2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( times_8009071140041733218omplex @ ( plus_p8323303612493835998omplex @ A @ B ) @ ( plus_p8323303612493835998omplex @ B @ C2 ) )
              = ( plus_p8323303612493835998omplex @ ( plus_p8323303612493835998omplex @ ( plus_p8323303612493835998omplex @ ( times_8009071140041733218omplex @ A @ B ) @ ( times_8009071140041733218omplex @ B @ B ) ) @ ( times_8009071140041733218omplex @ A @ C2 ) ) @ ( times_8009071140041733218omplex @ B @ C2 ) ) ) ) ) ) ) ).

% mat_assoc_test(7)
thf(fact_972_hermitian__add,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( comple8306762464034002205omplex @ A )
         => ( ( comple8306762464034002205omplex @ B )
           => ( comple8306762464034002205omplex @ ( plus_p8323303612493835998omplex @ A @ B ) ) ) ) ) ) ).

% hermitian_add
thf(fact_973_transpose__add,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat,B: mat_a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( transpose_mat_a @ ( plus_plus_mat_a @ A @ B ) )
          = ( plus_plus_mat_a @ ( transpose_mat_a @ A ) @ ( transpose_mat_a @ B ) ) ) ) ) ).

% transpose_add
thf(fact_974_transpose__add,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ Nr @ Nc ) )
       => ( ( transp3074176993011536131omplex @ ( plus_p8323303612493835998omplex @ A @ B ) )
          = ( plus_p8323303612493835998omplex @ ( transp3074176993011536131omplex @ A ) @ ( transp3074176993011536131omplex @ B ) ) ) ) ) ).

% transpose_add
thf(fact_975_index__add__mat_I3_J,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( dim_col_complex @ ( plus_p8323303612493835998omplex @ A @ B ) )
      = ( dim_col_complex @ B ) ) ).

% index_add_mat(3)
thf(fact_976_add__carrier__mat_H,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat,B: mat_a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( member_mat_a @ ( plus_plus_mat_a @ A @ B ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ) ).

% add_carrier_mat'
thf(fact_977_add__carrier__mat_H,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ Nr @ Nc ) )
       => ( member_mat_complex @ ( plus_p8323303612493835998omplex @ A @ B ) @ ( carrier_mat_complex @ Nr @ Nc ) ) ) ) ).

% add_carrier_mat'
thf(fact_978_swap__plus__mat,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( plus_p8323303612493835998omplex @ ( plus_p8323303612493835998omplex @ A @ B ) @ C2 )
            = ( plus_p8323303612493835998omplex @ ( plus_p8323303612493835998omplex @ A @ C2 ) @ B ) ) ) ) ) ).

% swap_plus_mat
thf(fact_979_add__carrier__mat,axiom,
    ! [B: mat_a,Nr: nat,Nc: nat,A: mat_a] :
      ( ( member_mat_a @ B @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( member_mat_a @ ( plus_plus_mat_a @ A @ B ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% add_carrier_mat
thf(fact_980_add__carrier__mat,axiom,
    ! [B: mat_complex,Nr: nat,Nc: nat,A: mat_complex] :
      ( ( member_mat_complex @ B @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( member_mat_complex @ ( plus_p8323303612493835998omplex @ A @ B ) @ ( carrier_mat_complex @ Nr @ Nc ) ) ) ).

% add_carrier_mat
thf(fact_981_assoc__add__mat,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat,B: mat_a,C2: mat_a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ Nr @ Nc ) )
         => ( ( plus_plus_mat_a @ ( plus_plus_mat_a @ A @ B ) @ C2 )
            = ( plus_plus_mat_a @ A @ ( plus_plus_mat_a @ B @ C2 ) ) ) ) ) ) ).

% assoc_add_mat
thf(fact_982_assoc__add__mat,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,B: mat_complex,C2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ Nr @ Nc ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ Nr @ Nc ) )
         => ( ( plus_p8323303612493835998omplex @ ( plus_p8323303612493835998omplex @ A @ B ) @ C2 )
            = ( plus_p8323303612493835998omplex @ A @ ( plus_p8323303612493835998omplex @ B @ C2 ) ) ) ) ) ) ).

% assoc_add_mat
thf(fact_983_comm__add__mat,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat,B: mat_a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( plus_plus_mat_a @ A @ B )
          = ( plus_plus_mat_a @ B @ A ) ) ) ) ).

% comm_add_mat
thf(fact_984_comm__add__mat,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ Nr @ Nc ) )
       => ( ( plus_p8323303612493835998omplex @ A @ B )
          = ( plus_p8323303612493835998omplex @ B @ A ) ) ) ) ).

% comm_add_mat
thf(fact_985_class__semiring_Onat__pow__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% class_semiring.nat_pow_one
thf(fact_986_nat__arith_Oadd2,axiom,
    ! [B: nat,K: nat,B2: nat,A2: nat] :
      ( ( B
        = ( plus_plus_nat @ K @ B2 ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% nat_arith.add2
thf(fact_987_nat__arith_Oadd2,axiom,
    ! [B: complex,K: complex,B2: complex,A2: complex] :
      ( ( B
        = ( plus_plus_complex @ K @ B2 ) )
     => ( ( plus_plus_complex @ A2 @ B )
        = ( plus_plus_complex @ K @ ( plus_plus_complex @ A2 @ B2 ) ) ) ) ).

% nat_arith.add2
thf(fact_988_nat__arith_Oadd1,axiom,
    ! [A: nat,K: nat,A2: nat,B2: nat] :
      ( ( A
        = ( plus_plus_nat @ K @ A2 ) )
     => ( ( plus_plus_nat @ A @ B2 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% nat_arith.add1
thf(fact_989_nat__arith_Oadd1,axiom,
    ! [A: complex,K: complex,A2: complex,B2: complex] :
      ( ( A
        = ( plus_plus_complex @ K @ A2 ) )
     => ( ( plus_plus_complex @ A @ B2 )
        = ( plus_plus_complex @ K @ ( plus_plus_complex @ A2 @ B2 ) ) ) ) ).

% nat_arith.add1
thf(fact_990_add__right__imp__eq,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_991_add__right__imp__eq,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ( plus_plus_complex @ B2 @ A2 )
        = ( plus_plus_complex @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_992_add__right__cancel,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_993_add__right__cancel,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ( plus_plus_complex @ B2 @ A2 )
        = ( plus_plus_complex @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_994_add__left__imp__eq,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_995_add__left__imp__eq,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ( plus_plus_complex @ A2 @ B2 )
        = ( plus_plus_complex @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_996_add__left__cancel,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_997_add__left__cancel,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ( plus_plus_complex @ A2 @ B2 )
        = ( plus_plus_complex @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_998_add_Oleft__commute,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( plus_plus_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_999_add_Oleft__commute,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( plus_plus_complex @ B2 @ ( plus_plus_complex @ A2 @ C ) )
      = ( plus_plus_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_1000_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_1001_add_Ocommute,axiom,
    ( plus_plus_complex
    = ( ^ [A3: complex,B3: complex] : ( plus_plus_complex @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_1002_add_Oright__cancel,axiom,
    ! [B2: complex,A2: complex,C: complex] :
      ( ( ( plus_plus_complex @ B2 @ A2 )
        = ( plus_plus_complex @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add.right_cancel
thf(fact_1003_add_Oleft__cancel,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( ( plus_plus_complex @ A2 @ B2 )
        = ( plus_plus_complex @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add.left_cancel
thf(fact_1004_add_Oassoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_1005_add_Oassoc,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( plus_plus_complex @ ( plus_plus_complex @ A2 @ B2 ) @ C )
      = ( plus_plus_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_1006_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: nat,J2: nat,K: nat,L: nat] :
      ( ( ( I2 = J2 )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I2 @ K )
        = ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1007_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: complex,J2: complex,K: complex,L: complex] :
      ( ( ( I2 = J2 )
        & ( K = L ) )
     => ( ( plus_plus_complex @ I2 @ K )
        = ( plus_plus_complex @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1008_is__num__normalize_I1_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( plus_plus_complex @ ( plus_plus_complex @ A2 @ B2 ) @ C )
      = ( plus_plus_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_1009_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1010_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( plus_plus_complex @ ( plus_plus_complex @ A2 @ B2 ) @ C )
      = ( plus_plus_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1011_set__plus__intro,axiom,
    ! [A2: mat_a,C2: set_mat_a,B2: mat_a,D2: set_mat_a] :
      ( ( member_mat_a @ A2 @ C2 )
     => ( ( member_mat_a @ B2 @ D2 )
       => ( member_mat_a @ ( plus_plus_mat_a @ A2 @ B2 ) @ ( plus_plus_set_mat_a @ C2 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_1012_set__plus__intro,axiom,
    ! [A2: nat,C2: set_nat,B2: nat,D2: set_nat] :
      ( ( member_nat @ A2 @ C2 )
     => ( ( member_nat @ B2 @ D2 )
       => ( member_nat @ ( plus_plus_nat @ A2 @ B2 ) @ ( plus_plus_set_nat @ C2 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_1013_set__plus__intro,axiom,
    ! [A2: mat_complex,C2: set_mat_complex,B2: mat_complex,D2: set_mat_complex] :
      ( ( member_mat_complex @ A2 @ C2 )
     => ( ( member_mat_complex @ B2 @ D2 )
       => ( member_mat_complex @ ( plus_p8323303612493835998omplex @ A2 @ B2 ) @ ( plus_p4229080058245121342omplex @ C2 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_1014_set__plus__intro,axiom,
    ! [A2: complex,C2: set_complex,B2: complex,D2: set_complex] :
      ( ( member_complex @ A2 @ C2 )
     => ( ( member_complex @ B2 @ D2 )
       => ( member_complex @ ( plus_plus_complex @ A2 @ B2 ) @ ( plus_p7052360327008956141omplex @ C2 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_1015_set__plus__elim,axiom,
    ! [X: mat_a,A: set_mat_a,B: set_mat_a] :
      ( ( member_mat_a @ X @ ( plus_plus_set_mat_a @ A @ B ) )
     => ~ ! [A5: mat_a,B4: mat_a] :
            ( ( X
              = ( plus_plus_mat_a @ A5 @ B4 ) )
           => ( ( member_mat_a @ A5 @ A )
             => ~ ( member_mat_a @ B4 @ B ) ) ) ) ).

% set_plus_elim
thf(fact_1016_set__plus__elim,axiom,
    ! [X: nat,A: set_nat,B: set_nat] :
      ( ( member_nat @ X @ ( plus_plus_set_nat @ A @ B ) )
     => ~ ! [A5: nat,B4: nat] :
            ( ( X
              = ( plus_plus_nat @ A5 @ B4 ) )
           => ( ( member_nat @ A5 @ A )
             => ~ ( member_nat @ B4 @ B ) ) ) ) ).

% set_plus_elim
thf(fact_1017_set__plus__elim,axiom,
    ! [X: mat_complex,A: set_mat_complex,B: set_mat_complex] :
      ( ( member_mat_complex @ X @ ( plus_p4229080058245121342omplex @ A @ B ) )
     => ~ ! [A5: mat_complex,B4: mat_complex] :
            ( ( X
              = ( plus_p8323303612493835998omplex @ A5 @ B4 ) )
           => ( ( member_mat_complex @ A5 @ A )
             => ~ ( member_mat_complex @ B4 @ B ) ) ) ) ).

% set_plus_elim
thf(fact_1018_set__plus__elim,axiom,
    ! [X: complex,A: set_complex,B: set_complex] :
      ( ( member_complex @ X @ ( plus_p7052360327008956141omplex @ A @ B ) )
     => ~ ! [A5: complex,B4: complex] :
            ( ( X
              = ( plus_plus_complex @ A5 @ B4 ) )
           => ( ( member_complex @ A5 @ A )
             => ~ ( member_complex @ B4 @ B ) ) ) ) ).

% set_plus_elim
thf(fact_1019_class__semiring_Oadd_Ofactors__equal,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( A2 = B2 )
     => ( ( C = D )
       => ( ( plus_plus_nat @ A2 @ C )
          = ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% class_semiring.add.factors_equal
thf(fact_1020_class__semiring_Oadd_Ofactors__equal,axiom,
    ! [A2: complex,B2: complex,C: complex,D: complex] :
      ( ( A2 = B2 )
     => ( ( C = D )
       => ( ( plus_plus_complex @ A2 @ C )
          = ( plus_plus_complex @ B2 @ D ) ) ) ) ).

% class_semiring.add.factors_equal
thf(fact_1021_index__add__mat_I2_J,axiom,
    ! [A: mat_a,B: mat_a] :
      ( ( dim_row_a @ ( plus_plus_mat_a @ A @ B ) )
      = ( dim_row_a @ B ) ) ).

% index_add_mat(2)
thf(fact_1022_index__add__mat_I2_J,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( dim_row_complex @ ( plus_p8323303612493835998omplex @ A @ B ) )
      = ( dim_row_complex @ B ) ) ).

% index_add_mat(2)
thf(fact_1023_power__commutes,axiom,
    ! [A2: nat,N: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A2 @ N ) @ A2 )
      = ( times_times_nat @ A2 @ ( power_power_nat @ A2 @ N ) ) ) ).

% power_commutes
thf(fact_1024_power__commutes,axiom,
    ! [A2: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ A2 @ N ) @ A2 )
      = ( times_times_complex @ A2 @ ( power_power_complex @ A2 @ N ) ) ) ).

% power_commutes
thf(fact_1025_power__mult__distrib,axiom,
    ! [A2: nat,B2: nat,N: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A2 @ B2 ) @ N )
      = ( times_times_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B2 @ N ) ) ) ).

% power_mult_distrib
thf(fact_1026_power__mult__distrib,axiom,
    ! [A2: complex,B2: complex,N: nat] :
      ( ( power_power_complex @ ( times_times_complex @ A2 @ B2 ) @ N )
      = ( times_times_complex @ ( power_power_complex @ A2 @ N ) @ ( power_power_complex @ B2 @ N ) ) ) ).

% power_mult_distrib
thf(fact_1027_power__commuting__commutes,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = ( times_times_nat @ Y @ X ) )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y )
        = ( times_times_nat @ Y @ ( power_power_nat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_1028_power__commuting__commutes,axiom,
    ! [X: complex,Y: complex,N: nat] :
      ( ( ( times_times_complex @ X @ Y )
        = ( times_times_complex @ Y @ X ) )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ Y )
        = ( times_times_complex @ Y @ ( power_power_complex @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_1029_power__add,axiom,
    ! [A2: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A2 @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A2 @ M ) @ ( power_power_nat @ A2 @ N ) ) ) ).

% power_add
thf(fact_1030_power__add,axiom,
    ! [A2: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A2 @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A2 @ M ) @ ( power_power_complex @ A2 @ N ) ) ) ).

% power_add
thf(fact_1031_Rings_Oring__distribs_I2_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ).

% Rings.ring_distribs(2)
thf(fact_1032_Rings_Oring__distribs_I2_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( times_times_complex @ ( plus_plus_complex @ A2 @ B2 ) @ C )
      = ( plus_plus_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ C ) ) ) ).

% Rings.ring_distribs(2)
thf(fact_1033_Rings_Oring__distribs_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_nat @ A2 @ C ) ) ) ).

% Rings.ring_distribs(1)
thf(fact_1034_Rings_Oring__distribs_I1_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( times_times_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ A2 @ B2 ) @ ( times_times_complex @ A2 @ C ) ) ) ).

% Rings.ring_distribs(1)
thf(fact_1035_ring__class_Oring__distribs_I2_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( times_times_complex @ ( plus_plus_complex @ A2 @ B2 ) @ C )
      = ( plus_plus_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1036_ring__class_Oring__distribs_I1_J,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( times_times_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ A2 @ B2 ) @ ( times_times_complex @ A2 @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1037_comm__semiring__class_Odistrib,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1038_comm__semiring__class_Odistrib,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( times_times_complex @ ( plus_plus_complex @ A2 @ B2 ) @ C )
      = ( plus_plus_complex @ ( times_times_complex @ A2 @ C ) @ ( times_times_complex @ B2 @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1039_combine__common__factor,axiom,
    ! [A2: nat,E: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A2 @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B2 @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1040_combine__common__factor,axiom,
    ! [A2: complex,E: complex,B2: complex,C: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ A2 @ E ) @ ( plus_plus_complex @ ( times_times_complex @ B2 @ E ) @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( plus_plus_complex @ A2 @ B2 ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1041_vector__space__over__itself_Oscale__right__distrib,axiom,
    ! [A2: complex,X: complex,Y: complex] :
      ( ( times_times_complex @ A2 @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_complex @ ( times_times_complex @ A2 @ X ) @ ( times_times_complex @ A2 @ Y ) ) ) ).

% vector_space_over_itself.scale_right_distrib
thf(fact_1042_vector__space__over__itself_Oscale__left__distrib,axiom,
    ! [A2: complex,B2: complex,X: complex] :
      ( ( times_times_complex @ ( plus_plus_complex @ A2 @ B2 ) @ X )
      = ( plus_plus_complex @ ( times_times_complex @ A2 @ X ) @ ( times_times_complex @ B2 @ X ) ) ) ).

% vector_space_over_itself.scale_left_distrib
thf(fact_1043_mult__hom_Ohom__add,axiom,
    ! [C: nat,X: nat,Y: nat] :
      ( ( times_times_nat @ C @ ( plus_plus_nat @ X @ Y ) )
      = ( plus_plus_nat @ ( times_times_nat @ C @ X ) @ ( times_times_nat @ C @ Y ) ) ) ).

% mult_hom.hom_add
thf(fact_1044_mult__hom_Ohom__add,axiom,
    ! [C: complex,X: complex,Y: complex] :
      ( ( times_times_complex @ C @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_complex @ ( times_times_complex @ C @ X ) @ ( times_times_complex @ C @ Y ) ) ) ).

% mult_hom.hom_add
thf(fact_1045_left__add__mult__distrib,axiom,
    ! [I2: nat,U3: nat,J2: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U3 ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U3 ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I2 @ J2 ) @ U3 ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_1046_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1047_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1048_add__smult__distrib__right__mat,axiom,
    ! [A: mat_a,Nr: nat,Nc: nat,K: a,L: a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( smult_mat_a @ ( plus_plus_a @ K @ L ) @ A )
        = ( plus_plus_mat_a @ ( smult_mat_a @ K @ A ) @ ( smult_mat_a @ L @ A ) ) ) ) ).

% add_smult_distrib_right_mat
thf(fact_1049_add__smult__distrib__right__mat,axiom,
    ! [A: mat_nat,Nr: nat,Nc: nat,K: nat,L: nat] :
      ( ( member_mat_nat @ A @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( ( smult_mat_nat @ ( plus_plus_nat @ K @ L ) @ A )
        = ( plus_plus_mat_nat @ ( smult_mat_nat @ K @ A ) @ ( smult_mat_nat @ L @ A ) ) ) ) ).

% add_smult_distrib_right_mat
thf(fact_1050_add__smult__distrib__right__mat,axiom,
    ! [A: mat_complex,Nr: nat,Nc: nat,K: complex,L: complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ Nc ) )
     => ( ( smult_mat_complex @ ( plus_plus_complex @ K @ L ) @ A )
        = ( plus_p8323303612493835998omplex @ ( smult_mat_complex @ K @ A ) @ ( smult_mat_complex @ L @ A ) ) ) ) ).

% add_smult_distrib_right_mat
thf(fact_1051_trace__add__linear,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( comple3184165445352484367omplex @ ( plus_p8323303612493835998omplex @ A @ B ) )
          = ( plus_plus_complex @ ( comple3184165445352484367omplex @ A ) @ ( comple3184165445352484367omplex @ B ) ) ) ) ) ).

% trace_add_linear
thf(fact_1052_dvd__add__triv__right__iff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
      = ( dvd_dvd_nat @ A2 @ B2 ) ) ).

% dvd_add_triv_right_iff
thf(fact_1053_dvd__add__triv__right__iff,axiom,
    ! [A2: complex,B2: complex] :
      ( ( dvd_dvd_complex @ A2 @ ( plus_plus_complex @ B2 @ A2 ) )
      = ( dvd_dvd_complex @ A2 @ B2 ) ) ).

% dvd_add_triv_right_iff
thf(fact_1054_dvd__add__triv__left__iff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( dvd_dvd_nat @ A2 @ B2 ) ) ).

% dvd_add_triv_left_iff
thf(fact_1055_dvd__add__triv__left__iff,axiom,
    ! [A2: complex,B2: complex] :
      ( ( dvd_dvd_complex @ A2 @ ( plus_plus_complex @ A2 @ B2 ) )
      = ( dvd_dvd_complex @ A2 @ B2 ) ) ).

% dvd_add_triv_left_iff
thf(fact_1056_dvd__add__right__iff,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B2 )
     => ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) )
        = ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_1057_dvd__add__right__iff,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ A2 @ B2 )
     => ( ( dvd_dvd_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) )
        = ( dvd_dvd_complex @ A2 @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_1058_dvd__add__left__iff,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ C )
     => ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) )
        = ( dvd_dvd_nat @ A2 @ B2 ) ) ) ).

% dvd_add_left_iff
thf(fact_1059_dvd__add__left__iff,axiom,
    ! [A2: complex,C: complex,B2: complex] :
      ( ( dvd_dvd_complex @ A2 @ C )
     => ( ( dvd_dvd_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) )
        = ( dvd_dvd_complex @ A2 @ B2 ) ) ) ).

% dvd_add_left_iff
thf(fact_1060_dvd__add,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B2 )
     => ( ( dvd_dvd_nat @ A2 @ C )
       => ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ) ).

% dvd_add
thf(fact_1061_dvd__add,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ A2 @ B2 )
     => ( ( dvd_dvd_complex @ A2 @ C )
       => ( dvd_dvd_complex @ A2 @ ( plus_plus_complex @ B2 @ C ) ) ) ) ).

% dvd_add
thf(fact_1062_bezout__lemma__nat,axiom,
    ! [D: nat,A2: nat,B2: nat,X: nat,Y: nat] :
      ( ( dvd_dvd_nat @ D @ A2 )
     => ( ( dvd_dvd_nat @ D @ B2 )
       => ( ( ( ( times_times_nat @ A2 @ X )
              = ( plus_plus_nat @ ( times_times_nat @ B2 @ Y ) @ D ) )
            | ( ( times_times_nat @ B2 @ X )
              = ( plus_plus_nat @ ( times_times_nat @ A2 @ Y ) @ D ) ) )
         => ? [X2: nat,Y2: nat] :
              ( ( dvd_dvd_nat @ D @ A2 )
              & ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A2 @ B2 ) )
              & ( ( ( times_times_nat @ A2 @ X2 )
                  = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ Y2 ) @ D ) )
                | ( ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ X2 )
                  = ( plus_plus_nat @ ( times_times_nat @ A2 @ Y2 ) @ D ) ) ) ) ) ) ) ).

% bezout_lemma_nat
thf(fact_1063_bezout__add__nat,axiom,
    ! [A2: nat,B2: nat] :
    ? [D4: nat,X2: nat,Y2: nat] :
      ( ( dvd_dvd_nat @ D4 @ A2 )
      & ( dvd_dvd_nat @ D4 @ B2 )
      & ( ( ( times_times_nat @ A2 @ X2 )
          = ( plus_plus_nat @ ( times_times_nat @ B2 @ Y2 ) @ D4 ) )
        | ( ( times_times_nat @ B2 @ X2 )
          = ( plus_plus_nat @ ( times_times_nat @ A2 @ Y2 ) @ D4 ) ) ) ) ).

% bezout_add_nat
thf(fact_1064_add__mult__distrib__mat,axiom,
    ! [A: mat_a,Nr: nat,N: nat,B: mat_a,C2: mat_a,Nc: nat] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ Nr @ N ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ N @ Nc ) )
         => ( ( times_times_mat_a @ ( plus_plus_mat_a @ A @ B ) @ C2 )
            = ( plus_plus_mat_a @ ( times_times_mat_a @ A @ C2 ) @ ( times_times_mat_a @ B @ C2 ) ) ) ) ) ) ).

% add_mult_distrib_mat
thf(fact_1065_add__mult__distrib__mat,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,B: mat_complex,C2: mat_complex,Nc: nat] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ Nr @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ Nc ) )
         => ( ( times_8009071140041733218omplex @ ( plus_p8323303612493835998omplex @ A @ B ) @ C2 )
            = ( plus_p8323303612493835998omplex @ ( times_8009071140041733218omplex @ A @ C2 ) @ ( times_8009071140041733218omplex @ B @ C2 ) ) ) ) ) ) ).

% add_mult_distrib_mat
thf(fact_1066_mult__add__distrib__mat,axiom,
    ! [A: mat_a,Nr: nat,N: nat,B: mat_a,Nc: nat,C2: mat_a] :
      ( ( member_mat_a @ A @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B @ ( carrier_mat_a @ N @ Nc ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ N @ Nc ) )
         => ( ( times_times_mat_a @ A @ ( plus_plus_mat_a @ B @ C2 ) )
            = ( plus_plus_mat_a @ ( times_times_mat_a @ A @ B ) @ ( times_times_mat_a @ A @ C2 ) ) ) ) ) ) ).

% mult_add_distrib_mat
thf(fact_1067_mult__add__distrib__mat,axiom,
    ! [A: mat_complex,Nr: nat,N: nat,B: mat_complex,Nc: nat,C2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ Nr @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ Nc ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ Nc ) )
         => ( ( times_8009071140041733218omplex @ A @ ( plus_p8323303612493835998omplex @ B @ C2 ) )
            = ( plus_p8323303612493835998omplex @ ( times_8009071140041733218omplex @ A @ B ) @ ( times_8009071140041733218omplex @ A @ C2 ) ) ) ) ) ) ).

% mult_add_distrib_mat
thf(fact_1068_dvd__add__times__triv__right__iff,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B2 @ ( times_times_nat @ C @ A2 ) ) )
      = ( dvd_dvd_nat @ A2 @ B2 ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_1069_dvd__add__times__triv__right__iff,axiom,
    ! [A2: complex,B2: complex,C: complex] :
      ( ( dvd_dvd_complex @ A2 @ ( plus_plus_complex @ B2 @ ( times_times_complex @ C @ A2 ) ) )
      = ( dvd_dvd_complex @ A2 @ B2 ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_1070_dvd__add__times__triv__left__iff,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ ( times_times_nat @ C @ A2 ) @ B2 ) )
      = ( dvd_dvd_nat @ A2 @ B2 ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_1071_dvd__add__times__triv__left__iff,axiom,
    ! [A2: complex,C: complex,B2: complex] :
      ( ( dvd_dvd_complex @ A2 @ ( plus_plus_complex @ ( times_times_complex @ C @ A2 ) @ B2 ) )
      = ( dvd_dvd_complex @ A2 @ B2 ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_1072_mult__hom_Ohom__add__eq__zero,axiom,
    ! [X: nat,Y: nat,C: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
     => ( ( plus_plus_nat @ ( times_times_nat @ C @ X ) @ ( times_times_nat @ C @ Y ) )
        = zero_zero_nat ) ) ).

% mult_hom.hom_add_eq_zero
thf(fact_1073_mult__hom_Ohom__add__eq__zero,axiom,
    ! [X: complex,Y: complex,C: complex] :
      ( ( ( plus_plus_complex @ X @ Y )
        = zero_zero_complex )
     => ( ( plus_plus_complex @ ( times_times_complex @ C @ X ) @ ( times_times_complex @ C @ Y ) )
        = zero_zero_complex ) ) ).

% mult_hom.hom_add_eq_zero
thf(fact_1074_class__semiring_Onat__pow__0,axiom,
    ! [X: nat] :
      ( ( power_power_nat @ X @ zero_zero_nat )
      = one_one_nat ) ).

% class_semiring.nat_pow_0
thf(fact_1075_class__semiring_Onat__pow__zero,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% class_semiring.nat_pow_zero
thf(fact_1076_class__semiring_Onat__pow__zero,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ( power_power_complex @ zero_zero_complex @ N )
        = zero_zero_complex ) ) ).

% class_semiring.nat_pow_zero
thf(fact_1077_left__right__inverse__power,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_1078_left__right__inverse__power,axiom,
    ! [X: complex,Y: complex,N: nat] :
      ( ( ( times_times_complex @ X @ Y )
        = one_one_complex )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y @ N ) )
        = one_one_complex ) ) ).

% left_right_inverse_power
thf(fact_1079_Linear__Algebra__Complements_Otrace__add,axiom,
    ! [A: mat_a,B: mat_a] :
      ( ( square_mat_a @ A )
     => ( ( square_mat_a @ B )
       => ( ( ( dim_row_a @ A )
            = ( dim_row_a @ B ) )
         => ( ( complex_trace_a @ ( plus_plus_mat_a @ A @ B ) )
            = ( plus_plus_a @ ( complex_trace_a @ A ) @ ( complex_trace_a @ B ) ) ) ) ) ) ).

% Linear_Algebra_Complements.trace_add
thf(fact_1080_Linear__Algebra__Complements_Otrace__add,axiom,
    ! [A: mat_complex,B: mat_complex] :
      ( ( square_mat_complex @ A )
     => ( ( square_mat_complex @ B )
       => ( ( ( dim_row_complex @ A )
            = ( dim_row_complex @ B ) )
         => ( ( comple3184165445352484367omplex @ ( plus_p8323303612493835998omplex @ A @ B ) )
            = ( plus_plus_complex @ ( comple3184165445352484367omplex @ A ) @ ( comple3184165445352484367omplex @ B ) ) ) ) ) ) ).

% Linear_Algebra_Complements.trace_add
thf(fact_1081_mat__assoc__test_I12_J,axiom,
    ! [A: mat_complex,N: nat,B: mat_complex,C2: mat_complex,D2: mat_complex] :
      ( ( member_mat_complex @ A @ ( carrier_mat_complex @ N @ N ) )
     => ( ( member_mat_complex @ B @ ( carrier_mat_complex @ N @ N ) )
       => ( ( member_mat_complex @ C2 @ ( carrier_mat_complex @ N @ N ) )
         => ( ( member_mat_complex @ D2 @ ( carrier_mat_complex @ N @ N ) )
           => ( ( comple3184165445352484367omplex @ ( plus_p8323303612493835998omplex @ A @ ( times_8009071140041733218omplex @ B @ C2 ) ) )
              = ( plus_plus_complex @ ( comple3184165445352484367omplex @ A ) @ ( comple3184165445352484367omplex @ ( times_8009071140041733218omplex @ C2 @ B ) ) ) ) ) ) ) ) ).

% mat_assoc_test(12)
thf(fact_1082_arith__simps_I50_J,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% arith_simps(50)
thf(fact_1083_arith__simps_I50_J,axiom,
    ! [A2: complex] :
      ( ( plus_plus_complex @ A2 @ zero_zero_complex )
      = A2 ) ).

% arith_simps(50)
thf(fact_1084_arith__simps_I49_J,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% arith_simps(49)
thf(fact_1085_arith__simps_I49_J,axiom,
    ! [A2: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A2 )
      = A2 ) ).

% arith_simps(49)

% Helper facts (5)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [P2: $o] :
      ( ( P2 = $true )
      | ( P2 = $false ) ) ).

thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X: complex,Y: complex] :
      ( ( if_complex @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X: complex,Y: complex] :
      ( ( if_complex @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( dim_row_a @ ( times_times_mat_a @ a2 @ b ) )
    = n ) ).

%------------------------------------------------------------------------------