TPTP Problem File: SLH0017^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Finite_Fields/0003_Finite_Fields_Preliminary_Results/prob_00959_034289__18087344_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1394 ( 408 unt; 116 typ;   0 def)
%            Number of atoms       : 4016 (1216 equ;   0 cnn)
%            Maximal formula atoms :   14 (   3 avg)
%            Number of connectives : 14627 ( 166   ~;  54   |; 118   &;12246   @)
%                                         (   0 <=>;2043  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   19 (   7 avg)
%            Number of types       :   10 (   9 usr)
%            Number of type conns  :  236 ( 236   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  108 ( 107 usr;  10 con; 0-4 aty)
%            Number of variables   : 3095 ( 109   ^;2942   !;  44   ?;3095   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 13:20:46.245
%------------------------------------------------------------------------------
% Could-be-implicit typings (9)
thf(ty_n_t__Congruence__Opartial____object__Opartial____object____ext_Itf__a_Mt__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J_J_J,type,
    partia2175431115845679010xt_a_b: $tType ).

thf(ty_n_t__Congruence__Opartial____object__Opartial____object____ext_Itf__a_Mt__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Product____Type__Ounit_J_J,type,
    partia8223610829204095565t_unit: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__a_J_J_J,type,
    set_set_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    set_a_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (107)
thf(sy_c_AbelCoset_OA__RCOSETS_001tf__a_001tf__b,type,
    a_RCOSETS_a_b: partia2175431115845679010xt_a_b > set_a > set_set_a ).

thf(sy_c_AbelCoset_Oa__l__coset_001tf__a_001tf__b,type,
    a_l_coset_a_b: partia2175431115845679010xt_a_b > a > set_a > set_a ).

thf(sy_c_AbelCoset_Oa__r__coset_001tf__a_001tf__b,type,
    a_r_coset_a_b: partia2175431115845679010xt_a_b > set_a > a > set_a ).

thf(sy_c_AbelCoset_Oadditive__subgroup_001tf__a_001tf__b,type,
    additi2834746164131130830up_a_b: set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_AbelCoset_Oset__add_001tf__a_001tf__b,type,
    set_add_a_b: partia2175431115845679010xt_a_b > set_a > set_a > set_a ).

thf(sy_c_Congruence_Opartial__object_Ocarrier_001tf__a_001t__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Product____Type__Ounit_J,type,
    partia6735698275553448452t_unit: partia8223610829204095565t_unit > set_a ).

thf(sy_c_Congruence_Opartial__object_Ocarrier_001tf__a_001t__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J_J,type,
    partia707051561876973205xt_a_b: partia2175431115845679010xt_a_b > set_a ).

thf(sy_c_Coset_Oset__mult_001tf__a_001t__Product____Type__Ounit,type,
    set_mu9095145553939800791t_unit: partia8223610829204095565t_unit > set_a > set_a > set_a ).

thf(sy_c_Coset_Oset__mult_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    set_mu8047982887099575916xt_a_b: partia2175431115845679010xt_a_b > set_a > set_a > set_a ).

thf(sy_c_Divisibility_Oassociated_001tf__a_001t__Product____Type__Ounit,type,
    associ6879500422977059064t_unit: partia8223610829204095565t_unit > a > a > $o ).

thf(sy_c_Divisibility_Oassociated_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    associ5860276527279195403xt_a_b: partia2175431115845679010xt_a_b > a > a > $o ).

thf(sy_c_Divisibility_Ofactor_001tf__a_001t__Product____Type__Ounit,type,
    factor3040189038382604065t_unit: partia8223610829204095565t_unit > a > a > $o ).

thf(sy_c_Divisibility_Ofactor_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    factor8216151070175719842xt_a_b: partia2175431115845679010xt_a_b > a > a > $o ).

thf(sy_c_Divisibility_Oirreducible_001tf__a_001t__Product____Type__Ounit,type,
    irredu4023057619401689684t_unit: partia8223610829204095565t_unit > a > $o ).

thf(sy_c_Divisibility_Oirreducible_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    irredu6211895646901577903xt_a_b: partia2175431115845679010xt_a_b > a > $o ).

thf(sy_c_Divisibility_Oisgcd_001tf__a_001t__Product____Type__Ounit,type,
    isgcd_a_Product_unit: partia8223610829204095565t_unit > a > a > a > $o ).

thf(sy_c_Divisibility_Oisgcd_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    isgcd_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a > a > a > $o ).

thf(sy_c_Divisibility_Omonoid__cancel_001tf__a_001t__Product____Type__Ounit,type,
    monoid1999574367301118026t_unit: partia8223610829204095565t_unit > $o ).

thf(sy_c_Divisibility_Omonoid__cancel_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    monoid5798828371819920185xt_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Divisibility_Oprime_001tf__a_001t__Product____Type__Ounit,type,
    prime_a_Product_unit: partia8223610829204095565t_unit > a > $o ).

thf(sy_c_Divisibility_Oprime_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    prime_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a > $o ).

thf(sy_c_Divisibility_Oproperfactor_001tf__a_001t__Product____Type__Ounit,type,
    proper6663671550266415409t_unit: partia8223610829204095565t_unit > a > a > $o ).

thf(sy_c_Divisibility_Oproperfactor_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    proper19828929941537682xt_a_b: partia2175431115845679010xt_a_b > a > a > $o ).

thf(sy_c_Embedded__Algebras_Oring_Odimension_001tf__a_001tf__b,type,
    embedd2795209813406577254on_a_b: partia2175431115845679010xt_a_b > nat > set_a > set_a > $o ).

thf(sy_c_Embedded__Algebras_Oring_Ofinite__dimension_001tf__a_001tf__b,type,
    embedd8708762675212832759on_a_b: partia2175431115845679010xt_a_b > set_a > set_a > $o ).

thf(sy_c_Embedded__Algebras_Oring_Oline__extension_001tf__a_001tf__b,type,
    embedd971793762689825387on_a_b: partia2175431115845679010xt_a_b > set_a > a > set_a > set_a ).

thf(sy_c_Embedded__Algebras_Osubalgebra_001tf__a_001tf__b,type,
    embedd9027525575939734154ra_a_b: set_a > set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Group_OUnits_001tf__a_001t__Product____Type__Ounit,type,
    units_a_Product_unit: partia8223610829204095565t_unit > set_a ).

thf(sy_c_Group_OUnits_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    units_a_ring_ext_a_b: partia2175431115845679010xt_a_b > set_a ).

thf(sy_c_Group_Ocomm__group_001tf__a_001t__Product____Type__Ounit,type,
    comm_g1850867397131805039t_unit: partia8223610829204095565t_unit > $o ).

thf(sy_c_Group_Ocomm__group_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    comm_g837948081586602452xt_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Group_Ogroup_001tf__a_001t__Product____Type__Ounit,type,
    group_a_Product_unit: partia8223610829204095565t_unit > $o ).

thf(sy_c_Group_Ogroup_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    group_a_ring_ext_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Group_Om__inv_001tf__a_001t__Product____Type__Ounit,type,
    m_inv_a_Product_unit: partia8223610829204095565t_unit > a > a ).

thf(sy_c_Group_Om__inv_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    m_inv_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a > a ).

thf(sy_c_Group_Omonoid_Omult_001tf__a_001t__Product____Type__Ounit,type,
    mult_a_Product_unit: partia8223610829204095565t_unit > a > a > a ).

thf(sy_c_Group_Omonoid_Omult_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    mult_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a > a > a ).

thf(sy_c_Group_Omonoid_Oone_001tf__a_001t__Product____Type__Ounit,type,
    one_a_Product_unit: partia8223610829204095565t_unit > a ).

thf(sy_c_Group_Omonoid_Oone_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    one_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a ).

thf(sy_c_Group_Opow_001tf__a_001t__Product____Type__Ounit_001t__Nat__Onat,type,
    pow_a_1875594501834816709it_nat: partia8223610829204095565t_unit > a > nat > a ).

thf(sy_c_Group_Opow_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J_001t__Nat__Onat,type,
    pow_a_1026414303147256608_b_nat: partia2175431115845679010xt_a_b > a > nat > a ).

thf(sy_c_Group_Ounits__of_001tf__a_001t__Product____Type__Ounit,type,
    units_7501539392726747778t_unit: partia8223610829204095565t_unit > partia8223610829204095565t_unit ).

thf(sy_c_Group_Ounits__of_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    units_8174867845824275201xt_a_b: partia2175431115845679010xt_a_b > partia8223610829204095565t_unit ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    minus_5736297505244876581_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    uminus6103902357914783669_set_a: set_set_a > set_set_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_Itf__a_J,type,
    uminus_uminus_set_a: set_a > set_a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Ideal_Ocgenideal_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    cgenid547466209912283029xt_a_b: partia2175431115845679010xt_a_b > a > set_a ).

thf(sy_c_Ideal_Ogenideal_001tf__a_001tf__b,type,
    genideal_a_b: partia2175431115845679010xt_a_b > set_a > set_a ).

thf(sy_c_Ideal_Omaximalideal_001tf__a_001tf__b,type,
    maximalideal_a_b: set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Ideal_Oprimeideal_001tf__a_001tf__b,type,
    primeideal_a_b: set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Ideal_Oprincipalideal_001tf__a_001tf__b,type,
    principalideal_a_b: set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    inf_inf_set_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__a_J_J_J,type,
    ord_le5722252365846178494_set_a: set_set_set_a > set_set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_QuotRing_Oring__iso_001tf__a_001tf__b_001tf__a_001tf__b,type,
    ring_iso_a_b_a_b: partia2175431115845679010xt_a_b > partia2175431115845679010xt_a_b > set_a_a ).

thf(sy_c_Ring_Oa__inv_001tf__a_001tf__b,type,
    a_inv_a_b: partia2175431115845679010xt_a_b > a > a ).

thf(sy_c_Ring_Oa__minus_001tf__a_001tf__b,type,
    a_minus_a_b: partia2175431115845679010xt_a_b > a > a > a ).

thf(sy_c_Ring_Oabelian__monoid_001tf__a_001tf__b,type,
    abelian_monoid_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Ring_Oadd__pow_001tf__a_001tf__b_001t__Int__Oint,type,
    add_pow_a_b_int: partia2175431115845679010xt_a_b > int > a > a ).

thf(sy_c_Ring_Odomain_001tf__a_001tf__b,type,
    domain_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Ring_Ofield_001tf__a_001tf__b,type,
    field_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Ring_Ofield__axioms_001tf__a_001tf__b,type,
    field_axioms_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Ring_Oring_Oadd_001tf__a_001tf__b,type,
    add_a_b: partia2175431115845679010xt_a_b > a > a > a ).

thf(sy_c_Ring_Oring_Ozero_001tf__a_001tf__b,type,
    zero_a_b: partia2175431115845679010xt_a_b > a ).

thf(sy_c_Ring_Osemiring_001tf__a_001tf__b,type,
    semiring_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Ring__Divisibility_Omult__of_001tf__a_001tf__b,type,
    ring_mult_of_a_b: partia2175431115845679010xt_a_b > partia8223610829204095565t_unit ).

thf(sy_c_Ring__Divisibility_Onoetherian__domain_001tf__a_001tf__b,type,
    ring_n4045954140777738665in_a_b: partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Ring__Divisibility_Oring__irreducible_001tf__a_001tf__b,type,
    ring_r999134135267193926le_a_b: partia2175431115845679010xt_a_b > a > $o ).

thf(sy_c_Ring__Divisibility_Oring__prime_001tf__a_001tf__b,type,
    ring_ring_prime_a_b: partia2175431115845679010xt_a_b > a > $o ).

thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__a_J,type,
    collect_set_a: ( set_a > $o ) > set_set_a ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_OPow_001t__Set__Oset_Itf__a_J,type,
    pow_set_a: set_set_a > set_set_set_a ).

thf(sy_c_Set_OPow_001tf__a,type,
    pow_a: set_a > set_set_a ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__a_J,type,
    insert_set_a: set_a > set_set_a > set_set_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Subrings_Osubcring_001tf__a_001tf__b,type,
    subcring_a_b: set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Subrings_Osubdomain_001tf__a_001tf__b,type,
    subdomain_a_b: set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Subrings_Osubfield_001tf__a_001tf__b,type,
    subfield_a_b: set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_Subrings_Osubring_001tf__a_001tf__b,type,
    subring_a_b: set_a > partia2175431115845679010xt_a_b > $o ).

thf(sy_c_member_001_062_Itf__a_Mtf__a_J,type,
    member_a_a: ( a > a ) > set_a_a > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    member_set_set_a: set_set_a > set_set_set_a > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_R,type,
    r: partia2175431115845679010xt_a_b ).

thf(sy_v_a,type,
    a2: a ).

thf(sy_v_b,type,
    b: a ).

thf(sy_v_r1____,type,
    r1: a ).

% Relevant facts (1277)
thf(fact_0_r1__def_I2_J,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ a2 @ r1 )
    = b ) ).

% r1_def(2)
thf(fact_1_domain__axioms,axiom,
    domain_a_b @ r ).

% domain_axioms
thf(fact_2_assms_I1_J,axiom,
    member_a @ a2 @ ( partia707051561876973205xt_a_b @ r ) ).

% assms(1)
thf(fact_3_r1__def_I1_J,axiom,
    member_a @ r1 @ ( partia707051561876973205xt_a_b @ r ) ).

% r1_def(1)
thf(fact_4_l__minus,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Y )
          = ( a_inv_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) ) ) ) ) ).

% l_minus
thf(fact_5_r__minus,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) )
          = ( a_inv_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) ) ) ) ) ).

% r_minus
thf(fact_6_assms_I3_J,axiom,
    factor8216151070175719842xt_a_b @ r @ a2 @ b ).

% assms(3)
thf(fact_7_local_Osemiring__axioms,axiom,
    semiring_a_b @ r ).

% local.semiring_axioms
thf(fact_8_m__assoc,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ Z )
            = ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) ) ) ) ) ) ).

% m_assoc
thf(fact_9_m__comm,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
          = ( mult_a_ring_ext_a_b @ r @ Y @ X ) ) ) ) ).

% m_comm
thf(fact_10_m__lcomm,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) )
            = ( mult_a_ring_ext_a_b @ r @ Y @ ( mult_a_ring_ext_a_b @ r @ X @ Z ) ) ) ) ) ) ).

% m_lcomm
thf(fact_11_subring__props_I5_J,axiom,
    ! [K: set_a,H: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( member_a @ H @ K )
       => ( member_a @ ( a_inv_a_b @ r @ H ) @ K ) ) ) ).

% subring_props(5)
thf(fact_12_subring__props_I6_J,axiom,
    ! [K: set_a,H1: a,H2: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( member_a @ H1 @ K )
       => ( ( member_a @ H2 @ K )
         => ( member_a @ ( mult_a_ring_ext_a_b @ r @ H1 @ H2 ) @ K ) ) ) ) ).

% subring_props(6)
thf(fact_13_abelian__monoid__axioms,axiom,
    abelian_monoid_a_b @ r ).

% abelian_monoid_axioms
thf(fact_14__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062r1_O_A_092_060lbrakk_062r1_A_092_060in_062_Acarrier_AR_059_Aa_A_092_060otimes_062_Ar1_A_061_Ab_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [R1: a] :
        ( ( member_a @ R1 @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ a2 @ R1 )
         != b ) ) ).

% \<open>\<And>thesis. (\<And>r1. \<lbrakk>r1 \<in> carrier R; a \<otimes> r1 = b\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_15_assms_I2_J,axiom,
    member_a @ b @ ( partia707051561876973205xt_a_b @ r ) ).

% assms(2)
thf(fact_16_divides__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
     => ( ( factor8216151070175719842xt_a_b @ r @ B @ C )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( factor8216151070175719842xt_a_b @ r @ A @ C ) ) ) ) ).

% divides_trans
thf(fact_17_divides__prod__r,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
         => ( factor8216151070175719842xt_a_b @ r @ A @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ).

% divides_prod_r
thf(fact_18_divides__prod__l,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
           => ( factor8216151070175719842xt_a_b @ r @ A @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ) ).

% divides_prod_l
thf(fact_19_local_Odivides__mult,axiom,
    ! [A: a,C: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
         => ( factor8216151070175719842xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ).

% local.divides_mult
thf(fact_20_m__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% m_closed
thf(fact_21_local_Ominus__minus,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( a_inv_a_b @ r @ ( a_inv_a_b @ r @ X ) )
        = X ) ) ).

% local.minus_minus
thf(fact_22_a__inv__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( member_a @ ( a_inv_a_b @ r @ X ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ).

% a_inv_closed
thf(fact_23_divides__refl,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( factor8216151070175719842xt_a_b @ r @ A @ A ) ) ).

% divides_refl
thf(fact_24_divides__mult__rI,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( factor8216151070175719842xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ) ).

% divides_mult_rI
thf(fact_25_divides__mult__lI,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
         => ( factor8216151070175719842xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ).

% divides_mult_lI
thf(fact_26_isgcd__divides__r,axiom,
    ! [B: a,A: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ B @ A )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( isgcd_a_ring_ext_a_b @ r @ B @ A @ B ) ) ) ) ).

% isgcd_divides_r
thf(fact_27_isgcd__divides__l,axiom,
    ! [A: a,B: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( isgcd_a_ring_ext_a_b @ r @ A @ A @ B ) ) ) ) ).

% isgcd_divides_l
thf(fact_28_onepideal,axiom,
    principalideal_a_b @ ( partia707051561876973205xt_a_b @ r ) @ r ).

% onepideal
thf(fact_29_dividesI_H,axiom,
    ! [B: a,G: partia2175431115845679010xt_a_b,A: a,C: a] :
      ( ( B
        = ( mult_a_ring_ext_a_b @ G @ A @ C ) )
     => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
       => ( factor8216151070175719842xt_a_b @ G @ A @ B ) ) ) ).

% dividesI'
thf(fact_30_dividesI_H,axiom,
    ! [B: a,G: partia8223610829204095565t_unit,A: a,C: a] :
      ( ( B
        = ( mult_a_Product_unit @ G @ A @ C ) )
     => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
       => ( factor3040189038382604065t_unit @ G @ A @ B ) ) ) ).

% dividesI'
thf(fact_31_monoid__cancelI,axiom,
    ( ! [A2: a,B2: a,C2: a] :
        ( ( ( mult_a_ring_ext_a_b @ r @ C2 @ A2 )
          = ( mult_a_ring_ext_a_b @ r @ C2 @ B2 ) )
       => ( ( member_a @ A2 @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B2 @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( member_a @ C2 @ ( partia707051561876973205xt_a_b @ r ) )
             => ( A2 = B2 ) ) ) ) )
   => ( ! [A2: a,B2: a,C2: a] :
          ( ( ( mult_a_ring_ext_a_b @ r @ A2 @ C2 )
            = ( mult_a_ring_ext_a_b @ r @ B2 @ C2 ) )
         => ( ( member_a @ A2 @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( member_a @ B2 @ ( partia707051561876973205xt_a_b @ r ) )
             => ( ( member_a @ C2 @ ( partia707051561876973205xt_a_b @ r ) )
               => ( A2 = B2 ) ) ) ) )
     => ( monoid5798828371819920185xt_a_b @ r ) ) ) ).

% monoid_cancelI
thf(fact_32_square__eq__one,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ( mult_a_ring_ext_a_b @ r @ X @ X )
          = ( one_a_ring_ext_a_b @ r ) )
       => ( ( X
            = ( one_a_ring_ext_a_b @ r ) )
          | ( X
            = ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) ) ) ) ) ).

% square_eq_one
thf(fact_33_add_Oint__pow__inv,axiom,
    ! [X: a,I: int] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ I @ ( a_inv_a_b @ r @ X ) )
        = ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) ) ) ) ).

% add.int_pow_inv
thf(fact_34_add__pow__rdistr__int,axiom,
    ! [A: a,B: a,K2: int] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ A @ ( add_pow_a_b_int @ r @ K2 @ B ) )
          = ( add_pow_a_b_int @ r @ K2 @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ).

% add_pow_rdistr_int
thf(fact_35_add__pow__ldistr__int,axiom,
    ! [A: a,B: a,K2: int] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ ( add_pow_a_b_int @ r @ K2 @ A ) @ B )
          = ( add_pow_a_b_int @ r @ K2 @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ).

% add_pow_ldistr_int
thf(fact_36_semiring_Osemiring__simprules_I8_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( mult_a_ring_ext_a_b @ R @ ( mult_a_ring_ext_a_b @ R @ X @ Y ) @ Z )
              = ( mult_a_ring_ext_a_b @ R @ X @ ( mult_a_ring_ext_a_b @ R @ Y @ Z ) ) ) ) ) ) ) ).

% semiring.semiring_simprules(8)
thf(fact_37_semiring_Osemiring__simprules_I3_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( member_a @ ( mult_a_ring_ext_a_b @ R @ X @ Y ) @ ( partia707051561876973205xt_a_b @ R ) ) ) ) ) ).

% semiring.semiring_simprules(3)
thf(fact_38_subring__props_I3_J,axiom,
    ! [K: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( member_a @ ( one_a_ring_ext_a_b @ r ) @ K ) ) ).

% subring_props(3)
thf(fact_39_inv__unique,axiom,
    ! [Y: a,X: a,Y2: a] :
      ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
        = ( one_a_ring_ext_a_b @ r ) )
     => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y2 )
          = ( one_a_ring_ext_a_b @ r ) )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( member_a @ Y2 @ ( partia707051561876973205xt_a_b @ r ) )
             => ( Y = Y2 ) ) ) ) ) ) ).

% inv_unique
thf(fact_40_one__unique,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ! [X2: a] :
            ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( mult_a_ring_ext_a_b @ r @ U @ X2 )
              = X2 ) )
       => ( U
          = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% one_unique
thf(fact_41_one__divides,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( factor8216151070175719842xt_a_b @ r @ ( one_a_ring_ext_a_b @ r ) @ A ) ) ).

% one_divides
thf(fact_42_one__closed,axiom,
    member_a @ ( one_a_ring_ext_a_b @ r ) @ ( partia707051561876973205xt_a_b @ r ) ).

% one_closed
thf(fact_43_add_Oint__pow__closed,axiom,
    ! [X: a,I: int] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( member_a @ ( add_pow_a_b_int @ r @ I @ X ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ).

% add.int_pow_closed
thf(fact_44_l__one,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( one_a_ring_ext_a_b @ r ) @ X )
        = X ) ) ).

% l_one
thf(fact_45_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_46_mem__Collect__eq,axiom,
    ! [A: set_a,P: set_a > $o] :
      ( ( member_set_a @ A @ ( collect_set_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_47_Collect__mem__eq,axiom,
    ! [A3: set_a] :
      ( ( collect_a
        @ ^ [X3: a] : ( member_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_48_Collect__mem__eq,axiom,
    ! [A3: set_set_a] :
      ( ( collect_set_a
        @ ^ [X3: set_a] : ( member_set_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_49_r__one,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ X @ ( one_a_ring_ext_a_b @ r ) )
        = X ) ) ).

% r_one
thf(fact_50_monoid__cancel_Ois__monoid__cancel,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( monoid5798828371819920185xt_a_b @ G ) ) ).

% monoid_cancel.is_monoid_cancel
thf(fact_51_monoid__cancel_Ois__monoid__cancel,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( monoid1999574367301118026t_unit @ G ) ) ).

% monoid_cancel.is_monoid_cancel
thf(fact_52_semiring_Osemiring__simprules_I4_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( semiring_a_b @ R )
     => ( member_a @ ( one_a_ring_ext_a_b @ R ) @ ( partia707051561876973205xt_a_b @ R ) ) ) ).

% semiring.semiring_simprules(4)
thf(fact_53_monoid__cancel_Or__cancel,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,C: a,B: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( ( mult_a_ring_ext_a_b @ G @ A @ C )
          = ( mult_a_ring_ext_a_b @ G @ B @ C ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
             => ( A = B ) ) ) ) ) ) ).

% monoid_cancel.r_cancel
thf(fact_54_monoid__cancel_Or__cancel,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,C: a,B: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( ( mult_a_Product_unit @ G @ A @ C )
          = ( mult_a_Product_unit @ G @ B @ C ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
             => ( A = B ) ) ) ) ) ) ).

% monoid_cancel.r_cancel
thf(fact_55_monoid__cancel_Ol__cancel,axiom,
    ! [G: partia2175431115845679010xt_a_b,C: a,A: a,B: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( ( mult_a_ring_ext_a_b @ G @ C @ A )
          = ( mult_a_ring_ext_a_b @ G @ C @ B ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
             => ( A = B ) ) ) ) ) ) ).

% monoid_cancel.l_cancel
thf(fact_56_monoid__cancel_Ol__cancel,axiom,
    ! [G: partia8223610829204095565t_unit,C: a,A: a,B: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( ( mult_a_Product_unit @ G @ C @ A )
          = ( mult_a_Product_unit @ G @ C @ B ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
             => ( A = B ) ) ) ) ) ) ).

% monoid_cancel.l_cancel
thf(fact_57_isgcd__def,axiom,
    ( isgcd_a_ring_ext_a_b
    = ( ^ [G2: partia2175431115845679010xt_a_b,X3: a,A4: a,B3: a] :
          ( ( factor8216151070175719842xt_a_b @ G2 @ X3 @ A4 )
          & ( factor8216151070175719842xt_a_b @ G2 @ X3 @ B3 )
          & ! [Y3: a] :
              ( ( member_a @ Y3 @ ( partia707051561876973205xt_a_b @ G2 ) )
             => ( ( ( factor8216151070175719842xt_a_b @ G2 @ Y3 @ A4 )
                  & ( factor8216151070175719842xt_a_b @ G2 @ Y3 @ B3 ) )
               => ( factor8216151070175719842xt_a_b @ G2 @ Y3 @ X3 ) ) ) ) ) ) ).

% isgcd_def
thf(fact_58_isgcd__def,axiom,
    ( isgcd_a_Product_unit
    = ( ^ [G2: partia8223610829204095565t_unit,X3: a,A4: a,B3: a] :
          ( ( factor3040189038382604065t_unit @ G2 @ X3 @ A4 )
          & ( factor3040189038382604065t_unit @ G2 @ X3 @ B3 )
          & ! [Y3: a] :
              ( ( member_a @ Y3 @ ( partia6735698275553448452t_unit @ G2 ) )
             => ( ( ( factor3040189038382604065t_unit @ G2 @ Y3 @ A4 )
                  & ( factor3040189038382604065t_unit @ G2 @ Y3 @ B3 ) )
               => ( factor3040189038382604065t_unit @ G2 @ Y3 @ X3 ) ) ) ) ) ) ).

% isgcd_def
thf(fact_59_semiring_Osemiring__simprules_I9_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( mult_a_ring_ext_a_b @ R @ ( one_a_ring_ext_a_b @ R ) @ X )
          = X ) ) ) ).

% semiring.semiring_simprules(9)
thf(fact_60_monoid__cancel_Odivides__mult__l,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( factor8216151070175719842xt_a_b @ G @ ( mult_a_ring_ext_a_b @ G @ C @ A ) @ ( mult_a_ring_ext_a_b @ G @ C @ B ) )
              = ( factor8216151070175719842xt_a_b @ G @ A @ B ) ) ) ) ) ) ).

% monoid_cancel.divides_mult_l
thf(fact_61_monoid__cancel_Odivides__mult__l,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a,C: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( factor3040189038382604065t_unit @ G @ ( mult_a_Product_unit @ G @ C @ A ) @ ( mult_a_Product_unit @ G @ C @ B ) )
              = ( factor3040189038382604065t_unit @ G @ A @ B ) ) ) ) ) ) ).

% monoid_cancel.divides_mult_l
thf(fact_62_domain_Osquare__eq__one,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ( mult_a_ring_ext_a_b @ R @ X @ X )
            = ( one_a_ring_ext_a_b @ R ) )
         => ( ( X
              = ( one_a_ring_ext_a_b @ R ) )
            | ( X
              = ( a_inv_a_b @ R @ ( one_a_ring_ext_a_b @ R ) ) ) ) ) ) ) ).

% domain.square_eq_one
thf(fact_63_divides__hom,axiom,
    ! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
     => ( ( domain_a_b @ R )
       => ( ( domain_a_b @ S )
         => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
             => ( ( factor8216151070175719842xt_a_b @ R @ X @ Y )
                = ( factor8216151070175719842xt_a_b @ S @ ( H @ X ) @ ( H @ Y ) ) ) ) ) ) ) ) ).

% divides_hom
thf(fact_64_semiring_Oaxioms_I1_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( semiring_a_b @ R )
     => ( abelian_monoid_a_b @ R ) ) ).

% semiring.axioms(1)
thf(fact_65_factor__def,axiom,
    ( factor8216151070175719842xt_a_b
    = ( ^ [G2: partia2175431115845679010xt_a_b,A4: a,B3: a] :
        ? [X3: a] :
          ( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
          & ( B3
            = ( mult_a_ring_ext_a_b @ G2 @ A4 @ X3 ) ) ) ) ) ).

% factor_def
thf(fact_66_factor__def,axiom,
    ( factor3040189038382604065t_unit
    = ( ^ [G2: partia8223610829204095565t_unit,A4: a,B3: a] :
        ? [X3: a] :
          ( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
          & ( B3
            = ( mult_a_Product_unit @ G2 @ A4 @ X3 ) ) ) ) ) ).

% factor_def
thf(fact_67_dividesI,axiom,
    ! [C: a,G: partia2175431115845679010xt_a_b,B: a,A: a] :
      ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
     => ( ( B
          = ( mult_a_ring_ext_a_b @ G @ A @ C ) )
       => ( factor8216151070175719842xt_a_b @ G @ A @ B ) ) ) ).

% dividesI
thf(fact_68_dividesI,axiom,
    ! [C: a,G: partia8223610829204095565t_unit,B: a,A: a] :
      ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
     => ( ( B
          = ( mult_a_Product_unit @ G @ A @ C ) )
       => ( factor3040189038382604065t_unit @ G @ A @ B ) ) ) ).

% dividesI
thf(fact_69_dividesE,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( factor8216151070175719842xt_a_b @ G @ A @ B )
     => ~ ! [C2: a] :
            ( ( B
              = ( mult_a_ring_ext_a_b @ G @ A @ C2 ) )
           => ~ ( member_a @ C2 @ ( partia707051561876973205xt_a_b @ G ) ) ) ) ).

% dividesE
thf(fact_70_dividesE,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( factor3040189038382604065t_unit @ G @ A @ B )
     => ~ ! [C2: a] :
            ( ( B
              = ( mult_a_Product_unit @ G @ A @ C2 ) )
           => ~ ( member_a @ C2 @ ( partia6735698275553448452t_unit @ G ) ) ) ) ).

% dividesE
thf(fact_71_dividesD,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( factor8216151070175719842xt_a_b @ G @ A @ B )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
          & ( B
            = ( mult_a_ring_ext_a_b @ G @ A @ X2 ) ) ) ) ).

% dividesD
thf(fact_72_dividesD,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( factor3040189038382604065t_unit @ G @ A @ B )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
          & ( B
            = ( mult_a_Product_unit @ G @ A @ X2 ) ) ) ) ).

% dividesD
thf(fact_73_cgenideal__is__principalideal,axiom,
    ! [I: a] :
      ( ( member_a @ I @ ( partia707051561876973205xt_a_b @ r ) )
     => ( principalideal_a_b @ ( cgenid547466209912283029xt_a_b @ r @ I ) @ r ) ) ).

% cgenideal_is_principalideal
thf(fact_74_add_Oint__pow__neg,axiom,
    ! [X: a,I: int] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ ( uminus_uminus_int @ I ) @ X )
        = ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) ) ) ) ).

% add.int_pow_neg
thf(fact_75_group__l__invI,axiom,
    ( ! [X2: a] :
        ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ r ) )
       => ? [Xa: a] :
            ( ( member_a @ Xa @ ( partia707051561876973205xt_a_b @ r ) )
            & ( ( mult_a_ring_ext_a_b @ r @ Xa @ X2 )
              = ( one_a_ring_ext_a_b @ r ) ) ) )
   => ( group_a_ring_ext_a_b @ r ) ) ).

% group_l_invI
thf(fact_76_ring__iso__memE_I2_J,axiom,
    ! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( H @ ( mult_a_ring_ext_a_b @ R @ X @ Y ) )
            = ( mult_a_ring_ext_a_b @ S @ ( H @ X ) @ ( H @ Y ) ) ) ) ) ) ).

% ring_iso_memE(2)
thf(fact_77_subring__props_I1_J,axiom,
    ! [K: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ r ) ) ) ).

% subring_props(1)
thf(fact_78_divides__one,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( factor8216151070175719842xt_a_b @ r @ A @ ( one_a_ring_ext_a_b @ r ) )
        = ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ).

% divides_one
thf(fact_79_Unit__eq__dividesone,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
        = ( factor8216151070175719842xt_a_b @ r @ U @ ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% Unit_eq_dividesone
thf(fact_80_Units__l__inv__ex,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ r ) )
          & ( ( mult_a_ring_ext_a_b @ r @ X2 @ X )
            = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% Units_l_inv_ex
thf(fact_81_Units__r__inv__ex,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ r ) )
          & ( ( mult_a_ring_ext_a_b @ r @ X @ X2 )
            = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% Units_r_inv_ex
thf(fact_82_add_Oint__pow__pow,axiom,
    ! [X: a,M: int,N: int] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ M @ ( add_pow_a_b_int @ r @ N @ X ) )
        = ( add_pow_a_b_int @ r @ ( times_times_int @ N @ M ) @ X ) ) ) ).

% add.int_pow_pow
thf(fact_83_divides__zero,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( factor8216151070175719842xt_a_b @ r @ A @ ( zero_a_b @ r ) ) ) ).

% divides_zero
thf(fact_84_zero__not__one,axiom,
    ( ( zero_a_b @ r )
   != ( one_a_ring_ext_a_b @ r ) ) ).

% zero_not_one
thf(fact_85_subring__props_I2_J,axiom,
    ! [K: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( member_a @ ( zero_a_b @ r ) @ K ) ) ).

% subring_props(2)
thf(fact_86_Units__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) ) ) ).

% Units_closed
thf(fact_87_zero__divides,axiom,
    ! [A: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ ( zero_a_b @ r ) @ A )
      = ( A
        = ( zero_a_b @ r ) ) ) ).

% zero_divides
thf(fact_88_cgenideal__self,axiom,
    ! [I: a] :
      ( ( member_a @ I @ ( partia707051561876973205xt_a_b @ r ) )
     => ( member_a @ I @ ( cgenid547466209912283029xt_a_b @ r @ I ) ) ) ).

% cgenideal_self
thf(fact_89_m__rcancel,axiom,
    ! [A: a,B: a,C: a] :
      ( ( A
       != ( zero_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( ( mult_a_ring_ext_a_b @ r @ B @ A )
                = ( mult_a_ring_ext_a_b @ r @ C @ A ) )
              = ( B = C ) ) ) ) ) ) ).

% m_rcancel
thf(fact_90_m__lcancel,axiom,
    ! [A: a,B: a,C: a] :
      ( ( A
       != ( zero_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( ( mult_a_ring_ext_a_b @ r @ A @ B )
                = ( mult_a_ring_ext_a_b @ r @ A @ C ) )
              = ( B = C ) ) ) ) ) ) ).

% m_lcancel
thf(fact_91_integral__iff,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ( mult_a_ring_ext_a_b @ r @ A @ B )
            = ( zero_a_b @ r ) )
          = ( ( A
              = ( zero_a_b @ r ) )
            | ( B
              = ( zero_a_b @ r ) ) ) ) ) ) ).

% integral_iff
thf(fact_92_local_Ointegral,axiom,
    ! [A: a,B: a] :
      ( ( ( mult_a_ring_ext_a_b @ r @ A @ B )
        = ( zero_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( A
              = ( zero_a_b @ r ) )
            | ( B
              = ( zero_a_b @ r ) ) ) ) ) ) ).

% local.integral
thf(fact_93_unit__factor,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ).

% unit_factor
thf(fact_94_prod__unit__r,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
           => ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ) ).

% prod_unit_r
thf(fact_95_prod__unit__l,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
           => ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ) ).

% prod_unit_l
thf(fact_96_Units__inv__comm,axiom,
    ! [X: a,Y: a] :
      ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
        = ( one_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
       => ( ( member_a @ Y @ ( units_a_ring_ext_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
            = ( one_a_ring_ext_a_b @ r ) ) ) ) ) ).

% Units_inv_comm
thf(fact_97_unit__divides,axiom,
    ! [U: a,A: a] :
      ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( factor8216151070175719842xt_a_b @ r @ U @ A ) ) ) ).

% unit_divides
thf(fact_98_divides__unit,axiom,
    ! [A: a,U: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ A @ U )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
         => ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ).

% divides_unit
thf(fact_99_ideal__eq__carrier__iff,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ( partia707051561876973205xt_a_b @ r )
          = ( cgenid547466209912283029xt_a_b @ r @ A ) )
        = ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ).

% ideal_eq_carrier_iff
thf(fact_100_to__contain__is__to__divide,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ord_less_eq_set_a @ ( cgenid547466209912283029xt_a_b @ r @ B ) @ ( cgenid547466209912283029xt_a_b @ r @ A ) )
          = ( factor8216151070175719842xt_a_b @ r @ A @ B ) ) ) ) ).

% to_contain_is_to_divide
thf(fact_101_zero__closed,axiom,
    member_a @ ( zero_a_b @ r ) @ ( partia707051561876973205xt_a_b @ r ) ).

% zero_closed
thf(fact_102_local_Ominus__zero,axiom,
    ( ( a_inv_a_b @ r @ ( zero_a_b @ r ) )
    = ( zero_a_b @ r ) ) ).

% local.minus_zero
thf(fact_103_Units__m__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ Y @ ( units_a_ring_ext_a_b @ r ) )
       => ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( units_a_ring_ext_a_b @ r ) ) ) ) ).

% Units_m_closed
thf(fact_104_add_Oint__pow__one,axiom,
    ! [Z: int] :
      ( ( add_pow_a_b_int @ r @ Z @ ( zero_a_b @ r ) )
      = ( zero_a_b @ r ) ) ).

% add.int_pow_one
thf(fact_105_Units__one__closed,axiom,
    member_a @ ( one_a_ring_ext_a_b @ r ) @ ( units_a_ring_ext_a_b @ r ) ).

% Units_one_closed
thf(fact_106_r__null,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ X @ ( zero_a_b @ r ) )
        = ( zero_a_b @ r ) ) ) ).

% r_null
thf(fact_107_l__null,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( zero_a_b @ r ) @ X )
        = ( zero_a_b @ r ) ) ) ).

% l_null
thf(fact_108_add_Oinv__eq__1__iff,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ( a_inv_a_b @ r @ X )
          = ( zero_a_b @ r ) )
        = ( X
          = ( zero_a_b @ r ) ) ) ) ).

% add.inv_eq_1_iff
thf(fact_109_Units__l__cancel,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
              = ( mult_a_ring_ext_a_b @ r @ X @ Z ) )
            = ( Y = Z ) ) ) ) ) ).

% Units_l_cancel
thf(fact_110_Units__minus__one__closed,axiom,
    member_a @ ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) @ ( units_a_ring_ext_a_b @ r ) ).

% Units_minus_one_closed
thf(fact_111_domain_Ozero__not__one,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( ( zero_a_b @ R )
       != ( one_a_ring_ext_a_b @ R ) ) ) ).

% domain.zero_not_one
thf(fact_112_domain_Oone__not__zero,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( ( one_a_ring_ext_a_b @ R )
       != ( zero_a_b @ R ) ) ) ).

% domain.one_not_zero
thf(fact_113_abelian__monoidE_I2_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( abelian_monoid_a_b @ R )
     => ( member_a @ ( zero_a_b @ R ) @ ( partia707051561876973205xt_a_b @ R ) ) ) ).

% abelian_monoidE(2)
thf(fact_114_abelian__monoid_Ozero__closed,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( abelian_monoid_a_b @ G )
     => ( member_a @ ( zero_a_b @ G ) @ ( partia707051561876973205xt_a_b @ G ) ) ) ).

% abelian_monoid.zero_closed
thf(fact_115_semiring_Osemiring__simprules_I2_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( semiring_a_b @ R )
     => ( member_a @ ( zero_a_b @ R ) @ ( partia707051561876973205xt_a_b @ R ) ) ) ).

% semiring.semiring_simprules(2)
thf(fact_116_Units__hom,axiom,
    ! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a] :
      ( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
     => ( ( domain_a_b @ R )
       => ( ( domain_a_b @ S )
         => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( member_a @ X @ ( units_a_ring_ext_a_b @ R ) )
              = ( member_a @ ( H @ X ) @ ( units_a_ring_ext_a_b @ S ) ) ) ) ) ) ) ).

% Units_hom
thf(fact_117_domain_Ointegral,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( domain_a_b @ R )
     => ( ( ( mult_a_ring_ext_a_b @ R @ A @ B )
          = ( zero_a_b @ R ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( A
                = ( zero_a_b @ R ) )
              | ( B
                = ( zero_a_b @ R ) ) ) ) ) ) ) ).

% domain.integral
thf(fact_118_domain_Om__lcancel,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( domain_a_b @ R )
     => ( ( A
         != ( zero_a_b @ R ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ R ) )
             => ( ( ( mult_a_ring_ext_a_b @ R @ A @ B )
                  = ( mult_a_ring_ext_a_b @ R @ A @ C ) )
                = ( B = C ) ) ) ) ) ) ) ).

% domain.m_lcancel
thf(fact_119_domain_Om__rcancel,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( domain_a_b @ R )
     => ( ( A
         != ( zero_a_b @ R ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ R ) )
             => ( ( ( mult_a_ring_ext_a_b @ R @ B @ A )
                  = ( mult_a_ring_ext_a_b @ R @ C @ A ) )
                = ( B = C ) ) ) ) ) ) ) ).

% domain.m_rcancel
thf(fact_120_domain_Ointegral__iff,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( ( mult_a_ring_ext_a_b @ R @ A @ B )
              = ( zero_a_b @ R ) )
            = ( ( A
                = ( zero_a_b @ R ) )
              | ( B
                = ( zero_a_b @ R ) ) ) ) ) ) ) ).

% domain.integral_iff
thf(fact_121_semiring_Ol__null,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( mult_a_ring_ext_a_b @ R @ ( zero_a_b @ R ) @ X )
          = ( zero_a_b @ R ) ) ) ) ).

% semiring.l_null
thf(fact_122_semiring_Or__null,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( mult_a_ring_ext_a_b @ R @ X @ ( zero_a_b @ R ) )
          = ( zero_a_b @ R ) ) ) ) ).

% semiring.r_null
thf(fact_123_ring__iso__memE_I1_J,axiom,
    ! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a] :
      ( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( member_a @ ( H @ X ) @ ( partia707051561876973205xt_a_b @ S ) ) ) ) ).

% ring_iso_memE(1)
thf(fact_124_ring__iso__memE_I4_J,axiom,
    ! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b] :
      ( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
     => ( ( H @ ( one_a_ring_ext_a_b @ R ) )
        = ( one_a_ring_ext_a_b @ S ) ) ) ).

% ring_iso_memE(4)
thf(fact_125_ring__primeE_I1_J,axiom,
    ! [P2: a] :
      ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ring_ring_prime_a_b @ r @ P2 )
       => ( P2
         != ( zero_a_b @ r ) ) ) ) ).

% ring_primeE(1)
thf(fact_126_ring__irreducibleE_I5_J,axiom,
    ! [R2: a,A: a,B: a] :
      ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ring_r999134135267193926le_a_b @ r @ R2 )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( R2
                = ( mult_a_ring_ext_a_b @ r @ A @ B ) )
             => ( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
                | ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ) ) ) ).

% ring_irreducibleE(5)
thf(fact_127_ring__irreducibleE_I4_J,axiom,
    ! [R2: a] :
      ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ring_r999134135267193926le_a_b @ r @ R2 )
       => ~ ( member_a @ R2 @ ( units_a_ring_ext_a_b @ r ) ) ) ) ).

% ring_irreducibleE(4)
thf(fact_128_ring__irreducibleE_I1_J,axiom,
    ! [R2: a] :
      ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ring_r999134135267193926le_a_b @ r @ R2 )
       => ( R2
         != ( zero_a_b @ r ) ) ) ) ).

% ring_irreducibleE(1)
thf(fact_129_line__extension__smult__closed,axiom,
    ! [K: set_a,E: set_a,A: a,K2: a,U: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ! [K3: a,V: a] :
            ( ( member_a @ K3 @ K )
           => ( ( member_a @ V @ E )
             => ( member_a @ ( mult_a_ring_ext_a_b @ r @ K3 @ V ) @ E ) ) )
       => ( ( ord_less_eq_set_a @ E @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( member_a @ K2 @ K )
             => ( ( member_a @ U @ ( embedd971793762689825387on_a_b @ r @ K @ A @ E ) )
               => ( member_a @ ( mult_a_ring_ext_a_b @ r @ K2 @ U ) @ ( embedd971793762689825387on_a_b @ r @ K @ A @ E ) ) ) ) ) ) ) ) ).

% line_extension_smult_closed
thf(fact_130_zero__is__prime_I1_J,axiom,
    prime_a_ring_ext_a_b @ r @ ( zero_a_b @ r ) ).

% zero_is_prime(1)
thf(fact_131_a__lcos__mult__one,axiom,
    ! [M2: set_a] :
      ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( a_l_coset_a_b @ r @ ( zero_a_b @ r ) @ M2 )
        = M2 ) ) ).

% a_lcos_mult_one
thf(fact_132_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_133_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_134_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_135_line__extension__in__carrier,axiom,
    ! [K: set_a,A: a,E: set_a] :
      ( ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ord_less_eq_set_a @ E @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ord_less_eq_set_a @ ( embedd971793762689825387on_a_b @ r @ K @ A @ E ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ) ).

% line_extension_in_carrier
thf(fact_136_a__l__coset__subset__G,axiom,
    ! [H3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ord_less_eq_set_a @ ( a_l_coset_a_b @ r @ X @ H3 ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% a_l_coset_subset_G
thf(fact_137_ring__primeE_I3_J,axiom,
    ! [P2: a] :
      ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ring_ring_prime_a_b @ r @ P2 )
       => ( prime_a_ring_ext_a_b @ r @ P2 ) ) ) ).

% ring_primeE(3)
thf(fact_138_ring__primeI,axiom,
    ! [P2: a] :
      ( ( P2
       != ( zero_a_b @ r ) )
     => ( ( prime_a_ring_ext_a_b @ r @ P2 )
       => ( ring_ring_prime_a_b @ r @ P2 ) ) ) ).

% ring_primeI
thf(fact_139_prime__def,axiom,
    ( prime_a_ring_ext_a_b
    = ( ^ [G2: partia2175431115845679010xt_a_b,P3: a] :
          ( ~ ( member_a @ P3 @ ( units_a_ring_ext_a_b @ G2 ) )
          & ! [X3: a] :
              ( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
             => ! [Y3: a] :
                  ( ( member_a @ Y3 @ ( partia707051561876973205xt_a_b @ G2 ) )
                 => ( ( factor8216151070175719842xt_a_b @ G2 @ P3 @ ( mult_a_ring_ext_a_b @ G2 @ X3 @ Y3 ) )
                   => ( ( factor8216151070175719842xt_a_b @ G2 @ P3 @ X3 )
                      | ( factor8216151070175719842xt_a_b @ G2 @ P3 @ Y3 ) ) ) ) ) ) ) ) ).

% prime_def
thf(fact_140_prime__def,axiom,
    ( prime_a_Product_unit
    = ( ^ [G2: partia8223610829204095565t_unit,P3: a] :
          ( ~ ( member_a @ P3 @ ( units_a_Product_unit @ G2 ) )
          & ! [X3: a] :
              ( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
             => ! [Y3: a] :
                  ( ( member_a @ Y3 @ ( partia6735698275553448452t_unit @ G2 ) )
                 => ( ( factor3040189038382604065t_unit @ G2 @ P3 @ ( mult_a_Product_unit @ G2 @ X3 @ Y3 ) )
                   => ( ( factor3040189038382604065t_unit @ G2 @ P3 @ X3 )
                      | ( factor3040189038382604065t_unit @ G2 @ P3 @ Y3 ) ) ) ) ) ) ) ) ).

% prime_def
thf(fact_141_primeI,axiom,
    ! [P2: a,G: partia2175431115845679010xt_a_b] :
      ( ~ ( member_a @ P2 @ ( units_a_ring_ext_a_b @ G ) )
     => ( ! [A2: a,B2: a] :
            ( ( member_a @ A2 @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( member_a @ B2 @ ( partia707051561876973205xt_a_b @ G ) )
             => ( ( factor8216151070175719842xt_a_b @ G @ P2 @ ( mult_a_ring_ext_a_b @ G @ A2 @ B2 ) )
               => ( ( factor8216151070175719842xt_a_b @ G @ P2 @ A2 )
                  | ( factor8216151070175719842xt_a_b @ G @ P2 @ B2 ) ) ) ) )
       => ( prime_a_ring_ext_a_b @ G @ P2 ) ) ) ).

% primeI
thf(fact_142_primeI,axiom,
    ! [P2: a,G: partia8223610829204095565t_unit] :
      ( ~ ( member_a @ P2 @ ( units_a_Product_unit @ G ) )
     => ( ! [A2: a,B2: a] :
            ( ( member_a @ A2 @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( member_a @ B2 @ ( partia6735698275553448452t_unit @ G ) )
             => ( ( factor3040189038382604065t_unit @ G @ P2 @ ( mult_a_Product_unit @ G @ A2 @ B2 ) )
               => ( ( factor3040189038382604065t_unit @ G @ P2 @ A2 )
                  | ( factor3040189038382604065t_unit @ G @ P2 @ B2 ) ) ) ) )
       => ( prime_a_Product_unit @ G @ P2 ) ) ) ).

% primeI
thf(fact_143_primeE,axiom,
    ! [G: partia2175431115845679010xt_a_b,P2: a] :
      ( ( prime_a_ring_ext_a_b @ G @ P2 )
     => ~ ( ~ ( member_a @ P2 @ ( units_a_ring_ext_a_b @ G ) )
         => ~ ! [X4: a] :
                ( ( member_a @ X4 @ ( partia707051561876973205xt_a_b @ G ) )
               => ! [Xa: a] :
                    ( ( member_a @ Xa @ ( partia707051561876973205xt_a_b @ G ) )
                   => ( ( factor8216151070175719842xt_a_b @ G @ P2 @ ( mult_a_ring_ext_a_b @ G @ X4 @ Xa ) )
                     => ( ( factor8216151070175719842xt_a_b @ G @ P2 @ X4 )
                        | ( factor8216151070175719842xt_a_b @ G @ P2 @ Xa ) ) ) ) ) ) ) ).

% primeE
thf(fact_144_primeE,axiom,
    ! [G: partia8223610829204095565t_unit,P2: a] :
      ( ( prime_a_Product_unit @ G @ P2 )
     => ~ ( ~ ( member_a @ P2 @ ( units_a_Product_unit @ G ) )
         => ~ ! [X4: a] :
                ( ( member_a @ X4 @ ( partia6735698275553448452t_unit @ G ) )
               => ! [Xa: a] :
                    ( ( member_a @ Xa @ ( partia6735698275553448452t_unit @ G ) )
                   => ( ( factor3040189038382604065t_unit @ G @ P2 @ ( mult_a_Product_unit @ G @ X4 @ Xa ) )
                     => ( ( factor3040189038382604065t_unit @ G @ P2 @ X4 )
                        | ( factor3040189038382604065t_unit @ G @ P2 @ Xa ) ) ) ) ) ) ) ).

% primeE
thf(fact_145_minus__mult__commute,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).

% minus_mult_commute
thf(fact_146_square__eq__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ A )
        = ( times_times_int @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_int @ B ) ) ) ) ).

% square_eq_iff
thf(fact_147_domain_Oring__irreducibleE_I5_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,R2: a,A: a,B: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ring_r999134135267193926le_a_b @ R @ R2 )
         => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
             => ( ( R2
                  = ( mult_a_ring_ext_a_b @ R @ A @ B ) )
               => ( ( member_a @ A @ ( units_a_ring_ext_a_b @ R ) )
                  | ( member_a @ B @ ( units_a_ring_ext_a_b @ R ) ) ) ) ) ) ) ) ) ).

% domain.ring_irreducibleE(5)
thf(fact_148_compl__le__compl__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ X ) @ ( uminus_uminus_set_a @ Y ) )
      = ( ord_less_eq_set_a @ Y @ X ) ) ).

% compl_le_compl_iff
thf(fact_149_compl__le__compl__iff,axiom,
    ! [X: set_set_a,Y: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ X ) @ ( uminus6103902357914783669_set_a @ Y ) )
      = ( ord_le3724670747650509150_set_a @ Y @ X ) ) ).

% compl_le_compl_iff
thf(fact_150_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_151_domain_Oring__primeE_I3_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,P2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ring_ring_prime_a_b @ R @ P2 )
         => ( prime_a_ring_ext_a_b @ R @ P2 ) ) ) ) ).

% domain.ring_primeE(3)
thf(fact_152_carrier__is__subalgebra,axiom,
    ! [K: set_a] :
      ( ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ r ) )
     => ( embedd9027525575939734154ra_a_b @ K @ ( partia707051561876973205xt_a_b @ r ) @ r ) ) ).

% carrier_is_subalgebra
thf(fact_153_subalgebra__in__carrier,axiom,
    ! [K: set_a,V2: set_a] :
      ( ( embedd9027525575939734154ra_a_b @ K @ V2 @ r )
     => ( ord_less_eq_set_a @ V2 @ ( partia707051561876973205xt_a_b @ r ) ) ) ).

% subalgebra_in_carrier
thf(fact_154_cring__fieldI2,axiom,
    ( ( ( zero_a_b @ r )
     != ( one_a_ring_ext_a_b @ r ) )
   => ( ! [A2: a] :
          ( ( member_a @ A2 @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( A2
             != ( zero_a_b @ r ) )
           => ? [X4: a] :
                ( ( member_a @ X4 @ ( partia707051561876973205xt_a_b @ r ) )
                & ( ( mult_a_ring_ext_a_b @ r @ A2 @ X4 )
                  = ( one_a_ring_ext_a_b @ r ) ) ) ) )
     => ( field_a_b @ r ) ) ) ).

% cring_fieldI2
thf(fact_155_domain_Oring__irreducibleE_I4_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,R2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ring_r999134135267193926le_a_b @ R @ R2 )
         => ~ ( member_a @ R2 @ ( units_a_ring_ext_a_b @ R ) ) ) ) ) ).

% domain.ring_irreducibleE(4)
thf(fact_156_domain_Oring__primeE_I1_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,P2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ring_ring_prime_a_b @ R @ P2 )
         => ( P2
           != ( zero_a_b @ R ) ) ) ) ) ).

% domain.ring_primeE(1)
thf(fact_157_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_158_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_159_field_Oaxioms_I1_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( field_a_b @ R )
     => ( domain_a_b @ R ) ) ).

% field.axioms(1)
thf(fact_160_Ring_Oone__not__zero,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( field_a_b @ R )
     => ( ( one_a_ring_ext_a_b @ R )
       != ( zero_a_b @ R ) ) ) ).

% Ring.one_not_zero
thf(fact_161_field_Of__comm__group__1,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( field_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( X
             != ( zero_a_b @ R ) )
           => ( ( Y
               != ( zero_a_b @ R ) )
             => ( ( mult_a_ring_ext_a_b @ R @ X @ Y )
               != ( zero_a_b @ R ) ) ) ) ) ) ) ).

% field.f_comm_group_1
thf(fact_162_Ring_Ointegral,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( field_a_b @ R )
     => ( ( ( mult_a_ring_ext_a_b @ R @ A @ B )
          = ( zero_a_b @ R ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( A
                = ( zero_a_b @ R ) )
              | ( B
                = ( zero_a_b @ R ) ) ) ) ) ) ) ).

% Ring.integral
thf(fact_163_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_164_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_165_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_166_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_167_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A4: int,B3: int] : ( times_times_int @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_168_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B3: nat] : ( times_times_nat @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_169_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_170_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_171_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_172_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_173_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_174_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_175_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_176_compl__mono,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ Y ) @ ( uminus_uminus_set_a @ X ) ) ) ).

% compl_mono
thf(fact_177_compl__mono,axiom,
    ! [X: set_set_a,Y: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X @ Y )
     => ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ Y ) @ ( uminus6103902357914783669_set_a @ X ) ) ) ).

% compl_mono
thf(fact_178_compl__le__swap1,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ ( uminus_uminus_set_a @ X ) )
     => ( ord_less_eq_set_a @ X @ ( uminus_uminus_set_a @ Y ) ) ) ).

% compl_le_swap1
thf(fact_179_compl__le__swap1,axiom,
    ! [Y: set_set_a,X: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ Y @ ( uminus6103902357914783669_set_a @ X ) )
     => ( ord_le3724670747650509150_set_a @ X @ ( uminus6103902357914783669_set_a @ Y ) ) ) ).

% compl_le_swap1
thf(fact_180_compl__le__swap2,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ Y ) @ X )
     => ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ X ) @ Y ) ) ).

% compl_le_swap2
thf(fact_181_compl__le__swap2,axiom,
    ! [Y: set_set_a,X: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ Y ) @ X )
     => ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ X ) @ Y ) ) ).

% compl_le_swap2
thf(fact_182_domain_Ozero__is__prime_I1_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( prime_a_ring_ext_a_b @ R @ ( zero_a_b @ R ) ) ) ).

% domain.zero_is_prime(1)
thf(fact_183_ring__prime__def,axiom,
    ( ring_ring_prime_a_b
    = ( ^ [R3: partia2175431115845679010xt_a_b,A4: a] :
          ( ( A4
           != ( zero_a_b @ R3 ) )
          & ( prime_a_ring_ext_a_b @ R3 @ A4 ) ) ) ) ).

% ring_prime_def
thf(fact_184_domain_Oring__irreducibleE_I1_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,R2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ring_r999134135267193926le_a_b @ R @ R2 )
         => ( R2
           != ( zero_a_b @ R ) ) ) ) ) ).

% domain.ring_irreducibleE(1)
thf(fact_185_subalbegra__incl__imp__finite__dimension,axiom,
    ! [K: set_a,E: set_a,V2: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd8708762675212832759on_a_b @ r @ K @ E )
       => ( ( embedd9027525575939734154ra_a_b @ K @ V2 @ r )
         => ( ( ord_less_eq_set_a @ V2 @ E )
           => ( embedd8708762675212832759on_a_b @ r @ K @ V2 ) ) ) ) ) ).

% subalbegra_incl_imp_finite_dimension
thf(fact_186_finite__dimension__imp__subalgebra,axiom,
    ! [K: set_a,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd8708762675212832759on_a_b @ r @ K @ E )
       => ( embedd9027525575939734154ra_a_b @ K @ E @ r ) ) ) ).

% finite_dimension_imp_subalgebra
thf(fact_187_group_Oinv__comm,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( ( mult_a_ring_ext_a_b @ G @ X @ Y )
          = ( one_a_ring_ext_a_b @ G ) )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( mult_a_ring_ext_a_b @ G @ Y @ X )
              = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ) ).

% group.inv_comm
thf(fact_188_group_Oinv__comm,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,Y: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( ( mult_a_Product_unit @ G @ X @ Y )
          = ( one_a_Product_unit @ G ) )
       => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( mult_a_Product_unit @ G @ Y @ X )
              = ( one_a_Product_unit @ G ) ) ) ) ) ) ).

% group.inv_comm
thf(fact_189_group_Ol__inv__ex,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ? [X2: a] :
            ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
            & ( ( mult_a_ring_ext_a_b @ G @ X2 @ X )
              = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ).

% group.l_inv_ex
thf(fact_190_group_Ol__inv__ex,axiom,
    ! [G: partia8223610829204095565t_unit,X: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ? [X2: a] :
            ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
            & ( ( mult_a_Product_unit @ G @ X2 @ X )
              = ( one_a_Product_unit @ G ) ) ) ) ) ).

% group.l_inv_ex
thf(fact_191_group_Or__inv__ex,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ? [X2: a] :
            ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
            & ( ( mult_a_ring_ext_a_b @ G @ X @ X2 )
              = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ).

% group.r_inv_ex
thf(fact_192_group_Or__inv__ex,axiom,
    ! [G: partia8223610829204095565t_unit,X: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ? [X2: a] :
            ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
            & ( ( mult_a_Product_unit @ G @ X @ X2 )
              = ( one_a_Product_unit @ G ) ) ) ) ) ).

% group.r_inv_ex
thf(fact_193_group_Ol__cancel__one,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,A: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( ( mult_a_ring_ext_a_b @ G @ X @ A )
              = X )
            = ( A
              = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ) ).

% group.l_cancel_one
thf(fact_194_group_Ol__cancel__one,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,A: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( ( mult_a_Product_unit @ G @ X @ A )
              = X )
            = ( A
              = ( one_a_Product_unit @ G ) ) ) ) ) ) ).

% group.l_cancel_one
thf(fact_195_group_Or__cancel__one,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,A: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( ( mult_a_ring_ext_a_b @ G @ A @ X )
              = X )
            = ( A
              = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ) ).

% group.r_cancel_one
thf(fact_196_group_Or__cancel__one,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,A: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( ( mult_a_Product_unit @ G @ A @ X )
              = X )
            = ( A
              = ( one_a_Product_unit @ G ) ) ) ) ) ) ).

% group.r_cancel_one
thf(fact_197_group_Ol__cancel__one_H,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,A: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( X
              = ( mult_a_ring_ext_a_b @ G @ X @ A ) )
            = ( A
              = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ) ).

% group.l_cancel_one'
thf(fact_198_group_Ol__cancel__one_H,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,A: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( X
              = ( mult_a_Product_unit @ G @ X @ A ) )
            = ( A
              = ( one_a_Product_unit @ G ) ) ) ) ) ) ).

% group.l_cancel_one'
thf(fact_199_group_Or__cancel__one_H,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,A: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( X
              = ( mult_a_ring_ext_a_b @ G @ A @ X ) )
            = ( A
              = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ) ).

% group.r_cancel_one'
thf(fact_200_group_Or__cancel__one_H,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,A: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( X
              = ( mult_a_Product_unit @ G @ A @ X ) )
            = ( A
              = ( one_a_Product_unit @ G ) ) ) ) ) ) ).

% group.r_cancel_one'
thf(fact_201_telescopic__base__dim_I1_J,axiom,
    ! [K: set_a,F: set_a,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( subfield_a_b @ F @ r )
       => ( ( embedd8708762675212832759on_a_b @ r @ K @ F )
         => ( ( embedd8708762675212832759on_a_b @ r @ F @ E )
           => ( embedd8708762675212832759on_a_b @ r @ K @ E ) ) ) ) ) ).

% telescopic_base_dim(1)
thf(fact_202_group_Ois__group,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( group_a_ring_ext_a_b @ G ) ) ).

% group.is_group
thf(fact_203_group_Ois__group,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( group_a_Product_unit @ G )
     => ( group_a_Product_unit @ G ) ) ).

% group.is_group
thf(fact_204_Group_Ogroup_Oright__cancel,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( ( mult_a_ring_ext_a_b @ G @ Y @ X )
                = ( mult_a_ring_ext_a_b @ G @ Z @ X ) )
              = ( Y = Z ) ) ) ) ) ) ).

% Group.group.right_cancel
thf(fact_205_Group_Ogroup_Oright__cancel,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,Y: a,Z: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( ( mult_a_Product_unit @ G @ Y @ X )
                = ( mult_a_Product_unit @ G @ Z @ X ) )
              = ( Y = Z ) ) ) ) ) ) ).

% Group.group.right_cancel
thf(fact_206_group_OUnits__eq,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( units_a_ring_ext_a_b @ G )
        = ( partia707051561876973205xt_a_b @ G ) ) ) ).

% group.Units_eq
thf(fact_207_group_OUnits__eq,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( group_a_Product_unit @ G )
     => ( ( units_a_Product_unit @ G )
        = ( partia6735698275553448452t_unit @ G ) ) ) ).

% group.Units_eq
thf(fact_208_group_OUnits,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ord_less_eq_set_a @ ( partia707051561876973205xt_a_b @ G ) @ ( units_a_ring_ext_a_b @ G ) ) ) ).

% group.Units
thf(fact_209_group_OUnits,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( group_a_Product_unit @ G )
     => ( ord_less_eq_set_a @ ( partia6735698275553448452t_unit @ G ) @ ( units_a_Product_unit @ G ) ) ) ).

% group.Units
thf(fact_210_groupI,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
         => ! [Y4: a] :
              ( ( member_a @ Y4 @ ( partia707051561876973205xt_a_b @ G ) )
             => ( member_a @ ( mult_a_ring_ext_a_b @ G @ X2 @ Y4 ) @ ( partia707051561876973205xt_a_b @ G ) ) ) )
     => ( ( member_a @ ( one_a_ring_ext_a_b @ G ) @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ! [X2: a] :
              ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
             => ! [Y4: a] :
                  ( ( member_a @ Y4 @ ( partia707051561876973205xt_a_b @ G ) )
                 => ! [Z2: a] :
                      ( ( member_a @ Z2 @ ( partia707051561876973205xt_a_b @ G ) )
                     => ( ( mult_a_ring_ext_a_b @ G @ ( mult_a_ring_ext_a_b @ G @ X2 @ Y4 ) @ Z2 )
                        = ( mult_a_ring_ext_a_b @ G @ X2 @ ( mult_a_ring_ext_a_b @ G @ Y4 @ Z2 ) ) ) ) ) )
         => ( ! [X2: a] :
                ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
               => ( ( mult_a_ring_ext_a_b @ G @ ( one_a_ring_ext_a_b @ G ) @ X2 )
                  = X2 ) )
           => ( ! [X2: a] :
                  ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
                 => ? [Xa: a] :
                      ( ( member_a @ Xa @ ( partia707051561876973205xt_a_b @ G ) )
                      & ( ( mult_a_ring_ext_a_b @ G @ Xa @ X2 )
                        = ( one_a_ring_ext_a_b @ G ) ) ) )
             => ( group_a_ring_ext_a_b @ G ) ) ) ) ) ) ).

% groupI
thf(fact_211_groupI,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
         => ! [Y4: a] :
              ( ( member_a @ Y4 @ ( partia6735698275553448452t_unit @ G ) )
             => ( member_a @ ( mult_a_Product_unit @ G @ X2 @ Y4 ) @ ( partia6735698275553448452t_unit @ G ) ) ) )
     => ( ( member_a @ ( one_a_Product_unit @ G ) @ ( partia6735698275553448452t_unit @ G ) )
       => ( ! [X2: a] :
              ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
             => ! [Y4: a] :
                  ( ( member_a @ Y4 @ ( partia6735698275553448452t_unit @ G ) )
                 => ! [Z2: a] :
                      ( ( member_a @ Z2 @ ( partia6735698275553448452t_unit @ G ) )
                     => ( ( mult_a_Product_unit @ G @ ( mult_a_Product_unit @ G @ X2 @ Y4 ) @ Z2 )
                        = ( mult_a_Product_unit @ G @ X2 @ ( mult_a_Product_unit @ G @ Y4 @ Z2 ) ) ) ) ) )
         => ( ! [X2: a] :
                ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
               => ( ( mult_a_Product_unit @ G @ ( one_a_Product_unit @ G ) @ X2 )
                  = X2 ) )
           => ( ! [X2: a] :
                  ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
                 => ? [Xa: a] :
                      ( ( member_a @ Xa @ ( partia6735698275553448452t_unit @ G ) )
                      & ( ( mult_a_Product_unit @ G @ Xa @ X2 )
                        = ( one_a_Product_unit @ G ) ) ) )
             => ( group_a_Product_unit @ G ) ) ) ) ) ) ).

% groupI
thf(fact_212_units__group,axiom,
    group_a_Product_unit @ ( units_8174867845824275201xt_a_b @ r ) ).

% units_group
thf(fact_213_irreducible__prod__lI,axiom,
    ! [B: a,A: a] :
      ( ( irredu6211895646901577903xt_a_b @ r @ B )
     => ( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
           => ( irredu6211895646901577903xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ) ).

% irreducible_prod_lI
thf(fact_214_irreducible__prod__rI,axiom,
    ! [A: a,B: a] :
      ( ( irredu6211895646901577903xt_a_b @ r @ A )
     => ( ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
           => ( irredu6211895646901577903xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ) ).

% irreducible_prod_rI
thf(fact_215_genideal__self,axiom,
    ! [S: set_a] :
      ( ( ord_less_eq_set_a @ S @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ord_less_eq_set_a @ S @ ( genideal_a_b @ r @ S ) ) ) ).

% genideal_self
thf(fact_216_subset__Idl__subset,axiom,
    ! [I2: set_a,H3: set_a] :
      ( ( ord_less_eq_set_a @ I2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ H3 @ I2 )
       => ( ord_less_eq_set_a @ ( genideal_a_b @ r @ H3 ) @ ( genideal_a_b @ r @ I2 ) ) ) ) ).

% subset_Idl_subset
thf(fact_217_a__lcos__m__assoc,axiom,
    ! [M2: set_a,G3: a,H: a] :
      ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ G3 @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ H @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( a_l_coset_a_b @ r @ G3 @ ( a_l_coset_a_b @ r @ H @ M2 ) )
            = ( a_l_coset_a_b @ r @ ( add_a_b @ r @ G3 @ H ) @ M2 ) ) ) ) ) ).

% a_lcos_m_assoc
thf(fact_218_l__neg,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ X )
        = ( zero_a_b @ r ) ) ) ).

% l_neg
thf(fact_219_minus__equality,axiom,
    ! [Y: a,X: a] :
      ( ( ( add_a_b @ r @ Y @ X )
        = ( zero_a_b @ r ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( a_inv_a_b @ r @ X )
            = Y ) ) ) ) ).

% minus_equality
thf(fact_220_a__lcomm,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( add_a_b @ r @ X @ ( add_a_b @ r @ Y @ Z ) )
            = ( add_a_b @ r @ Y @ ( add_a_b @ r @ X @ Z ) ) ) ) ) ) ).

% a_lcomm
thf(fact_221_a__comm,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( add_a_b @ r @ X @ Y )
          = ( add_a_b @ r @ Y @ X ) ) ) ) ).

% a_comm
thf(fact_222_a__assoc,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( add_a_b @ r @ ( add_a_b @ r @ X @ Y ) @ Z )
            = ( add_a_b @ r @ X @ ( add_a_b @ r @ Y @ Z ) ) ) ) ) ) ).

% a_assoc
thf(fact_223_add_Or__cancel,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ( add_a_b @ r @ A @ C )
        = ( add_a_b @ r @ B @ C ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( A = B ) ) ) ) ) ).

% add.r_cancel
thf(fact_224_add_Ol__cancel,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ( add_a_b @ r @ C @ A )
        = ( add_a_b @ r @ C @ B ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( A = B ) ) ) ) ) ).

% add.l_cancel
thf(fact_225_subring__props_I7_J,axiom,
    ! [K: set_a,H1: a,H2: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( member_a @ H1 @ K )
       => ( ( member_a @ H2 @ K )
         => ( member_a @ ( add_a_b @ r @ H1 @ H2 ) @ K ) ) ) ) ).

% subring_props(7)
thf(fact_226_local_Ominus__unique,axiom,
    ! [Y: a,X: a,Y2: a] :
      ( ( ( add_a_b @ r @ Y @ X )
        = ( zero_a_b @ r ) )
     => ( ( ( add_a_b @ r @ X @ Y2 )
          = ( zero_a_b @ r ) )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( member_a @ Y2 @ ( partia707051561876973205xt_a_b @ r ) )
             => ( Y = Y2 ) ) ) ) ) ) ).

% local.minus_unique
thf(fact_227_add_Or__inv__ex,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ r ) )
          & ( ( add_a_b @ r @ X @ X2 )
            = ( zero_a_b @ r ) ) ) ) ).

% add.r_inv_ex
thf(fact_228_add_Oone__unique,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ! [X2: a] :
            ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( add_a_b @ r @ U @ X2 )
              = X2 ) )
       => ( U
          = ( zero_a_b @ r ) ) ) ) ).

% add.one_unique
thf(fact_229_add_Ol__inv__ex,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ r ) )
          & ( ( add_a_b @ r @ X2 @ X )
            = ( zero_a_b @ r ) ) ) ) ).

% add.l_inv_ex
thf(fact_230_add_Oinv__comm,axiom,
    ! [X: a,Y: a] :
      ( ( ( add_a_b @ r @ X @ Y )
        = ( zero_a_b @ r ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( add_a_b @ r @ Y @ X )
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.inv_comm
thf(fact_231_r__distr,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ Z @ ( add_a_b @ r @ X @ Y ) )
            = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ Z @ X ) @ ( mult_a_ring_ext_a_b @ r @ Z @ Y ) ) ) ) ) ) ).

% r_distr
thf(fact_232_l__distr,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ ( add_a_b @ r @ X @ Y ) @ Z )
            = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Z ) @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) ) ) ) ) ) ).

% l_distr
thf(fact_233_r__neg2,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( add_a_b @ r @ X @ ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Y ) )
          = Y ) ) ) ).

% r_neg2
thf(fact_234_r__neg1,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ ( add_a_b @ r @ X @ Y ) )
          = Y ) ) ) ).

% r_neg1
thf(fact_235_local_Ominus__add,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( a_inv_a_b @ r @ ( add_a_b @ r @ X @ Y ) )
          = ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ ( a_inv_a_b @ r @ Y ) ) ) ) ) ).

% local.minus_add
thf(fact_236_a__transpose__inv,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( ( add_a_b @ r @ X @ Y )
        = Z )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Z )
              = Y ) ) ) ) ) ).

% a_transpose_inv
thf(fact_237_add_Oinv__solve__right_H,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( ( add_a_b @ r @ B @ ( a_inv_a_b @ r @ C ) )
              = A )
            = ( B
              = ( add_a_b @ r @ A @ C ) ) ) ) ) ) ).

% add.inv_solve_right'
thf(fact_238_add_Oinv__solve__right,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( A
              = ( add_a_b @ r @ B @ ( a_inv_a_b @ r @ C ) ) )
            = ( B
              = ( add_a_b @ r @ A @ C ) ) ) ) ) ) ).

% add.inv_solve_right
thf(fact_239_add_Oinv__solve__left_H,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( ( add_a_b @ r @ ( a_inv_a_b @ r @ B ) @ C )
              = A )
            = ( C
              = ( add_a_b @ r @ B @ A ) ) ) ) ) ) ).

% add.inv_solve_left'
thf(fact_240_add_Oinv__solve__left,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( A
              = ( add_a_b @ r @ ( a_inv_a_b @ r @ B ) @ C ) )
            = ( C
              = ( add_a_b @ r @ B @ A ) ) ) ) ) ) ).

% add.inv_solve_left
thf(fact_241_add_Oinv__mult__group,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( a_inv_a_b @ r @ ( add_a_b @ r @ X @ Y ) )
          = ( add_a_b @ r @ ( a_inv_a_b @ r @ Y ) @ ( a_inv_a_b @ r @ X ) ) ) ) ) ).

% add.inv_mult_group
thf(fact_242_add_Oint__pow__mult__distrib,axiom,
    ! [X: a,Y: a,I: int] :
      ( ( ( add_a_b @ r @ X @ Y )
        = ( add_a_b @ r @ Y @ X ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( add_pow_a_b_int @ r @ I @ ( add_a_b @ r @ X @ Y ) )
            = ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ I @ Y ) ) ) ) ) ) ).

% add.int_pow_mult_distrib
thf(fact_243_add_Oint__pow__distrib,axiom,
    ! [X: a,Y: a,I: int] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( add_pow_a_b_int @ r @ I @ ( add_a_b @ r @ X @ Y ) )
          = ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ I @ Y ) ) ) ) ) ).

% add.int_pow_distrib
thf(fact_244_line__extension__mem__iff,axiom,
    ! [U: a,K: set_a,A: a,E: set_a] :
      ( ( member_a @ U @ ( embedd971793762689825387on_a_b @ r @ K @ A @ E ) )
      = ( ? [X3: a] :
            ( ( member_a @ X3 @ K )
            & ? [Y3: a] :
                ( ( member_a @ Y3 @ E )
                & ( U
                  = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X3 @ A ) @ Y3 ) ) ) ) ) ) ).

% line_extension_mem_iff
thf(fact_245_zero__is__irreducible__iff__field,axiom,
    ( ( irredu6211895646901577903xt_a_b @ r @ ( zero_a_b @ r ) )
    = ( field_a_b @ r ) ) ).

% zero_is_irreducible_iff_field
thf(fact_246_ring__irreducibleE_I2_J,axiom,
    ! [R2: a] :
      ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ring_r999134135267193926le_a_b @ r @ R2 )
       => ( irredu6211895646901577903xt_a_b @ r @ R2 ) ) ) ).

% ring_irreducibleE(2)
thf(fact_247_sum__zero__eq__neg,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ( add_a_b @ r @ X @ Y )
            = ( zero_a_b @ r ) )
         => ( X
            = ( a_inv_a_b @ r @ Y ) ) ) ) ) ).

% sum_zero_eq_neg
thf(fact_248_r__neg,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ X ) )
        = ( zero_a_b @ r ) ) ) ).

% r_neg
thf(fact_249_units__of__units,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( units_a_Product_unit @ ( units_8174867845824275201xt_a_b @ G ) )
      = ( units_a_ring_ext_a_b @ G ) ) ).

% units_of_units
thf(fact_250_units__of__units,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( units_a_Product_unit @ ( units_7501539392726747778t_unit @ G ) )
      = ( units_a_Product_unit @ G ) ) ).

% units_of_units
thf(fact_251_a__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( member_a @ ( add_a_b @ r @ X @ Y ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% a_closed
thf(fact_252_local_Oadd_Oright__cancel,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( ( add_a_b @ r @ Y @ X )
              = ( add_a_b @ r @ Z @ X ) )
            = ( Y = Z ) ) ) ) ) ).

% local.add.right_cancel
thf(fact_253_r__zero,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_a_b @ r @ X @ ( zero_a_b @ r ) )
        = X ) ) ).

% r_zero
thf(fact_254_l__zero,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_a_b @ r @ ( zero_a_b @ r ) @ X )
        = X ) ) ).

% l_zero
thf(fact_255_add_Or__cancel__one_H,axiom,
    ! [X: a,A: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( X
            = ( add_a_b @ r @ A @ X ) )
          = ( A
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.r_cancel_one'
thf(fact_256_add_Or__cancel__one,axiom,
    ! [X: a,A: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ( add_a_b @ r @ A @ X )
            = X )
          = ( A
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.r_cancel_one
thf(fact_257_add_Ol__cancel__one_H,axiom,
    ! [X: a,A: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( X
            = ( add_a_b @ r @ X @ A ) )
          = ( A
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.l_cancel_one'
thf(fact_258_add_Ol__cancel__one,axiom,
    ! [X: a,A: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ( add_a_b @ r @ X @ A )
            = X )
          = ( A
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.l_cancel_one
thf(fact_259_abelian__monoidE_I5_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( abelian_monoid_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( add_a_b @ R @ X @ Y )
            = ( add_a_b @ R @ Y @ X ) ) ) ) ) ).

% abelian_monoidE(5)
thf(fact_260_abelian__monoidE_I3_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( abelian_monoid_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( add_a_b @ R @ ( add_a_b @ R @ X @ Y ) @ Z )
              = ( add_a_b @ R @ X @ ( add_a_b @ R @ Y @ Z ) ) ) ) ) ) ) ).

% abelian_monoidE(3)
thf(fact_261_abelian__monoidE_I1_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( abelian_monoid_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( member_a @ ( add_a_b @ R @ X @ Y ) @ ( partia707051561876973205xt_a_b @ R ) ) ) ) ) ).

% abelian_monoidE(1)
thf(fact_262_abelian__monoid_Oa__comm,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( add_a_b @ G @ X @ Y )
            = ( add_a_b @ G @ Y @ X ) ) ) ) ) ).

% abelian_monoid.a_comm
thf(fact_263_abelian__monoid_Oa__assoc,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( add_a_b @ G @ ( add_a_b @ G @ X @ Y ) @ Z )
              = ( add_a_b @ G @ X @ ( add_a_b @ G @ Y @ Z ) ) ) ) ) ) ) ).

% abelian_monoid.a_assoc
thf(fact_264_abelian__monoid_Oa__lcomm,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( add_a_b @ G @ X @ ( add_a_b @ G @ Y @ Z ) )
              = ( add_a_b @ G @ Y @ ( add_a_b @ G @ X @ Z ) ) ) ) ) ) ) ).

% abelian_monoid.a_lcomm
thf(fact_265_abelian__monoid_Oa__closed,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
         => ( member_a @ ( add_a_b @ G @ X @ Y ) @ ( partia707051561876973205xt_a_b @ G ) ) ) ) ) ).

% abelian_monoid.a_closed
thf(fact_266_ring__iso__memE_I3_J,axiom,
    ! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( H @ ( add_a_b @ R @ X @ Y ) )
            = ( add_a_b @ S @ ( H @ X ) @ ( H @ Y ) ) ) ) ) ) ).

% ring_iso_memE(3)
thf(fact_267_semiring_Osemiring__simprules_I12_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( add_a_b @ R @ X @ ( add_a_b @ R @ Y @ Z ) )
              = ( add_a_b @ R @ Y @ ( add_a_b @ R @ X @ Z ) ) ) ) ) ) ) ).

% semiring.semiring_simprules(12)
thf(fact_268_semiring_Osemiring__simprules_I7_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( add_a_b @ R @ X @ Y )
            = ( add_a_b @ R @ Y @ X ) ) ) ) ) ).

% semiring.semiring_simprules(7)
thf(fact_269_semiring_Osemiring__simprules_I5_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( add_a_b @ R @ ( add_a_b @ R @ X @ Y ) @ Z )
              = ( add_a_b @ R @ X @ ( add_a_b @ R @ Y @ Z ) ) ) ) ) ) ) ).

% semiring.semiring_simprules(5)
thf(fact_270_semiring_Osemiring__simprules_I1_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( member_a @ ( add_a_b @ R @ X @ Y ) @ ( partia707051561876973205xt_a_b @ R ) ) ) ) ) ).

% semiring.semiring_simprules(1)
thf(fact_271_units__of__mult,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( mult_a_Product_unit @ ( units_7501539392726747778t_unit @ G ) )
      = ( mult_a_Product_unit @ G ) ) ).

% units_of_mult
thf(fact_272_units__of__mult,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( mult_a_Product_unit @ ( units_8174867845824275201xt_a_b @ G ) )
      = ( mult_a_ring_ext_a_b @ G ) ) ).

% units_of_mult
thf(fact_273_units__of__one,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( one_a_Product_unit @ ( units_7501539392726747778t_unit @ G ) )
      = ( one_a_Product_unit @ G ) ) ).

% units_of_one
thf(fact_274_units__of__one,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( one_a_Product_unit @ ( units_8174867845824275201xt_a_b @ G ) )
      = ( one_a_ring_ext_a_b @ G ) ) ).

% units_of_one
thf(fact_275_units__of__carrier,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( partia6735698275553448452t_unit @ ( units_8174867845824275201xt_a_b @ G ) )
      = ( units_a_ring_ext_a_b @ G ) ) ).

% units_of_carrier
thf(fact_276_units__of__carrier,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( partia6735698275553448452t_unit @ ( units_7501539392726747778t_unit @ G ) )
      = ( units_a_Product_unit @ G ) ) ).

% units_of_carrier
thf(fact_277_ring__irreducible__def,axiom,
    ( ring_r999134135267193926le_a_b
    = ( ^ [R3: partia2175431115845679010xt_a_b,A4: a] :
          ( ( A4
           != ( zero_a_b @ R3 ) )
          & ( irredu6211895646901577903xt_a_b @ R3 @ A4 ) ) ) ) ).

% ring_irreducible_def
thf(fact_278_abelian__monoidE_I4_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( abelian_monoid_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( add_a_b @ R @ ( zero_a_b @ R ) @ X )
          = X ) ) ) ).

% abelian_monoidE(4)
thf(fact_279_abelian__monoid_Ol__zero,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( add_a_b @ G @ ( zero_a_b @ G ) @ X )
          = X ) ) ) ).

% abelian_monoid.l_zero
thf(fact_280_abelian__monoid_Or__zero,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( add_a_b @ G @ X @ ( zero_a_b @ G ) )
          = X ) ) ) ).

% abelian_monoid.r_zero
thf(fact_281_abelian__monoid_Ominus__unique,axiom,
    ! [G: partia2175431115845679010xt_a_b,Y: a,X: a,Y2: a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( ( add_a_b @ G @ Y @ X )
          = ( zero_a_b @ G ) )
       => ( ( ( add_a_b @ G @ X @ Y2 )
            = ( zero_a_b @ G ) )
         => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
             => ( ( member_a @ Y2 @ ( partia707051561876973205xt_a_b @ G ) )
               => ( Y = Y2 ) ) ) ) ) ) ) ).

% abelian_monoid.minus_unique
thf(fact_282_abelian__monoidI,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ! [X2: a,Y4: a] :
          ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ Y4 @ ( partia707051561876973205xt_a_b @ R ) )
           => ( member_a @ ( add_a_b @ R @ X2 @ Y4 ) @ ( partia707051561876973205xt_a_b @ R ) ) ) )
     => ( ( member_a @ ( zero_a_b @ R ) @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ! [X2: a,Y4: a,Z2: a] :
              ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ R ) )
             => ( ( member_a @ Y4 @ ( partia707051561876973205xt_a_b @ R ) )
               => ( ( member_a @ Z2 @ ( partia707051561876973205xt_a_b @ R ) )
                 => ( ( add_a_b @ R @ ( add_a_b @ R @ X2 @ Y4 ) @ Z2 )
                    = ( add_a_b @ R @ X2 @ ( add_a_b @ R @ Y4 @ Z2 ) ) ) ) ) )
         => ( ! [X2: a] :
                ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ R ) )
               => ( ( add_a_b @ R @ ( zero_a_b @ R ) @ X2 )
                  = X2 ) )
           => ( ! [X2: a,Y4: a] :
                  ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ R ) )
                 => ( ( member_a @ Y4 @ ( partia707051561876973205xt_a_b @ R ) )
                   => ( ( add_a_b @ R @ X2 @ Y4 )
                      = ( add_a_b @ R @ Y4 @ X2 ) ) ) )
             => ( abelian_monoid_a_b @ R ) ) ) ) ) ) ).

% abelian_monoidI
thf(fact_283_semiring_Osemiring__simprules_I11_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( add_a_b @ R @ X @ ( zero_a_b @ R ) )
          = X ) ) ) ).

% semiring.semiring_simprules(11)
thf(fact_284_semiring_Osemiring__simprules_I6_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( add_a_b @ R @ ( zero_a_b @ R ) @ X )
          = X ) ) ) ).

% semiring.semiring_simprules(6)
thf(fact_285_semiring_Ol__distr,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( mult_a_ring_ext_a_b @ R @ ( add_a_b @ R @ X @ Y ) @ Z )
              = ( add_a_b @ R @ ( mult_a_ring_ext_a_b @ R @ X @ Z ) @ ( mult_a_ring_ext_a_b @ R @ Y @ Z ) ) ) ) ) ) ) ).

% semiring.l_distr
thf(fact_286_semiring_Or__distr,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( mult_a_ring_ext_a_b @ R @ Z @ ( add_a_b @ R @ X @ Y ) )
              = ( add_a_b @ R @ ( mult_a_ring_ext_a_b @ R @ Z @ X ) @ ( mult_a_ring_ext_a_b @ R @ Z @ Y ) ) ) ) ) ) ) ).

% semiring.r_distr
thf(fact_287_domain_Ozero__is__irreducible__iff__field,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( ( irredu6211895646901577903xt_a_b @ R @ ( zero_a_b @ R ) )
        = ( field_a_b @ R ) ) ) ).

% domain.zero_is_irreducible_iff_field
thf(fact_288_domain_Oring__irreducibleE_I2_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,R2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ring_r999134135267193926le_a_b @ R @ R2 )
         => ( irredu6211895646901577903xt_a_b @ R @ R2 ) ) ) ) ).

% domain.ring_irreducibleE(2)
thf(fact_289_irreducible__hom,axiom,
    ! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a] :
      ( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
     => ( ( domain_a_b @ R )
       => ( ( domain_a_b @ S )
         => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( irredu6211895646901577903xt_a_b @ R @ X )
              = ( irredu6211895646901577903xt_a_b @ S @ ( H @ X ) ) ) ) ) ) ) ).

% irreducible_hom
thf(fact_290_minus__eq,axiom,
    ! [X: a,Y: a] :
      ( ( a_minus_a_b @ r @ X @ Y )
      = ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) ) ) ).

% minus_eq
thf(fact_291_add_Oone__in__subset,axiom,
    ! [H3: set_a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( H3 != bot_bot_set_a )
       => ( ! [X2: a] :
              ( ( member_a @ X2 @ H3 )
             => ( member_a @ ( a_inv_a_b @ r @ X2 ) @ H3 ) )
         => ( ! [X2: a] :
                ( ( member_a @ X2 @ H3 )
               => ! [Xa2: a] :
                    ( ( member_a @ Xa2 @ H3 )
                   => ( member_a @ ( add_a_b @ r @ X2 @ Xa2 ) @ H3 ) ) )
           => ( member_a @ ( zero_a_b @ r ) @ H3 ) ) ) ) ) ).

% add.one_in_subset
thf(fact_292_subringI,axiom,
    ! [H3: set_a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ ( one_a_ring_ext_a_b @ r ) @ H3 )
       => ( ! [H4: a] :
              ( ( member_a @ H4 @ H3 )
             => ( member_a @ ( a_inv_a_b @ r @ H4 ) @ H3 ) )
         => ( ! [H12: a,H22: a] :
                ( ( member_a @ H12 @ H3 )
               => ( ( member_a @ H22 @ H3 )
                 => ( member_a @ ( mult_a_ring_ext_a_b @ r @ H12 @ H22 ) @ H3 ) ) )
           => ( ! [H12: a,H22: a] :
                  ( ( member_a @ H12 @ H3 )
                 => ( ( member_a @ H22 @ H3 )
                   => ( member_a @ ( add_a_b @ r @ H12 @ H22 ) @ H3 ) ) )
             => ( subring_a_b @ H3 @ r ) ) ) ) ) ) ).

% subringI
thf(fact_293_add_Oint__pow__diff,axiom,
    ! [X: a,N: int,M: int] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ ( minus_minus_int @ N @ M ) @ X )
        = ( add_a_b @ r @ ( add_pow_a_b_int @ r @ N @ X ) @ ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ M @ X ) ) ) ) ) ).

% add.int_pow_diff
thf(fact_294_mult__of_Ogroup__l__invI,axiom,
    ( ! [X2: a] :
        ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ? [Xa: a] :
            ( ( member_a @ Xa @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
            & ( ( mult_a_ring_ext_a_b @ r @ Xa @ X2 )
              = ( one_a_ring_ext_a_b @ r ) ) ) )
   => ( group_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ).

% mult_of.group_l_invI
thf(fact_295_add_Oint__pow__mult,axiom,
    ! [X: a,I: int,J: int] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ ( plus_plus_int @ I @ J ) @ X )
        = ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ J @ X ) ) ) ) ).

% add.int_pow_mult
thf(fact_296_cgenideal__prod,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( set_mu8047982887099575916xt_a_b @ r @ ( cgenid547466209912283029xt_a_b @ r @ A ) @ ( cgenid547466209912283029xt_a_b @ r @ B ) )
          = ( cgenid547466209912283029xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ).

% cgenideal_prod
thf(fact_297_a__coset__add__inv2,axiom,
    ! [M2: set_a,X: a,Y: a] :
      ( ( ( a_r_coset_a_b @ r @ M2 @ X )
        = ( a_r_coset_a_b @ r @ M2 @ Y ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( a_r_coset_a_b @ r @ M2 @ ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) ) )
              = M2 ) ) ) ) ) ).

% a_coset_add_inv2
thf(fact_298_mult__of_Omonoid__cancel__axioms,axiom,
    monoid1999574367301118026t_unit @ ( ring_mult_of_a_b @ r ) ).

% mult_of.monoid_cancel_axioms
thf(fact_299_zero__is__prime_I2_J,axiom,
    prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ ( zero_a_b @ r ) ).

% zero_is_prime(2)
thf(fact_300_mult__of_Odivides__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ B @ C )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ C ) ) ) ) ).

% mult_of.divides_trans
thf(fact_301_mult__of_Oisgcd__divides__r,axiom,
    ! [B: a,A: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ B @ A )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( isgcd_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ B @ A @ B ) ) ) ) ).

% mult_of.isgcd_divides_r
thf(fact_302_mult__of_Oisgcd__divides__l,axiom,
    ! [A: a,B: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( isgcd_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ A @ A @ B ) ) ) ) ).

% mult_of.isgcd_divides_l
thf(fact_303_mult__of_Odivides__unit,axiom,
    ! [A: a,U: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ U )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).

% mult_of.divides_unit
thf(fact_304_mult__of_Ounit__divides,axiom,
    ! [U: a,A: a] :
      ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ U @ A ) ) ) ).

% mult_of.unit_divides
thf(fact_305_mult__of_OUnits__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).

% mult_of.Units_closed
thf(fact_306_carrier__not__empty,axiom,
    ( ( partia707051561876973205xt_a_b @ r )
   != bot_bot_set_a ) ).

% carrier_not_empty
thf(fact_307_carrier__is__subring,axiom,
    subring_a_b @ ( partia707051561876973205xt_a_b @ r ) @ r ).

% carrier_is_subring
thf(fact_308_subring__props_I4_J,axiom,
    ! [K: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( K != bot_bot_set_a ) ) ).

% subring_props(4)
thf(fact_309_mult__of_Ounits__group,axiom,
    group_a_Product_unit @ ( units_7501539392726747778t_unit @ ( ring_mult_of_a_b @ r ) ) ).

% mult_of.units_group
thf(fact_310_divides__mult__zero,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( zero_a_b @ r ) )
       => ( A
          = ( zero_a_b @ r ) ) ) ) ).

% divides_mult_zero
thf(fact_311_mult__of_Odivides__prod__l,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
           => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ) ).

% mult_of.divides_prod_l
thf(fact_312_mult__of_Odivides__prod__r,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ).

% mult_of.divides_prod_r
thf(fact_313_mult__of_Ol__cancel,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ( mult_a_ring_ext_a_b @ r @ C @ A )
        = ( mult_a_ring_ext_a_b @ r @ C @ B ) )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( A = B ) ) ) ) ) ).

% mult_of.l_cancel
thf(fact_314_mult__of_Om__assoc,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ Z )
            = ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) ) ) ) ) ) ).

% mult_of.m_assoc
thf(fact_315_mult__of_Om__comm,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
          = ( mult_a_ring_ext_a_b @ r @ Y @ X ) ) ) ) ).

% mult_of.m_comm
thf(fact_316_mult__of_Om__lcomm,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) )
            = ( mult_a_ring_ext_a_b @ r @ Y @ ( mult_a_ring_ext_a_b @ r @ X @ Z ) ) ) ) ) ) ).

% mult_of.m_lcomm
thf(fact_317_mult__of_Or__cancel,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ( mult_a_ring_ext_a_b @ r @ A @ C )
        = ( mult_a_ring_ext_a_b @ r @ B @ C ) )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( A = B ) ) ) ) ) ).

% mult_of.r_cancel
thf(fact_318_mult__of_Omonoid__cancelI,axiom,
    ( ! [A2: a,B2: a,C2: a] :
        ( ( ( mult_a_ring_ext_a_b @ r @ C2 @ A2 )
          = ( mult_a_ring_ext_a_b @ r @ C2 @ B2 ) )
       => ( ( member_a @ A2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( ( member_a @ C2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
             => ( A2 = B2 ) ) ) ) )
   => ( ! [A2: a,B2: a,C2: a] :
          ( ( ( mult_a_ring_ext_a_b @ r @ A2 @ C2 )
            = ( mult_a_ring_ext_a_b @ r @ B2 @ C2 ) )
         => ( ( member_a @ A2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( ( member_a @ B2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
             => ( ( member_a @ C2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
               => ( A2 = B2 ) ) ) ) )
     => ( monoid1999574367301118026t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).

% mult_of.monoid_cancelI
thf(fact_319_mult__of_Oprime__divides,axiom,
    ! [A: a,B: a,P2: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
         => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ ( mult_a_ring_ext_a_b @ r @ A @ B ) )
           => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ A )
              | ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ B ) ) ) ) ) ) ).

% mult_of.prime_divides
thf(fact_320_mult__of_Oprod__unit__l,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ) ).

% mult_of.prod_unit_l
thf(fact_321_mult__of_Oprod__unit__r,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ) ).

% mult_of.prod_unit_r
thf(fact_322_mult__of_Ounit__factor,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).

% mult_of.unit_factor
thf(fact_323_mult__of_Ocarrier__not__empty,axiom,
    ( ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) )
   != bot_bot_set_a ) ).

% mult_of.carrier_not_empty
thf(fact_324_mult__of_OUnit__eq__dividesone,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
        = ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ U @ ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% mult_of.Unit_eq_dividesone
thf(fact_325_mult__of_OUnits__inv__comm,axiom,
    ! [X: a,Y: a] :
      ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
        = ( one_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ Y @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
            = ( one_a_ring_ext_a_b @ r ) ) ) ) ) ).

% mult_of.Units_inv_comm
thf(fact_326_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_327_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_328_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_329_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_330_a__r__coset__subset__G,axiom,
    ! [H3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ord_less_eq_set_a @ ( a_r_coset_a_b @ r @ H3 @ X ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% a_r_coset_subset_G
thf(fact_331_ring__primeE_I2_J,axiom,
    ! [P2: a] :
      ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ring_ring_prime_a_b @ r @ P2 )
       => ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 ) ) ) ).

% ring_primeE(2)
thf(fact_332_set__mult__closed,axiom,
    ! [H3: set_a,K: set_a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ord_less_eq_set_a @ ( set_mu8047982887099575916xt_a_b @ r @ H3 @ K ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% set_mult_closed
thf(fact_333_prime__eq__prime__mult,axiom,
    ! [P2: a] :
      ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( prime_a_ring_ext_a_b @ r @ P2 )
        = ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 ) ) ) ).

% prime_eq_prime_mult
thf(fact_334_mult__of_Oinv__unique,axiom,
    ! [Y: a,X: a,Y2: a] :
      ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
        = ( one_a_ring_ext_a_b @ r ) )
     => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y2 )
          = ( one_a_ring_ext_a_b @ r ) )
       => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( ( member_a @ Y2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
             => ( Y = Y2 ) ) ) ) ) ) ).

% mult_of.inv_unique
thf(fact_335_mult__of_Oone__unique,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ! [X2: a] :
            ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( ( mult_a_ring_ext_a_b @ r @ U @ X2 )
              = X2 ) )
       => ( U
          = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% mult_of.one_unique
thf(fact_336_mult__of_OUnits__l__inv__ex,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
          & ( ( mult_a_ring_ext_a_b @ r @ X2 @ X )
            = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% mult_of.Units_l_inv_ex
thf(fact_337_mult__of_OUnits__r__inv__ex,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
          & ( ( mult_a_ring_ext_a_b @ r @ X @ X2 )
            = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% mult_of.Units_r_inv_ex
thf(fact_338_a__rcosI,axiom,
    ! [H: a,H3: set_a,X: a] :
      ( ( member_a @ H @ H3 )
     => ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( member_a @ ( add_a_b @ r @ H @ X ) @ ( a_r_coset_a_b @ r @ H3 @ X ) ) ) ) ) ).

% a_rcosI
thf(fact_339_a__coset__add__assoc,axiom,
    ! [M2: set_a,G3: a,H: a] :
      ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ G3 @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ H @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( a_r_coset_a_b @ r @ ( a_r_coset_a_b @ r @ M2 @ G3 ) @ H )
            = ( a_r_coset_a_b @ r @ M2 @ ( add_a_b @ r @ G3 @ H ) ) ) ) ) ) ).

% a_coset_add_assoc
thf(fact_340_a__coset__add__inv1,axiom,
    ! [M2: set_a,X: a,Y: a] :
      ( ( ( a_r_coset_a_b @ r @ M2 @ ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) ) )
        = M2 )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( a_r_coset_a_b @ r @ M2 @ X )
              = ( a_r_coset_a_b @ r @ M2 @ Y ) ) ) ) ) ) ).

% a_coset_add_inv1
thf(fact_341_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_342_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_343_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_344_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_345_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_346_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_347_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_348_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_349_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_350_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_351_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_352_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_353_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_354_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_355_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_356_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_357_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_358_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_359_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_360_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_361_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_362_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_363_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_364_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_365_Ring__Divisibility_Omult__mult__of,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( mult_a_Product_unit @ ( ring_mult_of_a_b @ R ) )
      = ( mult_a_ring_ext_a_b @ R ) ) ).

% Ring_Divisibility.mult_mult_of
thf(fact_366_mult__of_Odivides__refl,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A ) ) ).

% mult_of.divides_refl
thf(fact_367_mult__of_OUnits__m__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ).

% mult_of.Units_m_closed
thf(fact_368_mult__of_OUnits__one__closed,axiom,
    member_a @ ( one_a_ring_ext_a_b @ r ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ).

% mult_of.Units_one_closed
thf(fact_369_Ring__Divisibility_Oone__mult__of,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( one_a_Product_unit @ ( ring_mult_of_a_b @ R ) )
      = ( one_a_ring_ext_a_b @ R ) ) ).

% Ring_Divisibility.one_mult_of
thf(fact_370_Units__mult__eq__Units,axiom,
    ( ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) )
    = ( units_a_ring_ext_a_b @ r ) ) ).

% Units_mult_eq_Units
thf(fact_371_minus__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( member_a @ ( a_minus_a_b @ r @ X @ Y ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% minus_closed
thf(fact_372_mult__of_Odivides__mult__l,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) )
            = ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ) ).

% mult_of.divides_mult_l
thf(fact_373_mult__of_Odivides__mult__lI,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ).

% mult_of.divides_mult_lI
thf(fact_374_mult__of_Odivides__mult__r,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) )
            = ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ) ).

% mult_of.divides_mult_r
thf(fact_375_mult__of_Odivides__mult__rI,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ) ).

% mult_of.divides_mult_rI
thf(fact_376_mult__of_Om__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ).

% mult_of.m_closed
thf(fact_377_mult__of_OUnits__l__cancel,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
              = ( mult_a_ring_ext_a_b @ r @ X @ Z ) )
            = ( Y = Z ) ) ) ) ) ).

% mult_of.Units_l_cancel
thf(fact_378_mult__of_Oone__closed,axiom,
    member_a @ ( one_a_ring_ext_a_b @ r ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ).

% mult_of.one_closed
thf(fact_379_r__right__minus__eq,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ( a_minus_a_b @ r @ A @ B )
            = ( zero_a_b @ r ) )
          = ( A = B ) ) ) ) ).

% r_right_minus_eq
thf(fact_380_mult__of_Ol__one,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( one_a_ring_ext_a_b @ r ) @ X )
        = X ) ) ).

% mult_of.l_one
thf(fact_381_mult__of_Or__one,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( mult_a_ring_ext_a_b @ r @ X @ ( one_a_ring_ext_a_b @ r ) )
        = X ) ) ).

% mult_of.r_one
thf(fact_382_a__coset__add__zero,axiom,
    ! [M2: set_a] :
      ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( a_r_coset_a_b @ r @ M2 @ ( zero_a_b @ r ) )
        = M2 ) ) ).

% a_coset_add_zero
thf(fact_383_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_384_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_385_diff__shunt__var,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( minus_minus_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_386_diff__shunt__var,axiom,
    ! [X: set_set_a,Y: set_set_a] :
      ( ( ( minus_5736297505244876581_set_a @ X @ Y )
        = bot_bot_set_set_a )
      = ( ord_le3724670747650509150_set_a @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_387_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_388_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_389_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_390_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_391_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_392_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_393_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_394_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_395_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_396_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_397_add__le__add__imp__diff__le,axiom,
    ! [I: int,K2: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K2 ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K2 ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K2 ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_398_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K2: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K2 ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K2 ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K2 ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_399_add__le__imp__le__diff,axiom,
    ! [I: int,K2: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ N )
     => ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K2 ) ) ) ).

% add_le_imp_le_diff
thf(fact_400_add__le__imp__le__diff,axiom,
    ! [I: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K2 ) ) ) ).

% add_le_imp_le_diff
thf(fact_401_group__cancel_Osub2,axiom,
    ! [B4: int,K2: int,B: int,A: int] :
      ( ( B4
        = ( plus_plus_int @ K2 @ B ) )
     => ( ( minus_minus_int @ A @ B4 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K2 ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_402_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ A4 @ ( uminus_uminus_int @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_403_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ A4 @ ( uminus_uminus_int @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_404_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_405_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_406_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( I = J )
        & ( K2 = L ) )
     => ( ( plus_plus_int @ I @ K2 )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_407_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( I = J )
        & ( K2 = L ) )
     => ( ( plus_plus_nat @ I @ K2 )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_408_group__cancel_Oadd1,axiom,
    ! [A3: int,K2: int,A: int,B: int] :
      ( ( A3
        = ( plus_plus_int @ K2 @ A ) )
     => ( ( plus_plus_int @ A3 @ B )
        = ( plus_plus_int @ K2 @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_409_group__cancel_Oadd1,axiom,
    ! [A3: nat,K2: nat,A: nat,B: nat] :
      ( ( A3
        = ( plus_plus_nat @ K2 @ A ) )
     => ( ( plus_plus_nat @ A3 @ B )
        = ( plus_plus_nat @ K2 @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_410_group__cancel_Oadd2,axiom,
    ! [B4: int,K2: int,B: int,A: int] :
      ( ( B4
        = ( plus_plus_int @ K2 @ B ) )
     => ( ( plus_plus_int @ A @ B4 )
        = ( plus_plus_int @ K2 @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_411_group__cancel_Oadd2,axiom,
    ! [B4: nat,K2: nat,B: nat,A: nat] :
      ( ( B4
        = ( plus_plus_nat @ K2 @ B ) )
     => ( ( plus_plus_nat @ A @ B4 )
        = ( plus_plus_nat @ K2 @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_412_group__cancel_Osub1,axiom,
    ! [A3: int,K2: int,A: int,B: int] :
      ( ( A3
        = ( plus_plus_int @ K2 @ A ) )
     => ( ( minus_minus_int @ A3 @ B )
        = ( plus_plus_int @ K2 @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_413_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_414_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_415_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_416_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_417_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_418_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_419_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_420_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_421_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_422_group__add__class_Oadd_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% group_add_class.add.right_cancel
thf(fact_423_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_424_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B3: nat] : ( plus_plus_nat @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_425_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_426_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_427_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_428_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_429_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_430_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_431_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_432_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_433_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_434_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_435_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_436_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_437_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_438_square__diff__square__factored,axiom,
    ! [X: int,Y: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
      = ( times_times_int @ ( plus_plus_int @ X @ Y ) @ ( minus_minus_int @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_439_eq__add__iff2,axiom,
    ! [A: int,E2: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_440_eq__add__iff1,axiom,
    ! [A: int,E2: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_441_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: int,E2: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
      = ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_442_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: int,E2: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_443_diff__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_444_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_445_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_446_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_447_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K2 = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_448_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K2 = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_449_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_450_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_451_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_452_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_453_add__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_454_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_455_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_456_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_457_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( B
           != ( plus_plus_nat @ A @ C2 ) ) ) ).

% less_eqE
thf(fact_458_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_459_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_460_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
        ? [C3: nat] :
          ( B3
          = ( plus_plus_nat @ A4 @ C3 ) ) ) ) ).

% le_iff_add
thf(fact_461_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_462_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_463_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_464_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_465_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_466_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_467_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_468_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_469_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_470_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_471_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_472_combine__common__factor,axiom,
    ! [A: int,E2: int,B: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E2 ) @ C ) ) ).

% combine_common_factor
thf(fact_473_combine__common__factor,axiom,
    ! [A: nat,E2: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E2 ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E2 ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E2 ) @ C ) ) ).

% combine_common_factor
thf(fact_474_distrib__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% distrib_right
thf(fact_475_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_476_distrib__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% distrib_left
thf(fact_477_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_478_comm__semiring__class_Odistrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_479_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_480_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_481_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_482_group__cancel_Oneg1,axiom,
    ! [A3: int,K2: int,A: int] :
      ( ( A3
        = ( plus_plus_int @ K2 @ A ) )
     => ( ( uminus_uminus_int @ A3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K2 ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_483_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_484_divides__mult__imp__divides,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ R ) @ A @ B )
     => ( factor8216151070175719842xt_a_b @ R @ A @ B ) ) ).

% divides_mult_imp_divides
thf(fact_485_domain_Ozero__is__prime_I2_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( prime_a_Product_unit @ ( ring_mult_of_a_b @ R ) @ ( zero_a_b @ R ) ) ) ).

% domain.zero_is_prime(2)
thf(fact_486_domain_OUnits__mult__eq__Units,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( ( units_a_Product_unit @ ( ring_mult_of_a_b @ R ) )
        = ( units_a_ring_ext_a_b @ R ) ) ) ).

% domain.Units_mult_eq_Units
thf(fact_487_a__minus__def,axiom,
    ( a_minus_a_b
    = ( ^ [R3: partia2175431115845679010xt_a_b,X3: a,Y3: a] : ( add_a_b @ R3 @ X3 @ ( a_inv_a_b @ R3 @ Y3 ) ) ) ) ).

% a_minus_def
thf(fact_488_domain_Odivides__mult__zero,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ R ) @ A @ ( zero_a_b @ R ) )
         => ( A
            = ( zero_a_b @ R ) ) ) ) ) ).

% domain.divides_mult_zero
thf(fact_489_domain_Oring__primeE_I2_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,P2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ring_ring_prime_a_b @ R @ P2 )
         => ( prime_a_Product_unit @ ( ring_mult_of_a_b @ R ) @ P2 ) ) ) ) ).

% domain.ring_primeE(2)
thf(fact_490_domain_Oprime__eq__prime__mult,axiom,
    ! [R: partia2175431115845679010xt_a_b,P2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( prime_a_ring_ext_a_b @ R @ P2 )
          = ( prime_a_Product_unit @ ( ring_mult_of_a_b @ R ) @ P2 ) ) ) ) ).

% domain.prime_eq_prime_mult
thf(fact_491_a__rcosetsI,axiom,
    ! [H3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( member_set_a @ ( a_r_coset_a_b @ r @ H3 @ X ) @ ( a_RCOSETS_a_b @ r @ H3 ) ) ) ) ).

% a_rcosetsI
thf(fact_492_empty__subsetI,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A3 ) ).

% empty_subsetI
thf(fact_493_empty__subsetI,axiom,
    ! [A3: set_set_a] : ( ord_le3724670747650509150_set_a @ bot_bot_set_set_a @ A3 ) ).

% empty_subsetI
thf(fact_494_subset__empty,axiom,
    ! [A3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ bot_bot_set_a )
      = ( A3 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_495_subset__empty,axiom,
    ! [A3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ bot_bot_set_set_a )
      = ( A3 = bot_bot_set_set_a ) ) ).

% subset_empty
thf(fact_496_cgenideal__eq__genideal,axiom,
    ! [I: a] :
      ( ( member_a @ I @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( cgenid547466209912283029xt_a_b @ r @ I )
        = ( genideal_a_b @ r @ ( insert_a @ I @ bot_bot_set_a ) ) ) ) ).

% cgenideal_eq_genideal
thf(fact_497_a__rcos__assoc__lcos,axiom,
    ! [H3: set_a,K: set_a,X: a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( set_add_a_b @ r @ ( a_r_coset_a_b @ r @ H3 @ X ) @ K )
            = ( set_add_a_b @ r @ H3 @ ( a_l_coset_a_b @ r @ X @ K ) ) ) ) ) ) ).

% a_rcos_assoc_lcos
thf(fact_498_subdomainI_H,axiom,
    ! [H3: set_a] :
      ( ( subring_a_b @ H3 @ r )
     => ( subdomain_a_b @ H3 @ r ) ) ).

% subdomainI'
thf(fact_499_genideal__one,axiom,
    ( ( genideal_a_b @ r @ ( insert_a @ ( one_a_ring_ext_a_b @ r ) @ bot_bot_set_a ) )
    = ( partia707051561876973205xt_a_b @ r ) ) ).

% genideal_one
thf(fact_500_subsetI,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ A3 )
         => ( member_a @ X2 @ B4 ) )
     => ( ord_less_eq_set_a @ A3 @ B4 ) ) ).

% subsetI
thf(fact_501_subsetI,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ! [X2: set_a] :
          ( ( member_set_a @ X2 @ A3 )
         => ( member_set_a @ X2 @ B4 ) )
     => ( ord_le3724670747650509150_set_a @ A3 @ B4 ) ) ).

% subsetI
thf(fact_502_subset__antisym,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( ord_less_eq_set_a @ B4 @ A3 )
       => ( A3 = B4 ) ) ) ).

% subset_antisym
thf(fact_503_subset__antisym,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ( ord_le3724670747650509150_set_a @ B4 @ A3 )
       => ( A3 = B4 ) ) ) ).

% subset_antisym
thf(fact_504_Compl__anti__mono,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ B4 ) @ ( uminus_uminus_set_a @ A3 ) ) ) ).

% Compl_anti_mono
thf(fact_505_Compl__anti__mono,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ B4 ) @ ( uminus6103902357914783669_set_a @ A3 ) ) ) ).

% Compl_anti_mono
thf(fact_506_Compl__subset__Compl__iff,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ A3 ) @ ( uminus_uminus_set_a @ B4 ) )
      = ( ord_less_eq_set_a @ B4 @ A3 ) ) ).

% Compl_subset_Compl_iff
thf(fact_507_Compl__subset__Compl__iff,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ A3 ) @ ( uminus6103902357914783669_set_a @ B4 ) )
      = ( ord_le3724670747650509150_set_a @ B4 @ A3 ) ) ).

% Compl_subset_Compl_iff
thf(fact_508_setadd__subset__G,axiom,
    ! [H3: set_a,K: set_a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ord_less_eq_set_a @ ( set_add_a_b @ r @ H3 @ K ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% setadd_subset_G
thf(fact_509_set__add__comm,axiom,
    ! [I2: set_a,J2: set_a] :
      ( ( ord_less_eq_set_a @ I2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ J2 @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( set_add_a_b @ r @ I2 @ J2 )
          = ( set_add_a_b @ r @ J2 @ I2 ) ) ) ) ).

% set_add_comm
thf(fact_510_set__add__closed,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ B4 @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ord_less_eq_set_a @ ( set_add_a_b @ r @ A3 @ B4 ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% set_add_closed
thf(fact_511_sum__space__dim_I1_J,axiom,
    ! [K: set_a,E: set_a,F: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd8708762675212832759on_a_b @ r @ K @ E )
       => ( ( embedd8708762675212832759on_a_b @ r @ K @ F )
         => ( embedd8708762675212832759on_a_b @ r @ K @ ( set_add_a_b @ r @ E @ F ) ) ) ) ) ).

% sum_space_dim(1)
thf(fact_512_genideal__self_H,axiom,
    ! [I: a] :
      ( ( member_a @ I @ ( partia707051561876973205xt_a_b @ r ) )
     => ( member_a @ I @ ( genideal_a_b @ r @ ( insert_a @ I @ bot_bot_set_a ) ) ) ) ).

% genideal_self'
thf(fact_513_genideal__zero,axiom,
    ( ( genideal_a_b @ r @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
    = ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ).

% genideal_zero
thf(fact_514_a__setmult__rcos__assoc,axiom,
    ! [H3: set_a,K: set_a,X: a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( set_add_a_b @ r @ H3 @ ( a_r_coset_a_b @ r @ K @ X ) )
            = ( a_r_coset_a_b @ r @ ( set_add_a_b @ r @ H3 @ K ) @ X ) ) ) ) ) ).

% a_setmult_rcos_assoc
thf(fact_515_zeropideal,axiom,
    principalideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r ).

% zeropideal
thf(fact_516_carrier__one__not__zero,axiom,
    ( ( ( partia707051561876973205xt_a_b @ r )
     != ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
    = ( ( one_a_ring_ext_a_b @ r )
     != ( zero_a_b @ r ) ) ) ).

% carrier_one_not_zero
thf(fact_517_carrier__one__zero,axiom,
    ( ( ( partia707051561876973205xt_a_b @ r )
      = ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
    = ( ( one_a_ring_ext_a_b @ r )
      = ( zero_a_b @ r ) ) ) ).

% carrier_one_zero
thf(fact_518_one__zeroD,axiom,
    ( ( ( one_a_ring_ext_a_b @ r )
      = ( zero_a_b @ r ) )
   => ( ( partia707051561876973205xt_a_b @ r )
      = ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ) ).

% one_zeroD
thf(fact_519_one__zeroI,axiom,
    ( ( ( partia707051561876973205xt_a_b @ r )
      = ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
   => ( ( one_a_ring_ext_a_b @ r )
      = ( zero_a_b @ r ) ) ) ).

% one_zeroI
thf(fact_520_Idl__subset__ideal_H,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ord_less_eq_set_a @ ( genideal_a_b @ r @ ( insert_a @ A @ bot_bot_set_a ) ) @ ( genideal_a_b @ r @ ( insert_a @ B @ bot_bot_set_a ) ) )
          = ( member_a @ A @ ( genideal_a_b @ r @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ) ) ).

% Idl_subset_ideal'
thf(fact_521_subfield__m__inv__simprule,axiom,
    ! [K: set_a,K2: a,A: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( member_a @ K2 @ ( minus_minus_set_a @ K @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ K2 @ A ) @ K )
           => ( member_a @ A @ K ) ) ) ) ) ).

% subfield_m_inv_simprule
thf(fact_522_mult__divides,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ C @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
         => ( ( factor8216151070175719842xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) )
           => ( factor8216151070175719842xt_a_b @ r @ A @ B ) ) ) ) ) ).

% mult_divides
thf(fact_523_set__add__zero,axiom,
    ! [A3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( set_add_a_b @ r @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ A3 )
        = A3 ) ) ).

% set_add_zero
thf(fact_524_cring__fieldI,axiom,
    ( ( ( units_a_ring_ext_a_b @ r )
      = ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
   => ( field_a_b @ r ) ) ).

% cring_fieldI
thf(fact_525_Diff__eq__empty__iff,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ( minus_minus_set_a @ A3 @ B4 )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A3 @ B4 ) ) ).

% Diff_eq_empty_iff
thf(fact_526_Diff__eq__empty__iff,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( ( minus_5736297505244876581_set_a @ A3 @ B4 )
        = bot_bot_set_set_a )
      = ( ord_le3724670747650509150_set_a @ A3 @ B4 ) ) ).

% Diff_eq_empty_iff
thf(fact_527_insert__subset,axiom,
    ! [X: a,A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a @ X @ A3 ) @ B4 )
      = ( ( member_a @ X @ B4 )
        & ( ord_less_eq_set_a @ A3 @ B4 ) ) ) ).

% insert_subset
thf(fact_528_insert__subset,axiom,
    ! [X: set_a,A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( insert_set_a @ X @ A3 ) @ B4 )
      = ( ( member_set_a @ X @ B4 )
        & ( ord_le3724670747650509150_set_a @ A3 @ B4 ) ) ) ).

% insert_subset
thf(fact_529_divides__imp__divides__mult,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
       => ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
         => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ).

% divides_imp_divides_mult
thf(fact_530_field__intro2,axiom,
    ( ( ( zero_a_b @ r )
     != ( one_a_ring_ext_a_b @ r ) )
   => ( ! [X2: a] :
          ( ( member_a @ X2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
         => ( member_a @ X2 @ ( units_a_ring_ext_a_b @ r ) ) )
     => ( field_a_b @ r ) ) ) ).

% field_intro2
thf(fact_531_ring__irreducibleI,axiom,
    ! [R2: a] :
      ( ( member_a @ R2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
     => ( ~ ( member_a @ R2 @ ( units_a_ring_ext_a_b @ r ) )
       => ( ! [A2: a,B2: a] :
              ( ( member_a @ A2 @ ( partia707051561876973205xt_a_b @ r ) )
             => ( ( member_a @ B2 @ ( partia707051561876973205xt_a_b @ r ) )
               => ( ( R2
                    = ( mult_a_ring_ext_a_b @ r @ A2 @ B2 ) )
                 => ( ( member_a @ A2 @ ( units_a_ring_ext_a_b @ r ) )
                    | ( member_a @ B2 @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) )
         => ( ring_r999134135267193926le_a_b @ r @ R2 ) ) ) ) ).

% ring_irreducibleI
thf(fact_532_ring__primeI_H,axiom,
    ! [P2: a] :
      ( ( member_a @ P2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
     => ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
       => ( ring_ring_prime_a_b @ r @ P2 ) ) ) ).

% ring_primeI'
thf(fact_533_subset__Compl__singleton,axiom,
    ! [A3: set_a,B: a] :
      ( ( ord_less_eq_set_a @ A3 @ ( uminus_uminus_set_a @ ( insert_a @ B @ bot_bot_set_a ) ) )
      = ( ~ ( member_a @ B @ A3 ) ) ) ).

% subset_Compl_singleton
thf(fact_534_subset__Compl__singleton,axiom,
    ! [A3: set_set_a,B: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ ( uminus6103902357914783669_set_a @ ( insert_set_a @ B @ bot_bot_set_set_a ) ) )
      = ( ~ ( member_set_a @ B @ A3 ) ) ) ).

% subset_Compl_singleton
thf(fact_535_singleton__insert__inj__eq_H,axiom,
    ! [A: a,A3: set_a,B: a] :
      ( ( ( insert_a @ A @ A3 )
        = ( insert_a @ B @ bot_bot_set_a ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_536_singleton__insert__inj__eq_H,axiom,
    ! [A: set_a,A3: set_set_a,B: set_a] :
      ( ( ( insert_set_a @ A @ A3 )
        = ( insert_set_a @ B @ bot_bot_set_set_a ) )
      = ( ( A = B )
        & ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ B @ bot_bot_set_set_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_537_singleton__insert__inj__eq,axiom,
    ! [B: a,A: a,A3: set_a] :
      ( ( ( insert_a @ B @ bot_bot_set_a )
        = ( insert_a @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_538_singleton__insert__inj__eq,axiom,
    ! [B: set_a,A: set_a,A3: set_set_a] :
      ( ( ( insert_set_a @ B @ bot_bot_set_set_a )
        = ( insert_set_a @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ B @ bot_bot_set_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_539_Ring__Divisibility_Ocarrier__mult__of,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ R ) )
      = ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) ) ).

% Ring_Divisibility.carrier_mult_of
thf(fact_540_subset__insert__iff,axiom,
    ! [A3: set_a,X: a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ B4 ) )
      = ( ( ( member_a @ X @ A3 )
         => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B4 ) )
        & ( ~ ( member_a @ X @ A3 )
         => ( ord_less_eq_set_a @ A3 @ B4 ) ) ) ) ).

% subset_insert_iff
thf(fact_541_subset__insert__iff,axiom,
    ! [A3: set_set_a,X: set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ X @ B4 ) )
      = ( ( ( member_set_a @ X @ A3 )
         => ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A3 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) @ B4 ) )
        & ( ~ ( member_set_a @ X @ A3 )
         => ( ord_le3724670747650509150_set_a @ A3 @ B4 ) ) ) ) ).

% subset_insert_iff
thf(fact_542_Diff__single__insert,axiom,
    ! [A3: set_a,X: a,B4: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B4 )
     => ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ B4 ) ) ) ).

% Diff_single_insert
thf(fact_543_Diff__single__insert,axiom,
    ! [A3: set_set_a,X: set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A3 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) @ B4 )
     => ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ X @ B4 ) ) ) ).

% Diff_single_insert
thf(fact_544_subset__Diff__insert,axiom,
    ! [A3: set_a,B4: set_a,X: a,C4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ ( minus_minus_set_a @ B4 @ ( insert_a @ X @ C4 ) ) )
      = ( ( ord_less_eq_set_a @ A3 @ ( minus_minus_set_a @ B4 @ C4 ) )
        & ~ ( member_a @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_545_subset__Diff__insert,axiom,
    ! [A3: set_set_a,B4: set_set_a,X: set_a,C4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ ( minus_5736297505244876581_set_a @ B4 @ ( insert_set_a @ X @ C4 ) ) )
      = ( ( ord_le3724670747650509150_set_a @ A3 @ ( minus_5736297505244876581_set_a @ B4 @ C4 ) )
        & ~ ( member_set_a @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_546_Diff__mono,axiom,
    ! [A3: set_a,C4: set_a,D2: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C4 )
     => ( ( ord_less_eq_set_a @ D2 @ B4 )
       => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ B4 ) @ ( minus_minus_set_a @ C4 @ D2 ) ) ) ) ).

% Diff_mono
thf(fact_547_Diff__mono,axiom,
    ! [A3: set_set_a,C4: set_set_a,D2: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ C4 )
     => ( ( ord_le3724670747650509150_set_a @ D2 @ B4 )
       => ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A3 @ B4 ) @ ( minus_5736297505244876581_set_a @ C4 @ D2 ) ) ) ) ).

% Diff_mono
thf(fact_548_Diff__subset,axiom,
    ! [A3: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ B4 ) @ A3 ) ).

% Diff_subset
thf(fact_549_Diff__subset,axiom,
    ! [A3: set_set_a,B4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A3 @ B4 ) @ A3 ) ).

% Diff_subset
thf(fact_550_double__diff,axiom,
    ! [A3: set_a,B4: set_a,C4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( ord_less_eq_set_a @ B4 @ C4 )
       => ( ( minus_minus_set_a @ B4 @ ( minus_minus_set_a @ C4 @ A3 ) )
          = A3 ) ) ) ).

% double_diff
thf(fact_551_double__diff,axiom,
    ! [A3: set_set_a,B4: set_set_a,C4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ( ord_le3724670747650509150_set_a @ B4 @ C4 )
       => ( ( minus_5736297505244876581_set_a @ B4 @ ( minus_5736297505244876581_set_a @ C4 @ A3 ) )
          = A3 ) ) ) ).

% double_diff
thf(fact_552_subset__insertI2,axiom,
    ! [A3: set_a,B4: set_a,B: a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ord_less_eq_set_a @ A3 @ ( insert_a @ B @ B4 ) ) ) ).

% subset_insertI2
thf(fact_553_subset__insertI2,axiom,
    ! [A3: set_set_a,B4: set_set_a,B: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ B @ B4 ) ) ) ).

% subset_insertI2
thf(fact_554_subset__insertI,axiom,
    ! [B4: set_a,A: a] : ( ord_less_eq_set_a @ B4 @ ( insert_a @ A @ B4 ) ) ).

% subset_insertI
thf(fact_555_subset__insertI,axiom,
    ! [B4: set_set_a,A: set_a] : ( ord_le3724670747650509150_set_a @ B4 @ ( insert_set_a @ A @ B4 ) ) ).

% subset_insertI
thf(fact_556_subset__insert,axiom,
    ! [X: a,A3: set_a,B4: set_a] :
      ( ~ ( member_a @ X @ A3 )
     => ( ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ B4 ) )
        = ( ord_less_eq_set_a @ A3 @ B4 ) ) ) ).

% subset_insert
thf(fact_557_subset__insert,axiom,
    ! [X: set_a,A3: set_set_a,B4: set_set_a] :
      ( ~ ( member_set_a @ X @ A3 )
     => ( ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ X @ B4 ) )
        = ( ord_le3724670747650509150_set_a @ A3 @ B4 ) ) ) ).

% subset_insert
thf(fact_558_insert__mono,axiom,
    ! [C4: set_a,D2: set_a,A: a] :
      ( ( ord_less_eq_set_a @ C4 @ D2 )
     => ( ord_less_eq_set_a @ ( insert_a @ A @ C4 ) @ ( insert_a @ A @ D2 ) ) ) ).

% insert_mono
thf(fact_559_insert__mono,axiom,
    ! [C4: set_set_a,D2: set_set_a,A: set_a] :
      ( ( ord_le3724670747650509150_set_a @ C4 @ D2 )
     => ( ord_le3724670747650509150_set_a @ ( insert_set_a @ A @ C4 ) @ ( insert_set_a @ A @ D2 ) ) ) ).

% insert_mono
thf(fact_560_subset__singleton__iff,axiom,
    ! [X5: set_a,A: a] :
      ( ( ord_less_eq_set_a @ X5 @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( ( X5 = bot_bot_set_a )
        | ( X5
          = ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% subset_singleton_iff
thf(fact_561_subset__singleton__iff,axiom,
    ! [X5: set_set_a,A: set_a] :
      ( ( ord_le3724670747650509150_set_a @ X5 @ ( insert_set_a @ A @ bot_bot_set_set_a ) )
      = ( ( X5 = bot_bot_set_set_a )
        | ( X5
          = ( insert_set_a @ A @ bot_bot_set_set_a ) ) ) ) ).

% subset_singleton_iff
thf(fact_562_subset__singletonD,axiom,
    ! [A3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ bot_bot_set_a ) )
     => ( ( A3 = bot_bot_set_a )
        | ( A3
          = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% subset_singletonD
thf(fact_563_subset__singletonD,axiom,
    ! [A3: set_set_a,X: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
     => ( ( A3 = bot_bot_set_set_a )
        | ( A3
          = ( insert_set_a @ X @ bot_bot_set_set_a ) ) ) ) ).

% subset_singletonD
thf(fact_564_field__Units,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( field_a_b @ R )
     => ( ( units_a_ring_ext_a_b @ R )
        = ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) ) ) ).

% field_Units
thf(fact_565_field_Of__comm__group__2,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( field_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( X
           != ( zero_a_b @ R ) )
         => ? [X2: a] :
              ( ( member_a @ X2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
              & ( ( mult_a_ring_ext_a_b @ R @ X2 @ X )
                = ( one_a_ring_ext_a_b @ R ) ) ) ) ) ) ).

% field.f_comm_group_2
thf(fact_566_domain_Omult__divides,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ C @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
           => ( ( factor8216151070175719842xt_a_b @ R @ ( mult_a_ring_ext_a_b @ R @ C @ A ) @ ( mult_a_ring_ext_a_b @ R @ C @ B ) )
             => ( factor8216151070175719842xt_a_b @ R @ A @ B ) ) ) ) ) ) ).

% domain.mult_divides
thf(fact_567_domain_Odivides__imp__divides__mult,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ B @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
         => ( ( factor8216151070175719842xt_a_b @ R @ A @ B )
           => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ R ) @ A @ B ) ) ) ) ) ).

% domain.divides_imp_divides_mult
thf(fact_568_domain_Oring__primeI_H,axiom,
    ! [R: partia2175431115845679010xt_a_b,P2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ P2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
       => ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ R ) @ P2 )
         => ( ring_ring_prime_a_b @ R @ P2 ) ) ) ) ).

% domain.ring_primeI'
thf(fact_569_in__mono,axiom,
    ! [A3: set_a,B4: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( member_a @ X @ A3 )
       => ( member_a @ X @ B4 ) ) ) ).

% in_mono
thf(fact_570_in__mono,axiom,
    ! [A3: set_set_a,B4: set_set_a,X: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ( member_set_a @ X @ A3 )
       => ( member_set_a @ X @ B4 ) ) ) ).

% in_mono
thf(fact_571_subsetD,axiom,
    ! [A3: set_a,B4: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( member_a @ C @ A3 )
       => ( member_a @ C @ B4 ) ) ) ).

% subsetD
thf(fact_572_subsetD,axiom,
    ! [A3: set_set_a,B4: set_set_a,C: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ( member_set_a @ C @ A3 )
       => ( member_set_a @ C @ B4 ) ) ) ).

% subsetD
thf(fact_573_equalityE,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( A3 = B4 )
     => ~ ( ( ord_less_eq_set_a @ A3 @ B4 )
         => ~ ( ord_less_eq_set_a @ B4 @ A3 ) ) ) ).

% equalityE
thf(fact_574_equalityE,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( A3 = B4 )
     => ~ ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
         => ~ ( ord_le3724670747650509150_set_a @ B4 @ A3 ) ) ) ).

% equalityE
thf(fact_575_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
        ! [X3: a] :
          ( ( member_a @ X3 @ A5 )
         => ( member_a @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_576_subset__eq,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A5: set_set_a,B5: set_set_a] :
        ! [X3: set_a] :
          ( ( member_set_a @ X3 @ A5 )
         => ( member_set_a @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_577_equalityD1,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( A3 = B4 )
     => ( ord_less_eq_set_a @ A3 @ B4 ) ) ).

% equalityD1
thf(fact_578_equalityD1,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( A3 = B4 )
     => ( ord_le3724670747650509150_set_a @ A3 @ B4 ) ) ).

% equalityD1
thf(fact_579_equalityD2,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( A3 = B4 )
     => ( ord_less_eq_set_a @ B4 @ A3 ) ) ).

% equalityD2
thf(fact_580_equalityD2,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( A3 = B4 )
     => ( ord_le3724670747650509150_set_a @ B4 @ A3 ) ) ).

% equalityD2
thf(fact_581_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
        ! [T: a] :
          ( ( member_a @ T @ A5 )
         => ( member_a @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_582_subset__iff,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A5: set_set_a,B5: set_set_a] :
        ! [T: set_a] :
          ( ( member_set_a @ T @ A5 )
         => ( member_set_a @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_583_subset__refl,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ A3 @ A3 ) ).

% subset_refl
thf(fact_584_subset__refl,axiom,
    ! [A3: set_set_a] : ( ord_le3724670747650509150_set_a @ A3 @ A3 ) ).

% subset_refl
thf(fact_585_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X2: a] :
          ( ( P @ X2 )
         => ( Q @ X2 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_586_Collect__mono,axiom,
    ! [P: set_a > $o,Q: set_a > $o] :
      ( ! [X2: set_a] :
          ( ( P @ X2 )
         => ( Q @ X2 ) )
     => ( ord_le3724670747650509150_set_a @ ( collect_set_a @ P ) @ ( collect_set_a @ Q ) ) ) ).

% Collect_mono
thf(fact_587_subset__trans,axiom,
    ! [A3: set_a,B4: set_a,C4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( ord_less_eq_set_a @ B4 @ C4 )
       => ( ord_less_eq_set_a @ A3 @ C4 ) ) ) ).

% subset_trans
thf(fact_588_subset__trans,axiom,
    ! [A3: set_set_a,B4: set_set_a,C4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ( ord_le3724670747650509150_set_a @ B4 @ C4 )
       => ( ord_le3724670747650509150_set_a @ A3 @ C4 ) ) ) ).

% subset_trans
thf(fact_589_set__eq__subset,axiom,
    ( ( ^ [Y5: set_a,Z3: set_a] : ( Y5 = Z3 ) )
    = ( ^ [A5: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ A5 @ B5 )
          & ( ord_less_eq_set_a @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_590_set__eq__subset,axiom,
    ( ( ^ [Y5: set_set_a,Z3: set_set_a] : ( Y5 = Z3 ) )
    = ( ^ [A5: set_set_a,B5: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ A5 @ B5 )
          & ( ord_le3724670747650509150_set_a @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_591_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X3: a] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_592_Collect__mono__iff,axiom,
    ! [P: set_a > $o,Q: set_a > $o] :
      ( ( ord_le3724670747650509150_set_a @ ( collect_set_a @ P ) @ ( collect_set_a @ Q ) )
      = ( ! [X3: set_a] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_593_domain_Oring__irreducibleI,axiom,
    ! [R: partia2175431115845679010xt_a_b,R2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ R2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
       => ( ~ ( member_a @ R2 @ ( units_a_ring_ext_a_b @ R ) )
         => ( ! [A2: a,B2: a] :
                ( ( member_a @ A2 @ ( partia707051561876973205xt_a_b @ R ) )
               => ( ( member_a @ B2 @ ( partia707051561876973205xt_a_b @ R ) )
                 => ( ( R2
                      = ( mult_a_ring_ext_a_b @ R @ A2 @ B2 ) )
                   => ( ( member_a @ A2 @ ( units_a_ring_ext_a_b @ R ) )
                      | ( member_a @ B2 @ ( units_a_ring_ext_a_b @ R ) ) ) ) ) )
           => ( ring_r999134135267193926le_a_b @ R @ R2 ) ) ) ) ) ).

% domain.ring_irreducibleI
thf(fact_594_semiring_Ocarrier__one__not__zero,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( semiring_a_b @ R )
     => ( ( ( partia707051561876973205xt_a_b @ R )
         != ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) )
        = ( ( one_a_ring_ext_a_b @ R )
         != ( zero_a_b @ R ) ) ) ) ).

% semiring.carrier_one_not_zero
thf(fact_595_semiring_Ocarrier__one__zero,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( semiring_a_b @ R )
     => ( ( ( partia707051561876973205xt_a_b @ R )
          = ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) )
        = ( ( one_a_ring_ext_a_b @ R )
          = ( zero_a_b @ R ) ) ) ) ).

% semiring.carrier_one_zero
thf(fact_596_semiring_Oone__zeroI,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( semiring_a_b @ R )
     => ( ( ( partia707051561876973205xt_a_b @ R )
          = ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) )
       => ( ( one_a_ring_ext_a_b @ R )
          = ( zero_a_b @ R ) ) ) ) ).

% semiring.one_zeroI
thf(fact_597_semiring_Oone__zeroD,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( semiring_a_b @ R )
     => ( ( ( one_a_ring_ext_a_b @ R )
          = ( zero_a_b @ R ) )
       => ( ( partia707051561876973205xt_a_b @ R )
          = ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) ) ) ).

% semiring.one_zeroD
thf(fact_598_subset__Compl__self__eq,axiom,
    ! [A3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ ( uminus_uminus_set_a @ A3 ) )
      = ( A3 = bot_bot_set_a ) ) ).

% subset_Compl_self_eq
thf(fact_599_subset__Compl__self__eq,axiom,
    ! [A3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ ( uminus6103902357914783669_set_a @ A3 ) )
      = ( A3 = bot_bot_set_set_a ) ) ).

% subset_Compl_self_eq
thf(fact_600_zeromaximalideal__eq__field,axiom,
    ( ( maximalideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r )
    = ( field_a_b @ r ) ) ).

% zeromaximalideal_eq_field
thf(fact_601_zeromaximalideal__fieldI,axiom,
    ( ( maximalideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r )
   => ( field_a_b @ r ) ) ).

% zeromaximalideal_fieldI
thf(fact_602_primeideal__iff__prime,axiom,
    ! [P2: a] :
      ( ( member_a @ P2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
     => ( ( primeideal_a_b @ ( cgenid547466209912283029xt_a_b @ r @ P2 ) @ r )
        = ( ring_ring_prime_a_b @ r @ P2 ) ) ) ).

% primeideal_iff_prime
thf(fact_603_domain__eq__zeroprimeideal,axiom,
    ( ( domain_a_b @ r )
    = ( primeideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r ) ) ).

% domain_eq_zeroprimeideal
thf(fact_604_zeroprimeideal__domainI,axiom,
    ( ( primeideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r )
   => ( domain_a_b @ r ) ) ).

% zeroprimeideal_domainI
thf(fact_605_maximalideal__prime,axiom,
    ! [I2: set_a] :
      ( ( maximalideal_a_b @ I2 @ r )
     => ( primeideal_a_b @ I2 @ r ) ) ).

% maximalideal_prime
thf(fact_606_zeroprimeideal,axiom,
    primeideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r ).

% zeroprimeideal
thf(fact_607_domain_Oprimeideal__iff__prime,axiom,
    ! [R: partia2175431115845679010xt_a_b,P2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ P2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
       => ( ( primeideal_a_b @ ( cgenid547466209912283029xt_a_b @ R @ P2 ) @ R )
          = ( ring_ring_prime_a_b @ R @ P2 ) ) ) ) ).

% domain.primeideal_iff_prime
thf(fact_608_ring__irreducibleI_H,axiom,
    ! [R2: a] :
      ( ( member_a @ R2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
     => ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ R2 )
       => ( ring_r999134135267193926le_a_b @ r @ R2 ) ) ) ).

% ring_irreducibleI'
thf(fact_609_subdomainI,axiom,
    ! [H3: set_a] :
      ( ( subcring_a_b @ H3 @ r )
     => ( ( ( one_a_ring_ext_a_b @ r )
         != ( zero_a_b @ r ) )
       => ( ! [H12: a,H22: a] :
              ( ( member_a @ H12 @ H3 )
             => ( ( member_a @ H22 @ H3 )
               => ( ( ( mult_a_ring_ext_a_b @ r @ H12 @ H22 )
                    = ( zero_a_b @ r ) )
                 => ( ( H12
                      = ( zero_a_b @ r ) )
                    | ( H22
                      = ( zero_a_b @ r ) ) ) ) ) )
         => ( subdomain_a_b @ H3 @ r ) ) ) ) ).

% subdomainI
thf(fact_610_irreducible__mult__imp__irreducible,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
     => ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A )
       => ( irredu6211895646901577903xt_a_b @ r @ A ) ) ) ).

% irreducible_mult_imp_irreducible
thf(fact_611_subfield__m__inv_I2_J,axiom,
    ! [K: set_a,K2: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( member_a @ K2 @ ( minus_minus_set_a @ K @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
       => ( ( mult_a_ring_ext_a_b @ r @ K2 @ ( m_inv_a_ring_ext_a_b @ r @ K2 ) )
          = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% subfield_m_inv(2)
thf(fact_612_carrier__is__subcring,axiom,
    subcring_a_b @ ( partia707051561876973205xt_a_b @ r ) @ r ).

% carrier_is_subcring
thf(fact_613_inv__eq__imp__eq,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ Y @ ( units_a_ring_ext_a_b @ r ) )
       => ( ( ( m_inv_a_ring_ext_a_b @ r @ X )
            = ( m_inv_a_ring_ext_a_b @ r @ Y ) )
         => ( X = Y ) ) ) ) ).

% inv_eq_imp_eq
thf(fact_614_subcringI_H,axiom,
    ! [H3: set_a] :
      ( ( subring_a_b @ H3 @ r )
     => ( subcring_a_b @ H3 @ r ) ) ).

% subcringI'
thf(fact_615_zero__is__irreducible__mult,axiom,
    irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ ( zero_a_b @ r ) ).

% zero_is_irreducible_mult
thf(fact_616_inv__eq__one__eq,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( ( m_inv_a_ring_ext_a_b @ r @ X )
          = ( one_a_ring_ext_a_b @ r ) )
        = ( X
          = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% inv_eq_one_eq
thf(fact_617_subcringI,axiom,
    ! [H3: set_a] :
      ( ( subring_a_b @ H3 @ r )
     => ( ! [H12: a,H22: a] :
            ( ( member_a @ H12 @ H3 )
           => ( ( member_a @ H22 @ H3 )
             => ( ( mult_a_ring_ext_a_b @ r @ H12 @ H22 )
                = ( mult_a_ring_ext_a_b @ r @ H22 @ H12 ) ) ) )
       => ( subcring_a_b @ H3 @ r ) ) ) ).

% subcringI
thf(fact_618_mult__of_Oprime__irreducible,axiom,
    ! [P2: a] :
      ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
     => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ P2 ) ) ).

% mult_of.prime_irreducible
thf(fact_619_inv__unique_H,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
            = ( one_a_ring_ext_a_b @ r ) )
         => ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
              = ( one_a_ring_ext_a_b @ r ) )
           => ( Y
              = ( m_inv_a_ring_ext_a_b @ r @ X ) ) ) ) ) ) ).

% inv_unique'
thf(fact_620_inv__char,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
            = ( one_a_ring_ext_a_b @ r ) )
         => ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
              = ( one_a_ring_ext_a_b @ r ) )
           => ( ( m_inv_a_ring_ext_a_b @ r @ X )
              = Y ) ) ) ) ) ).

% inv_char
thf(fact_621_comm__inv__char,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
            = ( one_a_ring_ext_a_b @ r ) )
         => ( ( m_inv_a_ring_ext_a_b @ r @ X )
            = Y ) ) ) ) ).

% comm_inv_char
thf(fact_622_inv__eq__self,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( X
          = ( m_inv_a_ring_ext_a_b @ r @ X ) )
       => ( ( X
            = ( one_a_ring_ext_a_b @ r ) )
          | ( X
            = ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) ) ) ) ) ).

% inv_eq_self
thf(fact_623_inv__eq__neg__one__eq,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( ( m_inv_a_ring_ext_a_b @ r @ X )
          = ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) )
        = ( X
          = ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) ) ) ) ).

% inv_eq_neg_one_eq
thf(fact_624_irreducible__imp__irreducible__mult,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( irredu6211895646901577903xt_a_b @ r @ A )
       => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A ) ) ) ).

% irreducible_imp_irreducible_mult
thf(fact_625_ring__irreducibleE_I3_J,axiom,
    ! [R2: a] :
      ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( ring_r999134135267193926le_a_b @ r @ R2 )
       => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ R2 ) ) ) ).

% ring_irreducibleE(3)
thf(fact_626_mult__of_Oirreducible__prod__rI,axiom,
    ! [A: a,B: a] :
      ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A )
     => ( ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ) ).

% mult_of.irreducible_prod_rI
thf(fact_627_mult__of_Oirreducible__prod__lI,axiom,
    ! [B: a,A: a] :
      ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ B )
     => ( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ) ).

% mult_of.irreducible_prod_lI
thf(fact_628_mult__of_Oirreducible__prodE,axiom,
    ! [A: a,B: a] :
      ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A )
             => ~ ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) )
           => ~ ( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
               => ~ ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ B ) ) ) ) ) ) ).

% mult_of.irreducible_prodE
thf(fact_629_subfield__m__inv_I1_J,axiom,
    ! [K: set_a,K2: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( member_a @ K2 @ ( minus_minus_set_a @ K @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
       => ( member_a @ ( m_inv_a_ring_ext_a_b @ r @ K2 ) @ ( minus_minus_set_a @ K @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ) ) ) ).

% subfield_m_inv(1)
thf(fact_630_subfield__m__inv_I3_J,axiom,
    ! [K: set_a,K2: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( member_a @ K2 @ ( minus_minus_set_a @ K @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
       => ( ( mult_a_ring_ext_a_b @ r @ ( m_inv_a_ring_ext_a_b @ r @ K2 ) @ K2 )
          = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% subfield_m_inv(3)
thf(fact_631_group_Oinv__inv,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( m_inv_a_ring_ext_a_b @ G @ ( m_inv_a_ring_ext_a_b @ G @ X ) )
          = X ) ) ) ).

% group.inv_inv
thf(fact_632_group_Oinv__inv,axiom,
    ! [G: partia8223610829204095565t_unit,X: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( m_inv_a_Product_unit @ G @ ( m_inv_a_Product_unit @ G @ X ) )
          = X ) ) ) ).

% group.inv_inv
thf(fact_633_inv__one,axiom,
    ( ( m_inv_a_ring_ext_a_b @ r @ ( one_a_ring_ext_a_b @ r ) )
    = ( one_a_ring_ext_a_b @ r ) ) ).

% inv_one
thf(fact_634_Units__inv__inv,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( m_inv_a_ring_ext_a_b @ r @ ( m_inv_a_ring_ext_a_b @ r @ X ) )
        = X ) ) ).

% Units_inv_inv
thf(fact_635_Units__inv__Units,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( member_a @ ( m_inv_a_ring_ext_a_b @ r @ X ) @ ( units_a_ring_ext_a_b @ r ) ) ) ).

% Units_inv_Units
thf(fact_636_Units__inv__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( member_a @ ( m_inv_a_ring_ext_a_b @ r @ X ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ).

% Units_inv_closed
thf(fact_637_inv__neg__one,axiom,
    ( ( m_inv_a_ring_ext_a_b @ r @ ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) )
    = ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) ) ).

% inv_neg_one
thf(fact_638_Units__r__inv,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ X @ ( m_inv_a_ring_ext_a_b @ r @ X ) )
        = ( one_a_ring_ext_a_b @ r ) ) ) ).

% Units_r_inv
thf(fact_639_Units__l__inv,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( m_inv_a_ring_ext_a_b @ r @ X ) @ X )
        = ( one_a_ring_ext_a_b @ r ) ) ) ).

% Units_l_inv
thf(fact_640_group_Oinv__closed,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( member_a @ ( m_inv_a_ring_ext_a_b @ G @ X ) @ ( partia707051561876973205xt_a_b @ G ) ) ) ) ).

% group.inv_closed
thf(fact_641_group_Oinv__closed,axiom,
    ! [G: partia8223610829204095565t_unit,X: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( member_a @ ( m_inv_a_Product_unit @ G @ X ) @ ( partia6735698275553448452t_unit @ G ) ) ) ) ).

% group.inv_closed
thf(fact_642_group_Oinv__mult__group,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,Y: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( m_inv_a_ring_ext_a_b @ G @ ( mult_a_ring_ext_a_b @ G @ X @ Y ) )
            = ( mult_a_ring_ext_a_b @ G @ ( m_inv_a_ring_ext_a_b @ G @ Y ) @ ( m_inv_a_ring_ext_a_b @ G @ X ) ) ) ) ) ) ).

% group.inv_mult_group
thf(fact_643_group_Oinv__mult__group,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,Y: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( m_inv_a_Product_unit @ G @ ( mult_a_Product_unit @ G @ X @ Y ) )
            = ( mult_a_Product_unit @ G @ ( m_inv_a_Product_unit @ G @ Y ) @ ( m_inv_a_Product_unit @ G @ X ) ) ) ) ) ) ).

% group.inv_mult_group
thf(fact_644_group_Oinv__solve__left,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( A
                = ( mult_a_ring_ext_a_b @ G @ ( m_inv_a_ring_ext_a_b @ G @ B ) @ C ) )
              = ( C
                = ( mult_a_ring_ext_a_b @ G @ B @ A ) ) ) ) ) ) ) ).

% group.inv_solve_left
thf(fact_645_group_Oinv__solve__left,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a,C: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( A
                = ( mult_a_Product_unit @ G @ ( m_inv_a_Product_unit @ G @ B ) @ C ) )
              = ( C
                = ( mult_a_Product_unit @ G @ B @ A ) ) ) ) ) ) ) ).

% group.inv_solve_left
thf(fact_646_group_Oinv__solve__left_H,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( ( mult_a_ring_ext_a_b @ G @ ( m_inv_a_ring_ext_a_b @ G @ B ) @ C )
                = A )
              = ( C
                = ( mult_a_ring_ext_a_b @ G @ B @ A ) ) ) ) ) ) ) ).

% group.inv_solve_left'
thf(fact_647_group_Oinv__solve__left_H,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a,C: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( ( mult_a_Product_unit @ G @ ( m_inv_a_Product_unit @ G @ B ) @ C )
                = A )
              = ( C
                = ( mult_a_Product_unit @ G @ B @ A ) ) ) ) ) ) ) ).

% group.inv_solve_left'
thf(fact_648_group_Oinv__solve__right,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( A
                = ( mult_a_ring_ext_a_b @ G @ B @ ( m_inv_a_ring_ext_a_b @ G @ C ) ) )
              = ( B
                = ( mult_a_ring_ext_a_b @ G @ A @ C ) ) ) ) ) ) ) ).

% group.inv_solve_right
thf(fact_649_group_Oinv__solve__right,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a,C: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( A
                = ( mult_a_Product_unit @ G @ B @ ( m_inv_a_Product_unit @ G @ C ) ) )
              = ( B
                = ( mult_a_Product_unit @ G @ A @ C ) ) ) ) ) ) ) ).

% group.inv_solve_right
thf(fact_650_group_Oinv__solve__right_H,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( ( mult_a_ring_ext_a_b @ G @ B @ ( m_inv_a_ring_ext_a_b @ G @ C ) )
                = A )
              = ( B
                = ( mult_a_ring_ext_a_b @ G @ A @ C ) ) ) ) ) ) ) ).

% group.inv_solve_right'
thf(fact_651_group_Oinv__solve__right_H,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a,C: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( ( mult_a_Product_unit @ G @ B @ ( m_inv_a_Product_unit @ G @ C ) )
                = A )
              = ( B
                = ( mult_a_Product_unit @ G @ A @ C ) ) ) ) ) ) ) ).

% group.inv_solve_right'
thf(fact_652_group_Oinv__eq__1__iff,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( ( m_inv_a_ring_ext_a_b @ G @ X )
            = ( one_a_ring_ext_a_b @ G ) )
          = ( X
            = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ).

% group.inv_eq_1_iff
thf(fact_653_group_Oinv__eq__1__iff,axiom,
    ! [G: partia8223610829204095565t_unit,X: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( ( m_inv_a_Product_unit @ G @ X )
            = ( one_a_Product_unit @ G ) )
          = ( X
            = ( one_a_Product_unit @ G ) ) ) ) ) ).

% group.inv_eq_1_iff
thf(fact_654_domain_Ozero__is__irreducible__mult,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ ( zero_a_b @ R ) ) ) ).

% domain.zero_is_irreducible_mult
thf(fact_655_group_Oinv__equality,axiom,
    ! [G: partia2175431115845679010xt_a_b,Y: a,X: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( ( mult_a_ring_ext_a_b @ G @ Y @ X )
          = ( one_a_ring_ext_a_b @ G ) )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( m_inv_a_ring_ext_a_b @ G @ X )
              = Y ) ) ) ) ) ).

% group.inv_equality
thf(fact_656_group_Oinv__equality,axiom,
    ! [G: partia8223610829204095565t_unit,Y: a,X: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( ( mult_a_Product_unit @ G @ Y @ X )
          = ( one_a_Product_unit @ G ) )
       => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( m_inv_a_Product_unit @ G @ X )
              = Y ) ) ) ) ) ).

% group.inv_equality
thf(fact_657_group_Or__inv,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( mult_a_ring_ext_a_b @ G @ X @ ( m_inv_a_ring_ext_a_b @ G @ X ) )
          = ( one_a_ring_ext_a_b @ G ) ) ) ) ).

% group.r_inv
thf(fact_658_group_Or__inv,axiom,
    ! [G: partia8223610829204095565t_unit,X: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( mult_a_Product_unit @ G @ X @ ( m_inv_a_Product_unit @ G @ X ) )
          = ( one_a_Product_unit @ G ) ) ) ) ).

% group.r_inv
thf(fact_659_group_Ol__inv,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( mult_a_ring_ext_a_b @ G @ ( m_inv_a_ring_ext_a_b @ G @ X ) @ X )
          = ( one_a_ring_ext_a_b @ G ) ) ) ) ).

% group.l_inv
thf(fact_660_group_Ol__inv,axiom,
    ! [G: partia8223610829204095565t_unit,X: a] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( mult_a_Product_unit @ G @ ( m_inv_a_Product_unit @ G @ X ) @ X )
          = ( one_a_Product_unit @ G ) ) ) ) ).

% group.l_inv
thf(fact_661_domain_Oinv__eq__self,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ X @ ( units_a_ring_ext_a_b @ R ) )
       => ( ( X
            = ( m_inv_a_ring_ext_a_b @ R @ X ) )
         => ( ( X
              = ( one_a_ring_ext_a_b @ R ) )
            | ( X
              = ( a_inv_a_b @ R @ ( one_a_ring_ext_a_b @ R ) ) ) ) ) ) ) ).

% domain.inv_eq_self
thf(fact_662_domain_Oring__irreducibleE_I3_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,R2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ R2 @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( ring_r999134135267193926le_a_b @ R @ R2 )
         => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ R2 ) ) ) ) ).

% domain.ring_irreducibleE(3)
thf(fact_663_domain_Oirreducible__imp__irreducible__mult,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( irredu6211895646901577903xt_a_b @ R @ A )
         => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ A ) ) ) ) ).

% domain.irreducible_imp_irreducible_mult
thf(fact_664_group_Oone__in__subset,axiom,
    ! [G: partia2175431115845679010xt_a_b,H3: set_a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( H3 != bot_bot_set_a )
         => ( ! [X2: a] :
                ( ( member_a @ X2 @ H3 )
               => ( member_a @ ( m_inv_a_ring_ext_a_b @ G @ X2 ) @ H3 ) )
           => ( ! [X2: a] :
                  ( ( member_a @ X2 @ H3 )
                 => ! [Xa2: a] :
                      ( ( member_a @ Xa2 @ H3 )
                     => ( member_a @ ( mult_a_ring_ext_a_b @ G @ X2 @ Xa2 ) @ H3 ) ) )
             => ( member_a @ ( one_a_ring_ext_a_b @ G ) @ H3 ) ) ) ) ) ) ).

% group.one_in_subset
thf(fact_665_group_Oone__in__subset,axiom,
    ! [G: partia8223610829204095565t_unit,H3: set_a] :
      ( ( group_a_Product_unit @ G )
     => ( ( ord_less_eq_set_a @ H3 @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( H3 != bot_bot_set_a )
         => ( ! [X2: a] :
                ( ( member_a @ X2 @ H3 )
               => ( member_a @ ( m_inv_a_Product_unit @ G @ X2 ) @ H3 ) )
           => ( ! [X2: a] :
                  ( ( member_a @ X2 @ H3 )
                 => ! [Xa2: a] :
                      ( ( member_a @ Xa2 @ H3 )
                     => ( member_a @ ( mult_a_Product_unit @ G @ X2 @ Xa2 ) @ H3 ) ) )
             => ( member_a @ ( one_a_Product_unit @ G ) @ H3 ) ) ) ) ) ) ).

% group.one_in_subset
thf(fact_666_domain_Oring__irreducibleI_H,axiom,
    ! [R: partia2175431115845679010xt_a_b,R2: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ R2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
       => ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ R2 )
         => ( ring_r999134135267193926le_a_b @ R @ R2 ) ) ) ) ).

% domain.ring_irreducibleI'
thf(fact_667_domain_Oirreducible__mult__imp__irreducible,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
       => ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ A )
         => ( irredu6211895646901577903xt_a_b @ R @ A ) ) ) ) ).

% domain.irreducible_mult_imp_irreducible
thf(fact_668_field_OsubfieldI_H,axiom,
    ! [R: partia2175431115845679010xt_a_b,K: set_a] :
      ( ( field_a_b @ R )
     => ( ( subring_a_b @ K @ R )
       => ( ! [K3: a] :
              ( ( member_a @ K3 @ ( minus_minus_set_a @ K @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
             => ( member_a @ ( m_inv_a_ring_ext_a_b @ R @ K3 ) @ K ) )
         => ( subfield_a_b @ K @ R ) ) ) ) ).

% field.subfieldI'
thf(fact_669_principalideal_Ogenerate,axiom,
    ! [I2: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( principalideal_a_b @ I2 @ R )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ R ) )
          & ( I2
            = ( genideal_a_b @ R @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ) ).

% principalideal.generate
thf(fact_670_field_Ozeromaximalideal,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( field_a_b @ R )
     => ( maximalideal_a_b @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) @ R ) ) ).

% field.zeromaximalideal
thf(fact_671_domain_Ozeroprimeideal,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( primeideal_a_b @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) @ R ) ) ).

% domain.zeroprimeideal
thf(fact_672_mult__of_Oinv__eq__imp__eq,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X )
            = ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ Y ) )
         => ( X = Y ) ) ) ) ).

% mult_of.inv_eq_imp_eq
thf(fact_673_mult__of_Oinv__eq__one__eq,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X )
          = ( one_a_ring_ext_a_b @ r ) )
        = ( X
          = ( one_a_ring_ext_a_b @ r ) ) ) ) ).

% mult_of.inv_eq_one_eq
thf(fact_674_mult__of_Ounits__of__inv,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( m_inv_a_Product_unit @ ( units_7501539392726747778t_unit @ ( ring_mult_of_a_b @ r ) ) @ X )
        = ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) ) ) ).

% mult_of.units_of_inv
thf(fact_675_units__of__inv,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( m_inv_a_Product_unit @ ( units_8174867845824275201xt_a_b @ r ) @ X )
        = ( m_inv_a_ring_ext_a_b @ r @ X ) ) ) ).

% units_of_inv
thf(fact_676_mult__of_Ocomm__inv__char,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
            = ( one_a_ring_ext_a_b @ r ) )
         => ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X )
            = Y ) ) ) ) ).

% mult_of.comm_inv_char
thf(fact_677_mult__of_Oinv__char,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
            = ( one_a_ring_ext_a_b @ r ) )
         => ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
              = ( one_a_ring_ext_a_b @ r ) )
           => ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X )
              = Y ) ) ) ) ) ).

% mult_of.inv_char
thf(fact_678_mult__of_Oinv__unique_H,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
            = ( one_a_ring_ext_a_b @ r ) )
         => ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
              = ( one_a_ring_ext_a_b @ r ) )
           => ( Y
              = ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) ) ) ) ) ) ).

% mult_of.inv_unique'
thf(fact_679_mult__of_Oinv__one,axiom,
    ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ ( one_a_ring_ext_a_b @ r ) )
    = ( one_a_ring_ext_a_b @ r ) ) ).

% mult_of.inv_one
thf(fact_680_mult__of_OUnits__inv__inv,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) )
        = X ) ) ).

% mult_of.Units_inv_inv
thf(fact_681_mult__of_OUnits__inv__Units,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( member_a @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).

% mult_of.Units_inv_Units
thf(fact_682_mult__of_OUnits__inv__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( member_a @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).

% mult_of.Units_inv_closed
thf(fact_683_mult__of_OUnits__l__inv,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) @ X )
        = ( one_a_ring_ext_a_b @ r ) ) ) ).

% mult_of.Units_l_inv
thf(fact_684_mult__of_OUnits__r__inv,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( mult_a_ring_ext_a_b @ r @ X @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) )
        = ( one_a_ring_ext_a_b @ r ) ) ) ).

% mult_of.Units_r_inv
thf(fact_685_principalideal_Ois__principalideal,axiom,
    ! [I2: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( principalideal_a_b @ I2 @ R )
     => ( principalideal_a_b @ I2 @ R ) ) ).

% principalideal.is_principalideal
thf(fact_686_subringE_I2_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subring_a_b @ H3 @ R )
     => ( member_a @ ( zero_a_b @ R ) @ H3 ) ) ).

% subringE(2)
thf(fact_687_subfieldE_I4_J,axiom,
    ! [K: set_a,R: partia2175431115845679010xt_a_b,K1: a,K22: a] :
      ( ( subfield_a_b @ K @ R )
     => ( ( member_a @ K1 @ K )
       => ( ( member_a @ K22 @ K )
         => ( ( mult_a_ring_ext_a_b @ R @ K1 @ K22 )
            = ( mult_a_ring_ext_a_b @ R @ K22 @ K1 ) ) ) ) ) ).

% subfieldE(4)
thf(fact_688_subringE_I6_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H1: a,H2: a] :
      ( ( subring_a_b @ H3 @ R )
     => ( ( member_a @ H1 @ H3 )
       => ( ( member_a @ H2 @ H3 )
         => ( member_a @ ( mult_a_ring_ext_a_b @ R @ H1 @ H2 ) @ H3 ) ) ) ) ).

% subringE(6)
thf(fact_689_subfieldE_I1_J,axiom,
    ! [K: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subfield_a_b @ K @ R )
     => ( subring_a_b @ K @ R ) ) ).

% subfieldE(1)
thf(fact_690_subringE_I3_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subring_a_b @ H3 @ R )
     => ( member_a @ ( one_a_ring_ext_a_b @ R ) @ H3 ) ) ).

% subringE(3)
thf(fact_691_subringE_I5_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H: a] :
      ( ( subring_a_b @ H3 @ R )
     => ( ( member_a @ H @ H3 )
       => ( member_a @ ( a_inv_a_b @ R @ H ) @ H3 ) ) ) ).

% subringE(5)
thf(fact_692_subcringE_I2_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subcring_a_b @ H3 @ R )
     => ( member_a @ ( zero_a_b @ R ) @ H3 ) ) ).

% subcringE(2)
thf(fact_693_subcring_Osub__m__comm,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H1: a,H2: a] :
      ( ( subcring_a_b @ H3 @ R )
     => ( ( member_a @ H1 @ H3 )
       => ( ( member_a @ H2 @ H3 )
         => ( ( mult_a_ring_ext_a_b @ R @ H1 @ H2 )
            = ( mult_a_ring_ext_a_b @ R @ H2 @ H1 ) ) ) ) ) ).

% subcring.sub_m_comm
thf(fact_694_subcringE_I6_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H1: a,H2: a] :
      ( ( subcring_a_b @ H3 @ R )
     => ( ( member_a @ H1 @ H3 )
       => ( ( member_a @ H2 @ H3 )
         => ( member_a @ ( mult_a_ring_ext_a_b @ R @ H1 @ H2 ) @ H3 ) ) ) ) ).

% subcringE(6)
thf(fact_695_primeideal_OI__notcarr,axiom,
    ! [I2: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( primeideal_a_b @ I2 @ R )
     => ( ( partia707051561876973205xt_a_b @ R )
       != I2 ) ) ).

% primeideal.I_notcarr
thf(fact_696_subfieldE_I2_J,axiom,
    ! [K: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subfield_a_b @ K @ R )
     => ( subcring_a_b @ K @ R ) ) ).

% subfieldE(2)
thf(fact_697_subcringE_I3_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subcring_a_b @ H3 @ R )
     => ( member_a @ ( one_a_ring_ext_a_b @ R ) @ H3 ) ) ).

% subcringE(3)
thf(fact_698_subcringE_I5_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H: a] :
      ( ( subcring_a_b @ H3 @ R )
     => ( ( member_a @ H @ H3 )
       => ( member_a @ ( a_inv_a_b @ R @ H ) @ H3 ) ) ) ).

% subcringE(5)
thf(fact_699_subdomainE_I2_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subdomain_a_b @ H3 @ R )
     => ( member_a @ ( zero_a_b @ R ) @ H3 ) ) ).

% subdomainE(2)
thf(fact_700_maximalideal_OI__notcarr,axiom,
    ! [I2: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( maximalideal_a_b @ I2 @ R )
     => ( ( partia707051561876973205xt_a_b @ R )
       != I2 ) ) ).

% maximalideal.I_notcarr
thf(fact_701_subdomainE_I6_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H1: a,H2: a] :
      ( ( subdomain_a_b @ H3 @ R )
     => ( ( member_a @ H1 @ H3 )
       => ( ( member_a @ H2 @ H3 )
         => ( member_a @ ( mult_a_ring_ext_a_b @ R @ H1 @ H2 ) @ H3 ) ) ) ) ).

% subdomainE(6)
thf(fact_702_subdomainE_I8_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H1: a,H2: a] :
      ( ( subdomain_a_b @ H3 @ R )
     => ( ( member_a @ H1 @ H3 )
       => ( ( member_a @ H2 @ H3 )
         => ( ( mult_a_ring_ext_a_b @ R @ H1 @ H2 )
            = ( mult_a_ring_ext_a_b @ R @ H2 @ H1 ) ) ) ) ) ).

% subdomainE(8)
thf(fact_703_subfield_Oaxioms_I1_J,axiom,
    ! [K: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subfield_a_b @ K @ R )
     => ( subdomain_a_b @ K @ R ) ) ).

% subfield.axioms(1)
thf(fact_704_subdomainE_I3_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subdomain_a_b @ H3 @ R )
     => ( member_a @ ( one_a_ring_ext_a_b @ R ) @ H3 ) ) ).

% subdomainE(3)
thf(fact_705_subdomainE_I5_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H: a] :
      ( ( subdomain_a_b @ H3 @ R )
     => ( ( member_a @ H @ H3 )
       => ( member_a @ ( a_inv_a_b @ R @ H ) @ H3 ) ) ) ).

% subdomainE(5)
thf(fact_706_subfieldE_I3_J,axiom,
    ! [K: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subfield_a_b @ K @ R )
     => ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ R ) ) ) ).

% subfieldE(3)
thf(fact_707_subringE_I1_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subring_a_b @ H3 @ R )
     => ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ R ) ) ) ).

% subringE(1)
thf(fact_708_subfieldE_I5_J,axiom,
    ! [K: set_a,R: partia2175431115845679010xt_a_b,K1: a,K22: a] :
      ( ( subfield_a_b @ K @ R )
     => ( ( member_a @ K1 @ K )
       => ( ( member_a @ K22 @ K )
         => ( ( ( mult_a_ring_ext_a_b @ R @ K1 @ K22 )
              = ( zero_a_b @ R ) )
           => ( ( K1
                = ( zero_a_b @ R ) )
              | ( K22
                = ( zero_a_b @ R ) ) ) ) ) ) ) ).

% subfieldE(5)
thf(fact_709_subfieldE_I6_J,axiom,
    ! [K: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subfield_a_b @ K @ R )
     => ( ( one_a_ring_ext_a_b @ R )
       != ( zero_a_b @ R ) ) ) ).

% subfieldE(6)
thf(fact_710_subcringE_I1_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subcring_a_b @ H3 @ R )
     => ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ R ) ) ) ).

% subcringE(1)
thf(fact_711_field_Ocarrier__is__subfield,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( field_a_b @ R )
     => ( subfield_a_b @ ( partia707051561876973205xt_a_b @ R ) @ R ) ) ).

% field.carrier_is_subfield
thf(fact_712_subdomainE_I1_J,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subdomain_a_b @ H3 @ R )
     => ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ R ) ) ) ).

% subdomainE(1)
thf(fact_713_primeideal_OI__prime,axiom,
    ! [I2: set_a,R: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( primeideal_a_b @ I2 @ R )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( member_a @ ( mult_a_ring_ext_a_b @ R @ A @ B ) @ I2 )
           => ( ( member_a @ A @ I2 )
              | ( member_a @ B @ I2 ) ) ) ) ) ) ).

% primeideal.I_prime
thf(fact_714_subdomain_Osubintegral,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b,H1: a,H2: a] :
      ( ( subdomain_a_b @ H3 @ R )
     => ( ( member_a @ H1 @ H3 )
       => ( ( member_a @ H2 @ H3 )
         => ( ( ( mult_a_ring_ext_a_b @ R @ H1 @ H2 )
              = ( zero_a_b @ R ) )
           => ( ( H1
                = ( zero_a_b @ R ) )
              | ( H2
                = ( zero_a_b @ R ) ) ) ) ) ) ) ).

% subdomain.subintegral
thf(fact_715_subdomain_Osub__one__not__zero,axiom,
    ! [H3: set_a,R: partia2175431115845679010xt_a_b] :
      ( ( subdomain_a_b @ H3 @ R )
     => ( ( one_a_ring_ext_a_b @ R )
       != ( zero_a_b @ R ) ) ) ).

% subdomain.sub_one_not_zero
thf(fact_716_domain_OsubdomainI_H,axiom,
    ! [R: partia2175431115845679010xt_a_b,H3: set_a] :
      ( ( domain_a_b @ R )
     => ( ( subring_a_b @ H3 @ R )
       => ( subdomain_a_b @ H3 @ R ) ) ) ).

% domain.subdomainI'
thf(fact_717_space__subgroup__props_I6_J,axiom,
    ! [K: set_a,N: nat,E: set_a,K2: a,A: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( ( member_a @ K2 @ ( minus_minus_set_a @ K @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
         => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ K2 @ A ) @ E )
             => ( member_a @ A @ E ) ) ) ) ) ) ).

% space_subgroup_props(6)
thf(fact_718_noetherian__domain_Oexists__irreducible__divisor,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a] :
      ( ( ring_n4045954140777738665in_a_b @ R )
     => ( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
       => ( ~ ( member_a @ A @ ( units_a_ring_ext_a_b @ R ) )
         => ~ ! [B2: a] :
                ( ( member_a @ B2 @ ( partia707051561876973205xt_a_b @ R ) )
               => ( ( ring_r999134135267193926le_a_b @ R @ B2 )
                 => ~ ( factor8216151070175719842xt_a_b @ R @ B2 @ A ) ) ) ) ) ) ).

% noetherian_domain.exists_irreducible_divisor
thf(fact_719_mult__of_Oprime__pow__divides__iff,axiom,
    ! [P2: a,A: a,B: a,N: nat] :
      ( ( member_a @ P2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
           => ( ~ ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ A )
             => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ P2 @ N ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) )
                = ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ P2 @ N ) @ B ) ) ) ) ) ) ) ).

% mult_of.prime_pow_divides_iff
thf(fact_720_abelian__monoid_Oset__add__closed,axiom,
    ! [G: partia2175431115845679010xt_a_b,A3: set_a,B4: set_a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( ord_less_eq_set_a @ A3 @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( ord_less_eq_set_a @ B4 @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ord_less_eq_set_a @ ( set_add_a_b @ G @ A3 @ B4 ) @ ( partia707051561876973205xt_a_b @ G ) ) ) ) ) ).

% abelian_monoid.set_add_closed
thf(fact_721_dimension__is__inj,axiom,
    ! [K: set_a,N: nat,E: set_a,M: nat] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( ( embedd2795209813406577254on_a_b @ r @ M @ K @ E )
         => ( N = M ) ) ) ) ).

% dimension_is_inj
thf(fact_722_telescopic__base,axiom,
    ! [K: set_a,F: set_a,N: nat,M: nat,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( subfield_a_b @ F @ r )
       => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ F )
         => ( ( embedd2795209813406577254on_a_b @ r @ M @ F @ E )
           => ( embedd2795209813406577254on_a_b @ r @ ( times_times_nat @ N @ M ) @ K @ E ) ) ) ) ) ).

% telescopic_base
thf(fact_723_finite__dimension__def,axiom,
    ! [K: set_a,E: set_a] :
      ( ( embedd8708762675212832759on_a_b @ r @ K @ E )
      = ( ? [N2: nat] : ( embedd2795209813406577254on_a_b @ r @ N2 @ K @ E ) ) ) ).

% finite_dimension_def
thf(fact_724_finite__dimensionI,axiom,
    ! [N: nat,K: set_a,E: set_a] :
      ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
     => ( embedd8708762675212832759on_a_b @ r @ K @ E ) ) ).

% finite_dimensionI
thf(fact_725_finite__dimensionE_H,axiom,
    ! [K: set_a,E: set_a] :
      ( ( embedd8708762675212832759on_a_b @ r @ K @ E )
     => ~ ! [N3: nat] :
            ~ ( embedd2795209813406577254on_a_b @ r @ N3 @ K @ E ) ) ).

% finite_dimensionE'
thf(fact_726_mult__of_Onat__pow__pow,axiom,
    ! [X: a,N: nat,M: nat] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ M )
        = ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ ( times_times_nat @ N @ M ) ) ) ) ).

% mult_of.nat_pow_pow
thf(fact_727_space__subgroup__props_I2_J,axiom,
    ! [K: set_a,N: nat,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( member_a @ ( zero_a_b @ r ) @ E ) ) ) ).

% space_subgroup_props(2)
thf(fact_728_space__subgroup__props_I3_J,axiom,
    ! [K: set_a,N: nat,E: set_a,V1: a,V22: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( ( member_a @ V1 @ E )
         => ( ( member_a @ V22 @ E )
           => ( member_a @ ( add_a_b @ r @ V1 @ V22 ) @ E ) ) ) ) ) ).

% space_subgroup_props(3)
thf(fact_729_space__subgroup__props_I5_J,axiom,
    ! [K: set_a,N: nat,E: set_a,K2: a,V3: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( ( member_a @ K2 @ K )
         => ( ( member_a @ V3 @ E )
           => ( member_a @ ( mult_a_ring_ext_a_b @ r @ K2 @ V3 ) @ E ) ) ) ) ) ).

% space_subgroup_props(5)
thf(fact_730_mult__of_OUnits__pow__closed,axiom,
    ! [X: a,D: nat] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( member_a @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ D ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).

% mult_of.Units_pow_closed
thf(fact_731_space__subgroup__props_I4_J,axiom,
    ! [K: set_a,N: nat,E: set_a,V3: a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( ( member_a @ V3 @ E )
         => ( member_a @ ( a_inv_a_b @ r @ V3 ) @ E ) ) ) ) ).

% space_subgroup_props(4)
thf(fact_732_unique__dimension,axiom,
    ! [K: set_a,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd8708762675212832759on_a_b @ r @ K @ E )
       => ? [X2: nat] :
            ( ( embedd2795209813406577254on_a_b @ r @ X2 @ K @ E )
            & ! [Y6: nat] :
                ( ( embedd2795209813406577254on_a_b @ r @ Y6 @ K @ E )
               => ( Y6 = X2 ) ) ) ) ) ).

% unique_dimension
thf(fact_733_space__subgroup__props_I1_J,axiom,
    ! [K: set_a,N: nat,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( ord_less_eq_set_a @ E @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% space_subgroup_props(1)
thf(fact_734_mult__of_Onat__pow__mult,axiom,
    ! [X: a,N: nat,M: nat] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ M ) )
        = ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ ( plus_plus_nat @ N @ M ) ) ) ) ).

% mult_of.nat_pow_mult
thf(fact_735_mult__of_Opow__mult__distrib,axiom,
    ! [X: a,Y: a,N: nat] :
      ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
        = ( mult_a_ring_ext_a_b @ r @ Y @ X ) )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ N )
            = ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ Y @ N ) ) ) ) ) ) ).

% mult_of.pow_mult_distrib
thf(fact_736_mult__of_Onat__pow__distrib,axiom,
    ! [X: a,Y: a,N: nat] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ N )
          = ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ Y @ N ) ) ) ) ) ).

% mult_of.nat_pow_distrib
thf(fact_737_mult__of_Onat__pow__comm,axiom,
    ! [X: a,N: nat,M: nat] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ M ) )
        = ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ M ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) ) ) ) ).

% mult_of.nat_pow_comm
thf(fact_738_mult__of_Ogroup__commutes__pow,axiom,
    ! [X: a,Y: a,N: nat] :
      ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
        = ( mult_a_ring_ext_a_b @ r @ Y @ X ) )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ Y )
            = ( mult_a_ring_ext_a_b @ r @ Y @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) ) ) ) ) ) ).

% mult_of.group_commutes_pow
thf(fact_739_mult__of_Ounits__of__pow,axiom,
    ! [X: a,N: nat] :
      ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( pow_a_1875594501834816709it_nat @ ( units_7501539392726747778t_unit @ ( ring_mult_of_a_b @ r ) ) @ X @ N )
        = ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) ) ) ).

% mult_of.units_of_pow
thf(fact_740_mult__of_Onat__pow__closed,axiom,
    ! [X: a,N: nat] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( member_a @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).

% mult_of.nat_pow_closed
thf(fact_741_mult__of_Onat__pow__one,axiom,
    ! [N: nat] :
      ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ ( one_a_ring_ext_a_b @ r ) @ N )
      = ( one_a_ring_ext_a_b @ r ) ) ).

% mult_of.nat_pow_one
thf(fact_742_noetherian__domain_Oaxioms_I2_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( ring_n4045954140777738665in_a_b @ R )
     => ( domain_a_b @ R ) ) ).

% noetherian_domain.axioms(2)
thf(fact_743_group_Opow__eq__div2,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,M: nat,N: nat] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( ( pow_a_1026414303147256608_b_nat @ G @ X @ M )
            = ( pow_a_1026414303147256608_b_nat @ G @ X @ N ) )
         => ( ( pow_a_1026414303147256608_b_nat @ G @ X @ ( minus_minus_nat @ M @ N ) )
            = ( one_a_ring_ext_a_b @ G ) ) ) ) ) ).

% group.pow_eq_div2
thf(fact_744_group_Opow__eq__div2,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,M: nat,N: nat] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( ( pow_a_1875594501834816709it_nat @ G @ X @ M )
            = ( pow_a_1875594501834816709it_nat @ G @ X @ N ) )
         => ( ( pow_a_1875594501834816709it_nat @ G @ X @ ( minus_minus_nat @ M @ N ) )
            = ( one_a_Product_unit @ G ) ) ) ) ) ).

% group.pow_eq_div2
thf(fact_745_group_Onat__pow__inv,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,I: nat] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( pow_a_1026414303147256608_b_nat @ G @ ( m_inv_a_ring_ext_a_b @ G @ X ) @ I )
          = ( m_inv_a_ring_ext_a_b @ G @ ( pow_a_1026414303147256608_b_nat @ G @ X @ I ) ) ) ) ) ).

% group.nat_pow_inv
thf(fact_746_group_Onat__pow__inv,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,I: nat] :
      ( ( group_a_Product_unit @ G )
     => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( pow_a_1875594501834816709it_nat @ G @ ( m_inv_a_Product_unit @ G @ X ) @ I )
          = ( m_inv_a_Product_unit @ G @ ( pow_a_1875594501834816709it_nat @ G @ X @ I ) ) ) ) ) ).

% group.nat_pow_inv
thf(fact_747_abelian__monoid_Oa__r__coset__subset__G,axiom,
    ! [G: partia2175431115845679010xt_a_b,H3: set_a,X: a] :
      ( ( abelian_monoid_a_b @ G )
     => ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ord_less_eq_set_a @ ( a_r_coset_a_b @ G @ H3 @ X ) @ ( partia707051561876973205xt_a_b @ G ) ) ) ) ) ).

% abelian_monoid.a_r_coset_subset_G
thf(fact_748_dimension__zero,axiom,
    ! [K: set_a,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ zero_zero_nat @ K @ E )
       => ( E
          = ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ) ) ).

% dimension_zero
thf(fact_749_dimension__direct__sum__space,axiom,
    ! [K: set_a,N: nat,E: set_a,M: nat,F: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( ( embedd2795209813406577254on_a_b @ r @ M @ K @ F )
         => ( ( ( inf_inf_set_a @ E @ F )
              = ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
           => ( embedd2795209813406577254on_a_b @ r @ ( plus_plus_nat @ N @ M ) @ K @ ( set_add_a_b @ r @ E @ F ) ) ) ) ) ) ).

% dimension_direct_sum_space
thf(fact_750_zero__dim,axiom,
    ! [K: set_a] : ( embedd2795209813406577254on_a_b @ r @ zero_zero_nat @ K @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ).

% zero_dim
thf(fact_751_Units__pow__closed,axiom,
    ! [X: a,D: nat] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( member_a @ ( pow_a_1026414303147256608_b_nat @ r @ X @ D ) @ ( units_a_ring_ext_a_b @ r ) ) ) ).

% Units_pow_closed
thf(fact_752_pow__non__zero,axiom,
    ! [X: a,N: nat] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( X
         != ( zero_a_b @ r ) )
       => ( ( pow_a_1026414303147256608_b_nat @ r @ X @ N )
         != ( zero_a_b @ r ) ) ) ) ).

% pow_non_zero
thf(fact_753_nat__pow__zero,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ( pow_a_1026414303147256608_b_nat @ r @ ( zero_a_b @ r ) @ N )
        = ( zero_a_b @ r ) ) ) ).

% nat_pow_zero
thf(fact_754_nat__pow__pow,axiom,
    ! [X: a,N: nat,M: nat] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( pow_a_1026414303147256608_b_nat @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ M )
        = ( pow_a_1026414303147256608_b_nat @ r @ X @ ( times_times_nat @ N @ M ) ) ) ) ).

% nat_pow_pow
thf(fact_755_group__commutes__pow,axiom,
    ! [X: a,Y: a,N: nat] :
      ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
        = ( mult_a_ring_ext_a_b @ r @ Y @ X ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ Y )
            = ( mult_a_ring_ext_a_b @ r @ Y @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) ) ) ) ) ) ).

% group_commutes_pow
thf(fact_756_nat__pow__comm,axiom,
    ! [X: a,N: nat,M: nat] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( pow_a_1026414303147256608_b_nat @ r @ X @ M ) )
        = ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ M ) @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) ) ) ) ).

% nat_pow_comm
thf(fact_757_nat__pow__distrib,axiom,
    ! [X: a,Y: a,N: nat] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( pow_a_1026414303147256608_b_nat @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ N )
          = ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( pow_a_1026414303147256608_b_nat @ r @ Y @ N ) ) ) ) ) ).

% nat_pow_distrib
thf(fact_758_pow__mult__distrib,axiom,
    ! [X: a,Y: a,N: nat] :
      ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
        = ( mult_a_ring_ext_a_b @ r @ Y @ X ) )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( pow_a_1026414303147256608_b_nat @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ N )
            = ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( pow_a_1026414303147256608_b_nat @ r @ Y @ N ) ) ) ) ) ) ).

% pow_mult_distrib
thf(fact_759_subring__inter,axiom,
    ! [I2: set_a,J2: set_a] :
      ( ( subring_a_b @ I2 @ r )
     => ( ( subring_a_b @ J2 @ r )
       => ( subring_a_b @ ( inf_inf_set_a @ I2 @ J2 ) @ r ) ) ) ).

% subring_inter
thf(fact_760_subalgebra__inter,axiom,
    ! [K: set_a,V2: set_a,V4: set_a] :
      ( ( embedd9027525575939734154ra_a_b @ K @ V2 @ r )
     => ( ( embedd9027525575939734154ra_a_b @ K @ V4 @ r )
       => ( embedd9027525575939734154ra_a_b @ K @ ( inf_inf_set_a @ V2 @ V4 ) @ r ) ) ) ).

% subalgebra_inter
thf(fact_761_subcring__inter,axiom,
    ! [I2: set_a,J2: set_a] :
      ( ( subcring_a_b @ I2 @ r )
     => ( ( subcring_a_b @ J2 @ r )
       => ( subcring_a_b @ ( inf_inf_set_a @ I2 @ J2 ) @ r ) ) ) ).

% subcring_inter
thf(fact_762_nat__pow__mult,axiom,
    ! [X: a,N: nat,M: nat] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( pow_a_1026414303147256608_b_nat @ r @ X @ M ) )
        = ( pow_a_1026414303147256608_b_nat @ r @ X @ ( plus_plus_nat @ N @ M ) ) ) ) ).

% nat_pow_mult
thf(fact_763_units__of__pow,axiom,
    ! [X: a,N: nat] :
      ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( pow_a_1875594501834816709it_nat @ ( units_8174867845824275201xt_a_b @ r ) @ X @ N )
        = ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) ) ) ).

% units_of_pow
thf(fact_764_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_765_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_766_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_767_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_768_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_769_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_770_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_771_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_772_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_773_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_774_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_775_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_776_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_777_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_778_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_779_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_780_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_781_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_782_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_783_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_784_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_785_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_786_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_787_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_788_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_789_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_790_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_791_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_792_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_793_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_794_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_795_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_796_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_797_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_798_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_799_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_800_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_801_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_802_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_right
thf(fact_803_boolean__algebra_Oconj__zero__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_left
thf(fact_804_Int__subset__iff,axiom,
    ! [C4: set_a,A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ C4 @ ( inf_inf_set_a @ A3 @ B4 ) )
      = ( ( ord_less_eq_set_a @ C4 @ A3 )
        & ( ord_less_eq_set_a @ C4 @ B4 ) ) ) ).

% Int_subset_iff
thf(fact_805_Int__subset__iff,axiom,
    ! [C4: set_set_a,A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ C4 @ ( inf_inf_set_set_a @ A3 @ B4 ) )
      = ( ( ord_le3724670747650509150_set_a @ C4 @ A3 )
        & ( ord_le3724670747650509150_set_a @ C4 @ B4 ) ) ) ).

% Int_subset_iff
thf(fact_806_dimension__sum__space,axiom,
    ! [K: set_a,N: nat,E: set_a,M: nat,F: set_a,K2: nat] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
       => ( ( embedd2795209813406577254on_a_b @ r @ M @ K @ F )
         => ( ( embedd2795209813406577254on_a_b @ r @ K2 @ K @ ( inf_inf_set_a @ E @ F ) )
           => ( embedd2795209813406577254on_a_b @ r @ ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ K2 ) @ K @ ( set_add_a_b @ r @ E @ F ) ) ) ) ) ) ).

% dimension_sum_space
thf(fact_807_nat__pow__closed,axiom,
    ! [X: a,N: nat] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( member_a @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ).

% nat_pow_closed
thf(fact_808_nat__pow__one,axiom,
    ! [N: nat] :
      ( ( pow_a_1026414303147256608_b_nat @ r @ ( one_a_ring_ext_a_b @ r ) @ N )
      = ( one_a_ring_ext_a_b @ r ) ) ).

% nat_pow_one
thf(fact_809_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_810_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_811_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_812_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_813_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_814_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_815_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_816_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_817_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_818_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_819_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_820_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_821_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_822_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_823_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_824_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_825_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_826_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_827_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_828_inf__compl__bot__left1,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ ( inf_inf_set_a @ X @ Y ) )
      = bot_bot_set_a ) ).

% inf_compl_bot_left1
thf(fact_829_inf__compl__bot__left2,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ Y ) )
      = bot_bot_set_a ) ).

% inf_compl_bot_left2
thf(fact_830_inf__compl__bot__right,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ ( uminus_uminus_set_a @ X ) ) )
      = bot_bot_set_a ) ).

% inf_compl_bot_right
thf(fact_831_boolean__algebra_Oconj__cancel__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ X )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_cancel_left
thf(fact_832_boolean__algebra_Oconj__cancel__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ ( uminus_uminus_set_a @ X ) )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_cancel_right
thf(fact_833_Group_Onat__pow__0,axiom,
    ! [G: partia8223610829204095565t_unit,X: a] :
      ( ( pow_a_1875594501834816709it_nat @ G @ X @ zero_zero_nat )
      = ( one_a_Product_unit @ G ) ) ).

% Group.nat_pow_0
thf(fact_834_Group_Onat__pow__0,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a] :
      ( ( pow_a_1026414303147256608_b_nat @ G @ X @ zero_zero_nat )
      = ( one_a_ring_ext_a_b @ G ) ) ).

% Group.nat_pow_0
thf(fact_835_local_Onat__pow__0,axiom,
    ! [X: a] :
      ( ( pow_a_1026414303147256608_b_nat @ r @ X @ zero_zero_nat )
      = ( one_a_ring_ext_a_b @ r ) ) ).

% local.nat_pow_0
thf(fact_836_mult__of_Onat__pow__0,axiom,
    ! [X: a] :
      ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ zero_zero_nat )
      = ( one_a_ring_ext_a_b @ r ) ) ).

% mult_of.nat_pow_0
thf(fact_837_semiring_Onat__pow__zero,axiom,
    ! [R: partia2175431115845679010xt_a_b,N: nat] :
      ( ( semiring_a_b @ R )
     => ( ( N != zero_zero_nat )
       => ( ( pow_a_1026414303147256608_b_nat @ R @ ( zero_a_b @ R ) @ N )
          = ( zero_a_b @ R ) ) ) ) ).

% semiring.nat_pow_zero
thf(fact_838_Int__Collect__mono,axiom,
    ! [A3: set_a,B4: set_a,P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ! [X2: a] :
            ( ( member_a @ X2 @ A3 )
           => ( ( P @ X2 )
             => ( Q @ X2 ) ) )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B4 @ ( collect_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_839_Int__Collect__mono,axiom,
    ! [A3: set_set_a,B4: set_set_a,P: set_a > $o,Q: set_a > $o] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ! [X2: set_a] :
            ( ( member_set_a @ X2 @ A3 )
           => ( ( P @ X2 )
             => ( Q @ X2 ) ) )
       => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A3 @ ( collect_set_a @ P ) ) @ ( inf_inf_set_set_a @ B4 @ ( collect_set_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_840_Int__greatest,axiom,
    ! [C4: set_a,A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ C4 @ A3 )
     => ( ( ord_less_eq_set_a @ C4 @ B4 )
       => ( ord_less_eq_set_a @ C4 @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ) ).

% Int_greatest
thf(fact_841_Int__greatest,axiom,
    ! [C4: set_set_a,A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ C4 @ A3 )
     => ( ( ord_le3724670747650509150_set_a @ C4 @ B4 )
       => ( ord_le3724670747650509150_set_a @ C4 @ ( inf_inf_set_set_a @ A3 @ B4 ) ) ) ) ).

% Int_greatest
thf(fact_842_Int__absorb2,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( inf_inf_set_a @ A3 @ B4 )
        = A3 ) ) ).

% Int_absorb2
thf(fact_843_Int__absorb2,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ( inf_inf_set_set_a @ A3 @ B4 )
        = A3 ) ) ).

% Int_absorb2
thf(fact_844_Int__absorb1,axiom,
    ! [B4: set_a,A3: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ A3 )
     => ( ( inf_inf_set_a @ A3 @ B4 )
        = B4 ) ) ).

% Int_absorb1
thf(fact_845_Int__absorb1,axiom,
    ! [B4: set_set_a,A3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B4 @ A3 )
     => ( ( inf_inf_set_set_a @ A3 @ B4 )
        = B4 ) ) ).

% Int_absorb1
thf(fact_846_Int__lower2,axiom,
    ! [A3: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B4 ) @ B4 ) ).

% Int_lower2
thf(fact_847_Int__lower2,axiom,
    ! [A3: set_set_a,B4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A3 @ B4 ) @ B4 ) ).

% Int_lower2
thf(fact_848_Int__lower1,axiom,
    ! [A3: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B4 ) @ A3 ) ).

% Int_lower1
thf(fact_849_Int__lower1,axiom,
    ! [A3: set_set_a,B4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A3 @ B4 ) @ A3 ) ).

% Int_lower1
thf(fact_850_Int__mono,axiom,
    ! [A3: set_a,C4: set_a,B4: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C4 )
     => ( ( ord_less_eq_set_a @ B4 @ D2 )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B4 ) @ ( inf_inf_set_a @ C4 @ D2 ) ) ) ) ).

% Int_mono
thf(fact_851_Int__mono,axiom,
    ! [A3: set_set_a,C4: set_set_a,B4: set_set_a,D2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ C4 )
     => ( ( ord_le3724670747650509150_set_a @ B4 @ D2 )
       => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A3 @ B4 ) @ ( inf_inf_set_set_a @ C4 @ D2 ) ) ) ) ).

% Int_mono
thf(fact_852_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_853_boolean__algebra__cancel_Oinf1,axiom,
    ! [A3: set_a,K2: set_a,A: set_a,B: set_a] :
      ( ( A3
        = ( inf_inf_set_a @ K2 @ A ) )
     => ( ( inf_inf_set_a @ A3 @ B )
        = ( inf_inf_set_a @ K2 @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.inf1
thf(fact_854_boolean__algebra__cancel_Oinf2,axiom,
    ! [B4: set_a,K2: set_a,B: set_a,A: set_a] :
      ( ( B4
        = ( inf_inf_set_a @ K2 @ B ) )
     => ( ( inf_inf_set_a @ A @ B4 )
        = ( inf_inf_set_a @ K2 @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.inf2
thf(fact_855_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_856_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( minus_minus_int @ A4 @ B3 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_857_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_858_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_859_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_860_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_861_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_862_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_863_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_864_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_865_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_866_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_867_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_868_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_869_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_870_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_871_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_872_diff__eq,axiom,
    ( minus_minus_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( inf_inf_set_a @ X3 @ ( uminus_uminus_set_a @ Y3 ) ) ) ) ).

% diff_eq
thf(fact_873_inf__cancel__left1,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ A ) @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ B ) )
      = bot_bot_set_a ) ).

% inf_cancel_left1
thf(fact_874_inf__cancel__left2,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ A ) @ ( inf_inf_set_a @ X @ B ) )
      = bot_bot_set_a ) ).

% inf_cancel_left2
thf(fact_875_Ring__Divisibility_Onat__pow__mult__of,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ R ) )
      = ( pow_a_1026414303147256608_b_nat @ R ) ) ).

% Ring_Divisibility.nat_pow_mult_of
thf(fact_876_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_877_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_878_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_879_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_880_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_881_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_882_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_883_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_884_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_885_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_886_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_887_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_888_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_889_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_890_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_891_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_892_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_893_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_894_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_895_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_896_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_897_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_898_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_899_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_900_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_901_mult__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_902_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_903_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_904_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_905_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_906_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_907_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_908_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_909_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_910_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_911_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_912_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_913_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_914_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_915_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_916_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_917_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_918_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_919_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B3: int] : ( ord_less_eq_int @ ( minus_minus_int @ A4 @ B3 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_920_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_921_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_922_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_923_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_924_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_925_domain_Opow__non__zero,axiom,
    ! [R: partia2175431115845679010xt_a_b,X: a,N: nat] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( X
           != ( zero_a_b @ R ) )
         => ( ( pow_a_1026414303147256608_b_nat @ R @ X @ N )
           != ( zero_a_b @ R ) ) ) ) ) ).

% domain.pow_non_zero
thf(fact_926_inf__shunt,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( inf_inf_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ X @ ( uminus_uminus_set_a @ Y ) ) ) ).

% inf_shunt
thf(fact_927_inf__shunt,axiom,
    ! [X: set_set_a,Y: set_set_a] :
      ( ( ( inf_inf_set_set_a @ X @ Y )
        = bot_bot_set_set_a )
      = ( ord_le3724670747650509150_set_a @ X @ ( uminus6103902357914783669_set_a @ Y ) ) ) ).

% inf_shunt
thf(fact_928_disjoint__eq__subset__Compl,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ( inf_inf_set_a @ A3 @ B4 )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A3 @ ( uminus_uminus_set_a @ B4 ) ) ) ).

% disjoint_eq_subset_Compl
thf(fact_929_disjoint__eq__subset__Compl,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( ( inf_inf_set_set_a @ A3 @ B4 )
        = bot_bot_set_set_a )
      = ( ord_le3724670747650509150_set_a @ A3 @ ( uminus6103902357914783669_set_a @ B4 ) ) ) ).

% disjoint_eq_subset_Compl
thf(fact_930_sum__squares__ge__zero,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_931_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_932_sum__squares__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_933_dimension_Osimps,axiom,
    ! [A1: nat,A22: set_a,A32: set_a] :
      ( ( embedd2795209813406577254on_a_b @ r @ A1 @ A22 @ A32 )
      = ( ? [K4: set_a] :
            ( ( A1 = zero_zero_nat )
            & ( A22 = K4 )
            & ( A32
              = ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
        | ? [V5: a,E3: set_a,N2: nat,K4: set_a] :
            ( ( A1
              = ( suc @ N2 ) )
            & ( A22 = K4 )
            & ( A32
              = ( embedd971793762689825387on_a_b @ r @ K4 @ V5 @ E3 ) )
            & ( member_a @ V5 @ ( partia707051561876973205xt_a_b @ r ) )
            & ~ ( member_a @ V5 @ E3 )
            & ( embedd2795209813406577254on_a_b @ r @ N2 @ K4 @ E3 ) ) ) ) ).

% dimension.simps
thf(fact_934_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_935_nat__pow__Suc2,axiom,
    ! [X: a,N: nat] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( pow_a_1026414303147256608_b_nat @ r @ X @ ( suc @ N ) )
        = ( mult_a_ring_ext_a_b @ r @ X @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) ) ) ) ).

% nat_pow_Suc2
thf(fact_936_Suc__dim,axiom,
    ! [V3: a,E: set_a,N: nat,K: set_a] :
      ( ( member_a @ V3 @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ~ ( member_a @ V3 @ E )
       => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E )
         => ( embedd2795209813406577254on_a_b @ r @ ( suc @ N ) @ K @ ( embedd971793762689825387on_a_b @ r @ K @ V3 @ E ) ) ) ) ) ).

% Suc_dim
thf(fact_937_mult__of_Onat__pow__Suc2,axiom,
    ! [X: a,N: nat] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ ( suc @ N ) )
        = ( mult_a_ring_ext_a_b @ r @ X @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) ) ) ) ).

% mult_of.nat_pow_Suc2
thf(fact_938_dimension__backwards,axiom,
    ! [K: set_a,N: nat,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( embedd2795209813406577254on_a_b @ r @ ( suc @ N ) @ K @ E )
       => ? [X2: a] :
            ( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ r ) )
            & ? [E4: set_a] :
                ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ E4 )
                & ~ ( member_a @ X2 @ E4 )
                & ( E
                  = ( embedd971793762689825387on_a_b @ r @ K @ X2 @ E4 ) ) ) ) ) ) ).

% dimension_backwards
thf(fact_939_dimension_Ocases,axiom,
    ! [A1: nat,A22: set_a,A32: set_a] :
      ( ( embedd2795209813406577254on_a_b @ r @ A1 @ A22 @ A32 )
     => ( ( ( A1 = zero_zero_nat )
         => ( A32
           != ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
       => ~ ! [V: a,E5: set_a,N3: nat] :
              ( ( A1
                = ( suc @ N3 ) )
             => ( ( A32
                  = ( embedd971793762689825387on_a_b @ r @ A22 @ V @ E5 ) )
               => ( ( member_a @ V @ ( partia707051561876973205xt_a_b @ r ) )
                 => ( ~ ( member_a @ V @ E5 )
                   => ~ ( embedd2795209813406577254on_a_b @ r @ N3 @ A22 @ E5 ) ) ) ) ) ) ) ).

% dimension.cases
thf(fact_940_Group_Onat__pow__Suc,axiom,
    ! [G: partia8223610829204095565t_unit,X: a,N: nat] :
      ( ( pow_a_1875594501834816709it_nat @ G @ X @ ( suc @ N ) )
      = ( mult_a_Product_unit @ G @ ( pow_a_1875594501834816709it_nat @ G @ X @ N ) @ X ) ) ).

% Group.nat_pow_Suc
thf(fact_941_Group_Onat__pow__Suc,axiom,
    ! [G: partia2175431115845679010xt_a_b,X: a,N: nat] :
      ( ( pow_a_1026414303147256608_b_nat @ G @ X @ ( suc @ N ) )
      = ( mult_a_ring_ext_a_b @ G @ ( pow_a_1026414303147256608_b_nat @ G @ X @ N ) @ X ) ) ).

% Group.nat_pow_Suc
thf(fact_942_local_Onat__pow__Suc,axiom,
    ! [X: a,N: nat] :
      ( ( pow_a_1026414303147256608_b_nat @ r @ X @ ( suc @ N ) )
      = ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ X ) ) ).

% local.nat_pow_Suc
thf(fact_943_mult__of_Onat__pow__Suc,axiom,
    ! [X: a,N: nat] :
      ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ ( suc @ N ) )
      = ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ X ) ) ).

% mult_of.nat_pow_Suc
thf(fact_944_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_945_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_946_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_set_a] : ( ord_le3724670747650509150_set_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_947_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_948_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_949_sum__squares__le__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_950_diff__Suc__diff__eq2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K2 ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K2 @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_951_diff__Suc__diff__eq1,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K2 ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K2 ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_952_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_953_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_954_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_955_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_956_nat__add__left__cancel__le,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_957_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_958_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_959_Nat_Odiff__diff__right,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K2 ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_960_Nat_Oadd__diff__assoc2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K2 ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K2 ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_961_Nat_Oadd__diff__assoc,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K2 ) ) ) ).

% Nat.add_diff_assoc
thf(fact_962_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_963_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_964_le__trans,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K2 )
       => ( ord_less_eq_nat @ I @ K2 ) ) ) ).

% le_trans
thf(fact_965_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_966_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_967_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_968_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K2: nat,B: nat] :
      ( ( P @ K2 )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X2: nat] :
            ( ( P @ X2 )
            & ! [Y6: nat] :
                ( ( P @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X2 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_969_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_970_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_971_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_972_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_973_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_974_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_975_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_976_Suc__le__D,axiom,
    ! [N: nat,M3: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M3 )
     => ? [M4: nat] :
          ( M3
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_977_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_978_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_979_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_980_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M5 ) @ N3 )
             => ( P @ M5 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_981_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_982_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X2: nat] : ( R @ X2 @ X2 )
       => ( ! [X2: nat,Y4: nat,Z2: nat] :
              ( ( R @ X2 @ Y4 )
             => ( ( R @ Y4 @ Z2 )
               => ( R @ X2 @ Z2 ) ) )
         => ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_983_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_984_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_985_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_986_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_987_Nat_Odiff__diff__eq,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K2 ) @ ( minus_minus_nat @ N @ K2 ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_988_le__diff__iff,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K2 ) @ ( minus_minus_nat @ N @ K2 ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_989_eq__diff__iff,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( ( minus_minus_nat @ M @ K2 )
            = ( minus_minus_nat @ N @ K2 ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_990_add__leE,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K2 @ N ) ) ) ).

% add_leE
thf(fact_991_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_992_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_993_add__leD1,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_994_add__leD2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ( ord_less_eq_nat @ K2 @ N ) ) ).

% add_leD2
thf(fact_995_le__Suc__ex,axiom,
    ! [K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ K2 @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K2 @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_996_add__le__mono,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K2 @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_997_add__le__mono1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% add_le_mono1
thf(fact_998_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_999_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_1000_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M6: nat,N2: nat] :
        ? [K5: nat] :
          ( N2
          = ( plus_plus_nat @ M6 @ K5 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1001_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K2 @ I ) @ ( times_times_nat @ K2 @ J ) ) ) ).

% mult_le_mono2
thf(fact_1002_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K2 ) @ ( times_times_nat @ J @ K2 ) ) ) ).

% mult_le_mono1
thf(fact_1003_mult__le__mono,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K2 @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K2 ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_1004_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_1005_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_1006_lift__Suc__mono__le,axiom,
    ! [F2: nat > set_a,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_a @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_set_a @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1007_lift__Suc__mono__le,axiom,
    ! [F2: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1008_lift__Suc__mono__le,axiom,
    ! [F2: nat > set_set_a,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_le3724670747650509150_set_a @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_le3724670747650509150_set_a @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1009_lift__Suc__antimono__le,axiom,
    ! [F2: nat > set_a,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_a @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_set_a @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1010_lift__Suc__antimono__le,axiom,
    ! [F2: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1011_lift__Suc__antimono__le,axiom,
    ! [F2: nat > set_set_a,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_le3724670747650509150_set_a @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_le3724670747650509150_set_a @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1012_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1013_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K2 )
        = ( J
          = ( plus_plus_nat @ K2 @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1014_Nat_Odiff__add__assoc2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K2 )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K2 ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1015_Nat_Odiff__add__assoc,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K2 )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K2 ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1016_Nat_Ole__diff__conv2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1017_le__diff__conv,axiom,
    ! [J: nat,K2: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K2 ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K2 ) ) ) ).

% le_diff_conv
thf(fact_1018_Suc__mult__le__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K2 ) @ M ) @ ( times_times_nat @ ( suc @ K2 ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_1019_inf_Obounded__iff,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
      = ( ( ord_less_eq_set_a @ A @ B )
        & ( ord_less_eq_set_a @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_1020_inf_Obounded__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
      = ( ( ord_less_eq_nat @ A @ B )
        & ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_1021_inf_Obounded__iff,axiom,
    ! [A: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B @ C ) )
      = ( ( ord_le3724670747650509150_set_a @ A @ B )
        & ( ord_le3724670747650509150_set_a @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_1022_le__inf__iff,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( ( ord_less_eq_set_a @ X @ Y )
        & ( ord_less_eq_set_a @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_1023_le__inf__iff,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) )
      = ( ( ord_less_eq_nat @ X @ Y )
        & ( ord_less_eq_nat @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_1024_le__inf__iff,axiom,
    ! [X: set_set_a,Y: set_set_a,Z: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X @ ( inf_inf_set_set_a @ Y @ Z ) )
      = ( ( ord_le3724670747650509150_set_a @ X @ Y )
        & ( ord_le3724670747650509150_set_a @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_1025_inf_OcoboundedI2,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_1026_inf_OcoboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_1027_inf_OcoboundedI2,axiom,
    ! [B: set_set_a,C: set_set_a,A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ C )
     => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_1028_inf_OcoboundedI1,axiom,
    ! [A: set_a,C: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_1029_inf_OcoboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_1030_inf_OcoboundedI1,axiom,
    ! [A: set_set_a,C: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ C )
     => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_1031_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( inf_inf_set_a @ A4 @ B3 )
          = B3 ) ) ) ).

% inf.absorb_iff2
thf(fact_1032_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( inf_inf_nat @ A4 @ B3 )
          = B3 ) ) ) ).

% inf.absorb_iff2
thf(fact_1033_inf_Oabsorb__iff2,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [B3: set_set_a,A4: set_set_a] :
          ( ( inf_inf_set_set_a @ A4 @ B3 )
          = B3 ) ) ) ).

% inf.absorb_iff2
thf(fact_1034_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( inf_inf_set_a @ A4 @ B3 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_1035_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( inf_inf_nat @ A4 @ B3 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_1036_inf_Oabsorb__iff1,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A4: set_set_a,B3: set_set_a] :
          ( ( inf_inf_set_set_a @ A4 @ B3 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_1037_inf_Ocobounded2,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_1038_inf_Ocobounded2,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_1039_inf_Ocobounded2,axiom,
    ! [A: set_set_a,B: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_1040_inf_Ocobounded1,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_1041_inf_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_1042_inf_Ocobounded1,axiom,
    ! [A: set_set_a,B: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_1043_inf_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( A4
          = ( inf_inf_set_a @ A4 @ B3 ) ) ) ) ).

% inf.order_iff
thf(fact_1044_inf_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( A4
          = ( inf_inf_nat @ A4 @ B3 ) ) ) ) ).

% inf.order_iff
thf(fact_1045_inf_Oorder__iff,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A4: set_set_a,B3: set_set_a] :
          ( A4
          = ( inf_inf_set_set_a @ A4 @ B3 ) ) ) ) ).

% inf.order_iff
thf(fact_1046_inf__greatest,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ X @ Z )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_1047_inf__greatest,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Z )
       => ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_1048_inf__greatest,axiom,
    ! [X: set_set_a,Y: set_set_a,Z: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X @ Y )
     => ( ( ord_le3724670747650509150_set_a @ X @ Z )
       => ( ord_le3724670747650509150_set_a @ X @ ( inf_inf_set_set_a @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_1049_inf_OboundedI,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ A @ C )
       => ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_1050_inf_OboundedI,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ C )
       => ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_1051_inf_OboundedI,axiom,
    ! [A: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( ord_le3724670747650509150_set_a @ A @ C )
       => ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_1052_inf_OboundedE,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
     => ~ ( ( ord_less_eq_set_a @ A @ B )
         => ~ ( ord_less_eq_set_a @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_1053_inf_OboundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
     => ~ ( ( ord_less_eq_nat @ A @ B )
         => ~ ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_1054_inf_OboundedE,axiom,
    ! [A: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B @ C ) )
     => ~ ( ( ord_le3724670747650509150_set_a @ A @ B )
         => ~ ( ord_le3724670747650509150_set_a @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_1055_inf__absorb2,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( inf_inf_set_a @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_1056_inf__absorb2,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( inf_inf_nat @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_1057_inf__absorb2,axiom,
    ! [Y: set_set_a,X: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ Y @ X )
     => ( ( inf_inf_set_set_a @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_1058_inf__absorb1,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( inf_inf_set_a @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_1059_inf__absorb1,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( inf_inf_nat @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_1060_inf__absorb1,axiom,
    ! [X: set_set_a,Y: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X @ Y )
     => ( ( inf_inf_set_set_a @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_1061_inf_Oabsorb2,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( inf_inf_set_a @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_1062_inf_Oabsorb2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( inf_inf_nat @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_1063_inf_Oabsorb2,axiom,
    ! [B: set_set_a,A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ A )
     => ( ( inf_inf_set_set_a @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_1064_inf_Oabsorb1,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( inf_inf_set_a @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_1065_inf_Oabsorb1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( inf_inf_nat @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_1066_inf_Oabsorb1,axiom,
    ! [A: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( inf_inf_set_set_a @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_1067_le__iff__inf,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( inf_inf_set_a @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_1068_le__iff__inf,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( inf_inf_nat @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_1069_le__iff__inf,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [X3: set_set_a,Y3: set_set_a] :
          ( ( inf_inf_set_set_a @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_1070_inf__unique,axiom,
    ! [F2: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X2: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( F2 @ X2 @ Y4 ) @ X2 )
     => ( ! [X2: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( F2 @ X2 @ Y4 ) @ Y4 )
       => ( ! [X2: set_a,Y4: set_a,Z2: set_a] :
              ( ( ord_less_eq_set_a @ X2 @ Y4 )
             => ( ( ord_less_eq_set_a @ X2 @ Z2 )
               => ( ord_less_eq_set_a @ X2 @ ( F2 @ Y4 @ Z2 ) ) ) )
         => ( ( inf_inf_set_a @ X @ Y )
            = ( F2 @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_1071_inf__unique,axiom,
    ! [F2: nat > nat > nat,X: nat,Y: nat] :
      ( ! [X2: nat,Y4: nat] : ( ord_less_eq_nat @ ( F2 @ X2 @ Y4 ) @ X2 )
     => ( ! [X2: nat,Y4: nat] : ( ord_less_eq_nat @ ( F2 @ X2 @ Y4 ) @ Y4 )
       => ( ! [X2: nat,Y4: nat,Z2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y4 )
             => ( ( ord_less_eq_nat @ X2 @ Z2 )
               => ( ord_less_eq_nat @ X2 @ ( F2 @ Y4 @ Z2 ) ) ) )
         => ( ( inf_inf_nat @ X @ Y )
            = ( F2 @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_1072_inf__unique,axiom,
    ! [F2: set_set_a > set_set_a > set_set_a,X: set_set_a,Y: set_set_a] :
      ( ! [X2: set_set_a,Y4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( F2 @ X2 @ Y4 ) @ X2 )
     => ( ! [X2: set_set_a,Y4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( F2 @ X2 @ Y4 ) @ Y4 )
       => ( ! [X2: set_set_a,Y4: set_set_a,Z2: set_set_a] :
              ( ( ord_le3724670747650509150_set_a @ X2 @ Y4 )
             => ( ( ord_le3724670747650509150_set_a @ X2 @ Z2 )
               => ( ord_le3724670747650509150_set_a @ X2 @ ( F2 @ Y4 @ Z2 ) ) ) )
         => ( ( inf_inf_set_set_a @ X @ Y )
            = ( F2 @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_1073_inf_OorderI,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A
        = ( inf_inf_set_a @ A @ B ) )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% inf.orderI
thf(fact_1074_inf_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( inf_inf_nat @ A @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% inf.orderI
thf(fact_1075_inf_OorderI,axiom,
    ! [A: set_set_a,B: set_set_a] :
      ( ( A
        = ( inf_inf_set_set_a @ A @ B ) )
     => ( ord_le3724670747650509150_set_a @ A @ B ) ) ).

% inf.orderI
thf(fact_1076_inf_OorderE,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( A
        = ( inf_inf_set_a @ A @ B ) ) ) ).

% inf.orderE
thf(fact_1077_inf_OorderE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( A
        = ( inf_inf_nat @ A @ B ) ) ) ).

% inf.orderE
thf(fact_1078_inf_OorderE,axiom,
    ! [A: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( A
        = ( inf_inf_set_set_a @ A @ B ) ) ) ).

% inf.orderE
thf(fact_1079_le__infI2,axiom,
    ! [B: set_a,X: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% le_infI2
thf(fact_1080_le__infI2,axiom,
    ! [B: nat,X: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ X )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% le_infI2
thf(fact_1081_le__infI2,axiom,
    ! [B: set_set_a,X: set_set_a,A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ X )
     => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ X ) ) ).

% le_infI2
thf(fact_1082_le__infI1,axiom,
    ! [A: set_a,X: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% le_infI1
thf(fact_1083_le__infI1,axiom,
    ! [A: nat,X: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ X )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% le_infI1
thf(fact_1084_le__infI1,axiom,
    ! [A: set_set_a,X: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ X )
     => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ X ) ) ).

% le_infI1
thf(fact_1085_inf__mono,axiom,
    ! [A: set_a,C: set_a,B: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ( ord_less_eq_set_a @ B @ D )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ ( inf_inf_set_a @ C @ D ) ) ) ) ).

% inf_mono
thf(fact_1086_inf__mono,axiom,
    ! [A: nat,C: nat,B: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ D )
       => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ ( inf_inf_nat @ C @ D ) ) ) ) ).

% inf_mono
thf(fact_1087_inf__mono,axiom,
    ! [A: set_set_a,C: set_set_a,B: set_set_a,D: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ C )
     => ( ( ord_le3724670747650509150_set_a @ B @ D )
       => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ ( inf_inf_set_set_a @ C @ D ) ) ) ) ).

% inf_mono
thf(fact_1088_le__infI,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X @ A )
     => ( ( ord_less_eq_set_a @ X @ B )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% le_infI
thf(fact_1089_le__infI,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ A )
     => ( ( ord_less_eq_nat @ X @ B )
       => ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B ) ) ) ) ).

% le_infI
thf(fact_1090_le__infI,axiom,
    ! [X: set_set_a,A: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X @ A )
     => ( ( ord_le3724670747650509150_set_a @ X @ B )
       => ( ord_le3724670747650509150_set_a @ X @ ( inf_inf_set_set_a @ A @ B ) ) ) ) ).

% le_infI
thf(fact_1091_le__infE,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B ) )
     => ~ ( ( ord_less_eq_set_a @ X @ A )
         => ~ ( ord_less_eq_set_a @ X @ B ) ) ) ).

% le_infE
thf(fact_1092_le__infE,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B ) )
     => ~ ( ( ord_less_eq_nat @ X @ A )
         => ~ ( ord_less_eq_nat @ X @ B ) ) ) ).

% le_infE
thf(fact_1093_le__infE,axiom,
    ! [X: set_set_a,A: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X @ ( inf_inf_set_set_a @ A @ B ) )
     => ~ ( ( ord_le3724670747650509150_set_a @ X @ A )
         => ~ ( ord_le3724670747650509150_set_a @ X @ B ) ) ) ).

% le_infE
thf(fact_1094_inf__le2,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_1095_inf__le2,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_1096_inf__le2,axiom,
    ! [X: set_set_a,Y: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_1097_inf__le1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_1098_inf__le1,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_1099_inf__le1,axiom,
    ! [X: set_set_a,Y: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_1100_inf__sup__ord_I1_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_1101_inf__sup__ord_I1_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_1102_inf__sup__ord_I1_J,axiom,
    ! [X: set_set_a,Y: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_1103_inf__sup__ord_I2_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_1104_inf__sup__ord_I2_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_1105_inf__sup__ord_I2_J,axiom,
    ! [X: set_set_a,Y: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_1106_add__additive__subgroups,axiom,
    ! [H3: set_a,K: set_a] :
      ( ( additi2834746164131130830up_a_b @ H3 @ r )
     => ( ( additi2834746164131130830up_a_b @ K @ r )
       => ( additi2834746164131130830up_a_b @ ( set_add_a_b @ r @ H3 @ K ) @ r ) ) ) ).

% add_additive_subgroups
thf(fact_1107_field__axioms_Ointro,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( ( units_a_ring_ext_a_b @ R )
        = ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
     => ( field_axioms_a_b @ R ) ) ).

% field_axioms.intro
thf(fact_1108_additive__subgroup_Oa__Hcarr,axiom,
    ! [H3: set_a,G: partia2175431115845679010xt_a_b,H: a] :
      ( ( additi2834746164131130830up_a_b @ H3 @ G )
     => ( ( member_a @ H @ H3 )
       => ( member_a @ H @ ( partia707051561876973205xt_a_b @ G ) ) ) ) ).

% additive_subgroup.a_Hcarr
thf(fact_1109_additive__subgroup_Ozero__closed,axiom,
    ! [H3: set_a,G: partia2175431115845679010xt_a_b] :
      ( ( additi2834746164131130830up_a_b @ H3 @ G )
     => ( member_a @ ( zero_a_b @ G ) @ H3 ) ) ).

% additive_subgroup.zero_closed
thf(fact_1110_additive__subgroup_Oa__inv__closed,axiom,
    ! [H3: set_a,G: partia2175431115845679010xt_a_b,X: a] :
      ( ( additi2834746164131130830up_a_b @ H3 @ G )
     => ( ( member_a @ X @ H3 )
       => ( member_a @ ( a_inv_a_b @ G @ X ) @ H3 ) ) ) ).

% additive_subgroup.a_inv_closed
thf(fact_1111_additive__subgroup_Oa__subset,axiom,
    ! [H3: set_a,G: partia2175431115845679010xt_a_b] :
      ( ( additi2834746164131130830up_a_b @ H3 @ G )
     => ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ G ) ) ) ).

% additive_subgroup.a_subset
thf(fact_1112_field_Oaxioms_I2_J,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( field_a_b @ R )
     => ( field_axioms_a_b @ R ) ) ).

% field.axioms(2)
thf(fact_1113_field__def,axiom,
    ( field_a_b
    = ( ^ [R3: partia2175431115845679010xt_a_b] :
          ( ( domain_a_b @ R3 )
          & ( field_axioms_a_b @ R3 ) ) ) ) ).

% field_def
thf(fact_1114_field_Ointro,axiom,
    ! [R: partia2175431115845679010xt_a_b] :
      ( ( domain_a_b @ R )
     => ( ( field_axioms_a_b @ R )
       => ( field_a_b @ R ) ) ) ).

% field.intro
thf(fact_1115_field__axioms__def,axiom,
    ( field_axioms_a_b
    = ( ^ [R3: partia2175431115845679010xt_a_b] :
          ( ( units_a_ring_ext_a_b @ R3 )
          = ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R3 ) @ ( insert_a @ ( zero_a_b @ R3 ) @ bot_bot_set_a ) ) ) ) ) ).

% field_axioms_def
thf(fact_1116_rcosets__subset__PowG,axiom,
    ! [H3: set_a] :
      ( ( additi2834746164131130830up_a_b @ H3 @ r )
     => ( ord_le3724670747650509150_set_a @ ( a_RCOSETS_a_b @ r @ H3 ) @ ( pow_a @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% rcosets_subset_PowG
thf(fact_1117_mult__of_OproperfactorI3,axiom,
    ! [P2: a,A: a,B: a] :
      ( ( P2
        = ( mult_a_ring_ext_a_b @ r @ A @ B ) )
     => ( ~ ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ P2 ) ) ) ) ) ).

% mult_of.properfactorI3
thf(fact_1118_mult__of_Oproperfactor__divides,axiom,
    ! [A: a,B: a] :
      ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ).

% mult_of.properfactor_divides
thf(fact_1119_properfactor__of__zero_I1_J,axiom,
    ! [B: a] :
      ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
     => ~ ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ B @ ( zero_a_b @ r ) ) ) ).

% properfactor_of_zero(1)
thf(fact_1120_mult__of_Oproperfactor__prod__r,axiom,
    ! [A: a,B: a,C: a] :
      ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ) ).

% mult_of.properfactor_prod_r
thf(fact_1121_mult__of_Oproperfactor__prod__l,axiom,
    ! [A: a,B: a,C: a] :
      ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ) ).

% mult_of.properfactor_prod_l
thf(fact_1122_mult__of_Oproperfactor__unitE,axiom,
    ! [U: a,A: a] :
      ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ U )
       => ~ ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ).

% mult_of.properfactor_unitE
thf(fact_1123_mult__of_Oproperfactor__trans2,axiom,
    ! [A: a,B: a,C: a] :
      ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ B @ C )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ C ) ) ) ) ) ).

% mult_of.properfactor_trans2
thf(fact_1124_mult__of_Oproperfactor__trans1,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ B @ C )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ C ) ) ) ) ) ).

% mult_of.properfactor_trans1
thf(fact_1125_Pow__iff,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( member_set_a @ A3 @ ( pow_a @ B4 ) )
      = ( ord_less_eq_set_a @ A3 @ B4 ) ) ).

% Pow_iff
thf(fact_1126_Pow__iff,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( member_set_set_a @ A3 @ ( pow_set_a @ B4 ) )
      = ( ord_le3724670747650509150_set_a @ A3 @ B4 ) ) ).

% Pow_iff
thf(fact_1127_PowI,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( member_set_a @ A3 @ ( pow_a @ B4 ) ) ) ).

% PowI
thf(fact_1128_PowI,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( member_set_set_a @ A3 @ ( pow_set_a @ B4 ) ) ) ).

% PowI
thf(fact_1129_mult__of_Oproperfactor__mult__rI,axiom,
    ! [A: a,B: a,C: a] :
      ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ).

% mult_of.properfactor_mult_rI
thf(fact_1130_mult__of_Oproperfactor__mult__r,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) )
            = ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ) ).

% mult_of.properfactor_mult_r
thf(fact_1131_mult__of_Oproperfactor__mult__lI,axiom,
    ! [A: a,B: a,C: a] :
      ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ).

% mult_of.properfactor_mult_lI
thf(fact_1132_mult__of_Oproperfactor__mult__l,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) )
            = ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ) ).

% mult_of.properfactor_mult_l
thf(fact_1133_Pow__mono,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ord_le3724670747650509150_set_a @ ( pow_a @ A3 ) @ ( pow_a @ B4 ) ) ) ).

% Pow_mono
thf(fact_1134_Pow__mono,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B4 )
     => ( ord_le5722252365846178494_set_a @ ( pow_set_a @ A3 ) @ ( pow_set_a @ B4 ) ) ) ).

% Pow_mono
thf(fact_1135_PowD,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( member_set_a @ A3 @ ( pow_a @ B4 ) )
     => ( ord_less_eq_set_a @ A3 @ B4 ) ) ).

% PowD
thf(fact_1136_PowD,axiom,
    ! [A3: set_set_a,B4: set_set_a] :
      ( ( member_set_set_a @ A3 @ ( pow_set_a @ B4 ) )
     => ( ord_le3724670747650509150_set_a @ A3 @ B4 ) ) ).

% PowD
thf(fact_1137_properfactor__def,axiom,
    ( proper6663671550266415409t_unit
    = ( ^ [G2: partia8223610829204095565t_unit,A4: a,B3: a] :
          ( ( factor3040189038382604065t_unit @ G2 @ A4 @ B3 )
          & ~ ( factor3040189038382604065t_unit @ G2 @ B3 @ A4 ) ) ) ) ).

% properfactor_def
thf(fact_1138_properfactor__def,axiom,
    ( proper19828929941537682xt_a_b
    = ( ^ [G2: partia2175431115845679010xt_a_b,A4: a,B3: a] :
          ( ( factor8216151070175719842xt_a_b @ G2 @ A4 @ B3 )
          & ~ ( factor8216151070175719842xt_a_b @ G2 @ B3 @ A4 ) ) ) ) ).

% properfactor_def
thf(fact_1139_properfactorI,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( factor3040189038382604065t_unit @ G @ A @ B )
     => ( ~ ( factor3040189038382604065t_unit @ G @ B @ A )
       => ( proper6663671550266415409t_unit @ G @ A @ B ) ) ) ).

% properfactorI
thf(fact_1140_properfactorI,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( factor8216151070175719842xt_a_b @ G @ A @ B )
     => ( ~ ( factor8216151070175719842xt_a_b @ G @ B @ A )
       => ( proper19828929941537682xt_a_b @ G @ A @ B ) ) ) ).

% properfactorI
thf(fact_1141_properfactorE,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( proper6663671550266415409t_unit @ G @ A @ B )
     => ~ ( ( factor3040189038382604065t_unit @ G @ A @ B )
         => ( factor3040189038382604065t_unit @ G @ B @ A ) ) ) ).

% properfactorE
thf(fact_1142_properfactorE,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( proper19828929941537682xt_a_b @ G @ A @ B )
     => ~ ( ( factor8216151070175719842xt_a_b @ G @ A @ B )
         => ( factor8216151070175719842xt_a_b @ G @ B @ A ) ) ) ).

% properfactorE
thf(fact_1143_irreducibleD,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( irredu6211895646901577903xt_a_b @ G @ A )
     => ( ( proper19828929941537682xt_a_b @ G @ B @ A )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( member_a @ B @ ( units_a_ring_ext_a_b @ G ) ) ) ) ) ).

% irreducibleD
thf(fact_1144_irreducibleD,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( irredu4023057619401689684t_unit @ G @ A )
     => ( ( proper6663671550266415409t_unit @ G @ B @ A )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( member_a @ B @ ( units_a_Product_unit @ G ) ) ) ) ) ).

% irreducibleD
thf(fact_1145_irreducibleE,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a] :
      ( ( irredu6211895646901577903xt_a_b @ G @ A )
     => ~ ( ~ ( member_a @ A @ ( units_a_ring_ext_a_b @ G ) )
         => ~ ! [B6: a] :
                ( ( ( member_a @ B6 @ ( partia707051561876973205xt_a_b @ G ) )
                  & ( proper19828929941537682xt_a_b @ G @ B6 @ A ) )
               => ( member_a @ B6 @ ( units_a_ring_ext_a_b @ G ) ) ) ) ) ).

% irreducibleE
thf(fact_1146_irreducibleE,axiom,
    ! [G: partia8223610829204095565t_unit,A: a] :
      ( ( irredu4023057619401689684t_unit @ G @ A )
     => ~ ( ~ ( member_a @ A @ ( units_a_Product_unit @ G ) )
         => ~ ! [B6: a] :
                ( ( ( member_a @ B6 @ ( partia6735698275553448452t_unit @ G ) )
                  & ( proper6663671550266415409t_unit @ G @ B6 @ A ) )
               => ( member_a @ B6 @ ( units_a_Product_unit @ G ) ) ) ) ) ).

% irreducibleE
thf(fact_1147_irreducibleI,axiom,
    ! [A: a,G: partia2175431115845679010xt_a_b] :
      ( ~ ( member_a @ A @ ( units_a_ring_ext_a_b @ G ) )
     => ( ! [B2: a] :
            ( ( member_a @ B2 @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( proper19828929941537682xt_a_b @ G @ B2 @ A )
             => ( member_a @ B2 @ ( units_a_ring_ext_a_b @ G ) ) ) )
       => ( irredu6211895646901577903xt_a_b @ G @ A ) ) ) ).

% irreducibleI
thf(fact_1148_irreducibleI,axiom,
    ! [A: a,G: partia8223610829204095565t_unit] :
      ( ~ ( member_a @ A @ ( units_a_Product_unit @ G ) )
     => ( ! [B2: a] :
            ( ( member_a @ B2 @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( proper6663671550266415409t_unit @ G @ B2 @ A )
             => ( member_a @ B2 @ ( units_a_Product_unit @ G ) ) ) )
       => ( irredu4023057619401689684t_unit @ G @ A ) ) ) ).

% irreducibleI
thf(fact_1149_irreducible__def,axiom,
    ( irredu6211895646901577903xt_a_b
    = ( ^ [G2: partia2175431115845679010xt_a_b,A4: a] :
          ( ~ ( member_a @ A4 @ ( units_a_ring_ext_a_b @ G2 ) )
          & ! [X3: a] :
              ( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
             => ( ( proper19828929941537682xt_a_b @ G2 @ X3 @ A4 )
               => ( member_a @ X3 @ ( units_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ) ).

% irreducible_def
thf(fact_1150_irreducible__def,axiom,
    ( irredu4023057619401689684t_unit
    = ( ^ [G2: partia8223610829204095565t_unit,A4: a] :
          ( ~ ( member_a @ A4 @ ( units_a_Product_unit @ G2 ) )
          & ! [X3: a] :
              ( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
             => ( ( proper6663671550266415409t_unit @ G2 @ X3 @ A4 )
               => ( member_a @ X3 @ ( units_a_Product_unit @ G2 ) ) ) ) ) ) ) ).

% irreducible_def
thf(fact_1151_monoid__cancel_Oproperfactor__mult__l,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( proper19828929941537682xt_a_b @ G @ ( mult_a_ring_ext_a_b @ G @ C @ A ) @ ( mult_a_ring_ext_a_b @ G @ C @ B ) )
              = ( proper19828929941537682xt_a_b @ G @ A @ B ) ) ) ) ) ) ).

% monoid_cancel.properfactor_mult_l
thf(fact_1152_monoid__cancel_Oproperfactor__mult__l,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a,C: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( proper6663671550266415409t_unit @ G @ ( mult_a_Product_unit @ G @ C @ A ) @ ( mult_a_Product_unit @ G @ C @ B ) )
              = ( proper6663671550266415409t_unit @ G @ A @ B ) ) ) ) ) ) ).

% monoid_cancel.properfactor_mult_l
thf(fact_1153_monoid__cancel_Oproperfactor__mult__lI,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( proper19828929941537682xt_a_b @ G @ A @ B )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G ) )
           => ( proper19828929941537682xt_a_b @ G @ ( mult_a_ring_ext_a_b @ G @ C @ A ) @ ( mult_a_ring_ext_a_b @ G @ C @ B ) ) ) ) ) ) ).

% monoid_cancel.properfactor_mult_lI
thf(fact_1154_monoid__cancel_Oproperfactor__mult__lI,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a,C: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( proper6663671550266415409t_unit @ G @ A @ B )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G ) )
           => ( proper6663671550266415409t_unit @ G @ ( mult_a_Product_unit @ G @ C @ A ) @ ( mult_a_Product_unit @ G @ C @ B ) ) ) ) ) ) ).

% monoid_cancel.properfactor_mult_lI
thf(fact_1155_domain_Oproperfactor__of__zero_I1_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,B: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
       => ~ ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ R ) @ B @ ( zero_a_b @ R ) ) ) ) ).

% domain.properfactor_of_zero(1)
thf(fact_1156_properfactor__imp__properfactor__mult,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( proper19828929941537682xt_a_b @ r @ B @ A )
         => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ B @ A ) ) ) ) ).

% properfactor_imp_properfactor_mult
thf(fact_1157_nat__diff__add__eq2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_1158_properfactor__divides,axiom,
    ! [A: a,B: a] :
      ( ( proper19828929941537682xt_a_b @ r @ A @ B )
     => ( factor8216151070175719842xt_a_b @ r @ A @ B ) ) ).

% properfactor_divides
thf(fact_1159_properfactor__of__zero_I2_J,axiom,
    ! [B: a] :
      ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( proper19828929941537682xt_a_b @ r @ B @ ( zero_a_b @ r ) )
        = ( B
         != ( zero_a_b @ r ) ) ) ) ).

% properfactor_of_zero(2)
thf(fact_1160_properfactor__prod__l,axiom,
    ! [A: a,B: a,C: a] :
      ( ( proper19828929941537682xt_a_b @ r @ A @ B )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( proper19828929941537682xt_a_b @ r @ A @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ) ).

% properfactor_prod_l
thf(fact_1161_properfactor__prod__r,axiom,
    ! [A: a,B: a,C: a] :
      ( ( proper19828929941537682xt_a_b @ r @ A @ B )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( proper19828929941537682xt_a_b @ r @ A @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ) ).

% properfactor_prod_r
thf(fact_1162_properfactor__unitE,axiom,
    ! [U: a,A: a] :
      ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( proper19828929941537682xt_a_b @ r @ A @ U )
       => ~ ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).

% properfactor_unitE
thf(fact_1163_properfactor__trans1,axiom,
    ! [A: a,B: a,C: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
     => ( ( proper19828929941537682xt_a_b @ r @ B @ C )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( proper19828929941537682xt_a_b @ r @ A @ C ) ) ) ) ) ).

% properfactor_trans1
thf(fact_1164_properfactor__trans2,axiom,
    ! [A: a,B: a,C: a] :
      ( ( proper19828929941537682xt_a_b @ r @ A @ B )
     => ( ( factor8216151070175719842xt_a_b @ r @ B @ C )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
           => ( proper19828929941537682xt_a_b @ r @ A @ C ) ) ) ) ) ).

% properfactor_trans2
thf(fact_1165_properfactor__mult__imp__properfactor,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ B @ A )
         => ( proper19828929941537682xt_a_b @ r @ B @ A ) ) ) ) ).

% properfactor_mult_imp_properfactor
thf(fact_1166_domain_Oproperfactor__of__zero_I2_J,axiom,
    ! [R: partia2175431115845679010xt_a_b,B: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( proper19828929941537682xt_a_b @ R @ B @ ( zero_a_b @ R ) )
          = ( B
           != ( zero_a_b @ R ) ) ) ) ) ).

% domain.properfactor_of_zero(2)
thf(fact_1167_properfactor__hom,axiom,
    ! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a,B: a] :
      ( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
     => ( ( domain_a_b @ R )
       => ( ( domain_a_b @ S )
         => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
           => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
             => ( ( proper19828929941537682xt_a_b @ R @ B @ X )
                = ( proper19828929941537682xt_a_b @ S @ ( H @ B ) @ ( H @ X ) ) ) ) ) ) ) ) ).

% properfactor_hom
thf(fact_1168_domain_Oproperfactor__mult__imp__properfactor,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ R ) @ B @ A )
           => ( proper19828929941537682xt_a_b @ R @ B @ A ) ) ) ) ) ).

% domain.properfactor_mult_imp_properfactor
thf(fact_1169_domain_Oproperfactor__imp__properfactor__mult,axiom,
    ! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( domain_a_b @ R )
     => ( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
         => ( ( proper19828929941537682xt_a_b @ R @ B @ A )
           => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ R ) @ B @ A ) ) ) ) ) ).

% domain.properfactor_imp_properfactor_mult
thf(fact_1170_nat__eq__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
          = N ) ) ) ).

% nat_eq_add_iff1
thf(fact_1171_nat__eq__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_1172_nat__le__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_le_add_iff1
thf(fact_1173_nat__le__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_le_add_iff2
thf(fact_1174_nat__diff__add__eq1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_diff_add_eq1
thf(fact_1175_group_Osetmult__subset__G,axiom,
    ! [G: partia2175431115845679010xt_a_b,H3: set_a,K: set_a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ord_less_eq_set_a @ ( set_mu8047982887099575916xt_a_b @ G @ H3 @ K ) @ ( partia707051561876973205xt_a_b @ G ) ) ) ) ) ).

% group.setmult_subset_G
thf(fact_1176_group_Osetmult__subset__G,axiom,
    ! [G: partia8223610829204095565t_unit,H3: set_a,K: set_a] :
      ( ( group_a_Product_unit @ G )
     => ( ( ord_less_eq_set_a @ H3 @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( ord_less_eq_set_a @ K @ ( partia6735698275553448452t_unit @ G ) )
         => ( ord_less_eq_set_a @ ( set_mu9095145553939800791t_unit @ G @ H3 @ K ) @ ( partia6735698275553448452t_unit @ G ) ) ) ) ) ).

% group.setmult_subset_G
thf(fact_1177_group_Oset__mult__assoc,axiom,
    ! [G: partia2175431115845679010xt_a_b,M2: set_a,H3: set_a,K: set_a] :
      ( ( group_a_ring_ext_a_b @ G )
     => ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( ord_less_eq_set_a @ H3 @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( ord_less_eq_set_a @ K @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( set_mu8047982887099575916xt_a_b @ G @ ( set_mu8047982887099575916xt_a_b @ G @ M2 @ H3 ) @ K )
              = ( set_mu8047982887099575916xt_a_b @ G @ M2 @ ( set_mu8047982887099575916xt_a_b @ G @ H3 @ K ) ) ) ) ) ) ) ).

% group.set_mult_assoc
thf(fact_1178_group_Oset__mult__assoc,axiom,
    ! [G: partia8223610829204095565t_unit,M2: set_a,H3: set_a,K: set_a] :
      ( ( group_a_Product_unit @ G )
     => ( ( ord_less_eq_set_a @ M2 @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( ord_less_eq_set_a @ H3 @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( ord_less_eq_set_a @ K @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( set_mu9095145553939800791t_unit @ G @ ( set_mu9095145553939800791t_unit @ G @ M2 @ H3 ) @ K )
              = ( set_mu9095145553939800791t_unit @ G @ M2 @ ( set_mu9095145553939800791t_unit @ G @ H3 @ K ) ) ) ) ) ) ) ).

% group.set_mult_assoc
thf(fact_1179_mult__of_Oset__mult__closed,axiom,
    ! [H3: set_a,K: set_a] :
      ( ( ord_less_eq_set_a @ H3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( ord_less_eq_set_a @ K @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ord_less_eq_set_a @ ( set_mu9095145553939800791t_unit @ ( ring_mult_of_a_b @ r ) @ H3 @ K ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ).

% mult_of.set_mult_closed
thf(fact_1180_mono__set__mult,axiom,
    ! [H3: set_a,H5: set_a,K: set_a,K6: set_a,G: partia2175431115845679010xt_a_b] :
      ( ( ord_less_eq_set_a @ H3 @ H5 )
     => ( ( ord_less_eq_set_a @ K @ K6 )
       => ( ord_less_eq_set_a @ ( set_mu8047982887099575916xt_a_b @ G @ H3 @ K ) @ ( set_mu8047982887099575916xt_a_b @ G @ H5 @ K6 ) ) ) ) ).

% mono_set_mult
thf(fact_1181_mono__set__mult,axiom,
    ! [H3: set_a,H5: set_a,K: set_a,K6: set_a,G: partia8223610829204095565t_unit] :
      ( ( ord_less_eq_set_a @ H3 @ H5 )
     => ( ( ord_less_eq_set_a @ K @ K6 )
       => ( ord_less_eq_set_a @ ( set_mu9095145553939800791t_unit @ G @ H3 @ K ) @ ( set_mu9095145553939800791t_unit @ G @ H5 @ K6 ) ) ) ) ).

% mono_set_mult
thf(fact_1182_mult__of_Oassociated__iff,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
          = ( ? [X3: a] :
                ( ( member_a @ X3 @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
                & ( A
                  = ( mult_a_ring_ext_a_b @ r @ B @ X3 ) ) ) ) ) ) ) ).

% mult_of.associated_iff
thf(fact_1183_mult__of_OassociatedI2_H,axiom,
    ! [A: a,B: a,U: a] :
      ( ( A
        = ( mult_a_ring_ext_a_b @ r @ B @ U ) )
     => ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ).

% mult_of.associatedI2'
thf(fact_1184_mult__of_Oassociated__sym,axiom,
    ! [A: a,B: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ B @ A ) ) ).

% mult_of.associated_sym
thf(fact_1185_mult__of_Oassoc__subst,axiom,
    ! [A: a,B: a,F2: a > a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ! [A2: a,B2: a] :
            ( ( ( member_a @ A2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
              & ( member_a @ B2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
              & ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A2 @ B2 ) )
           => ( ( member_a @ ( F2 @ A2 ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
              & ( member_a @ ( F2 @ B2 ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
              & ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( F2 @ A2 ) @ ( F2 @ B2 ) ) ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( F2 @ A ) @ ( F2 @ B ) ) ) ) ) ) ).

% mult_of.assoc_subst
thf(fact_1186_mult__of_Oassociated__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ B @ C )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ C ) ) ) ) ) ).

% mult_of.associated_trans
thf(fact_1187_mult__of_OUnits__assoc,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ).

% mult_of.Units_assoc
thf(fact_1188_mult__of_Oassoc__l__cancel,axiom,
    ! [A: a,B: a,B7: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B7 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A @ B7 ) )
           => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ B @ B7 ) ) ) ) ) ).

% mult_of.assoc_l_cancel
thf(fact_1189_mult__of_Oassoc__r__cancel,axiom,
    ! [A: a,B: a,A6: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A6 @ B ) )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ A6 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A6 ) ) ) ) ) ).

% mult_of.assoc_r_cancel
thf(fact_1190_mult__of_Omult__cong__l,axiom,
    ! [A: a,A6: a,B: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A6 )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ A6 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A6 @ B ) ) ) ) ) ) ).

% mult_of.mult_cong_l
thf(fact_1191_mult__of_Omult__cong__r,axiom,
    ! [B: a,B7: a,A: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ B @ B7 )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ B7 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A @ B7 ) ) ) ) ) ) ).

% mult_of.mult_cong_r
thf(fact_1192_mult__of_Oassoc__unit__r,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).

% mult_of.assoc_unit_r
thf(fact_1193_mult__of_Oassoc__unit__l,axiom,
    ! [A: a,B: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).

% mult_of.assoc_unit_l
thf(fact_1194_mult__of_Odivides__cong__l,axiom,
    ! [X: a,X6: a,Y: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ X @ X6 )
     => ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ X6 @ Y )
       => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y ) ) ) ) ).

% mult_of.divides_cong_l
thf(fact_1195_mult__of_Odivides__cong__r,axiom,
    ! [X: a,Y: a,Y2: a] :
      ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y )
     => ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ Y @ Y2 )
       => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y2 ) ) ) ) ).

% mult_of.divides_cong_r
thf(fact_1196_mult__of_Oproperfactor__cong__l,axiom,
    ! [X6: a,X: a,Y: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ X6 @ X )
     => ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y )
       => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ X6 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
             => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ X6 @ Y ) ) ) ) ) ) ).

% mult_of.properfactor_cong_l
thf(fact_1197_mult__of_Oproperfactor__cong__r,axiom,
    ! [X: a,Y: a,Y2: a] :
      ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y )
     => ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ Y @ Y2 )
       => ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( ( member_a @ Y2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
             => ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y2 ) ) ) ) ) ) ).

% mult_of.properfactor_cong_r
thf(fact_1198_mult__of_Oirreducible__cong,axiom,
    ! [A: a,A6: a] :
      ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A )
     => ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A6 )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ A6 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A6 ) ) ) ) ) ).

% mult_of.irreducible_cong
thf(fact_1199_mult__of_Oprime__cong,axiom,
    ! [P2: a,P4: a] :
      ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
     => ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ P4 )
       => ( ( member_a @ P2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( ( member_a @ P4 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
           => ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P4 ) ) ) ) ) ).

% mult_of.prime_cong
thf(fact_1200_mult__of_OassociatedD2,axiom,
    ! [A: a,B: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ? [X2: a] :
              ( ( member_a @ X2 @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
              & ( A
                = ( mult_a_ring_ext_a_b @ r @ B @ X2 ) ) ) ) ) ) ).

% mult_of.associatedD2
thf(fact_1201_mult__of_OassociatedE2,axiom,
    ! [A: a,B: a] :
      ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
     => ( ! [U2: a] :
            ( ( A
              = ( mult_a_ring_ext_a_b @ r @ B @ U2 ) )
           => ~ ( member_a @ U2 @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ~ ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).

% mult_of.associatedE2
thf(fact_1202_mult__of_OassociatedI2,axiom,
    ! [U: a,A: a,B: a] :
      ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( A
          = ( mult_a_ring_ext_a_b @ r @ B @ U ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
         => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ).

% mult_of.associatedI2
thf(fact_1203_mult__of_Oassociated__refl,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A ) ) ).

% mult_of.associated_refl
thf(fact_1204_properfactorI2,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( factor3040189038382604065t_unit @ G @ A @ B )
     => ( ~ ( associ6879500422977059064t_unit @ G @ A @ B )
       => ( proper6663671550266415409t_unit @ G @ A @ B ) ) ) ).

% properfactorI2
thf(fact_1205_properfactorI2,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( factor8216151070175719842xt_a_b @ G @ A @ B )
     => ( ~ ( associ5860276527279195403xt_a_b @ G @ A @ B )
       => ( proper19828929941537682xt_a_b @ G @ A @ B ) ) ) ).

% properfactorI2
thf(fact_1206_properfactorE2,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( proper6663671550266415409t_unit @ G @ A @ B )
     => ~ ( ( factor3040189038382604065t_unit @ G @ A @ B )
         => ( associ6879500422977059064t_unit @ G @ A @ B ) ) ) ).

% properfactorE2
thf(fact_1207_properfactorE2,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( proper19828929941537682xt_a_b @ G @ A @ B )
     => ~ ( ( factor8216151070175719842xt_a_b @ G @ A @ B )
         => ( associ5860276527279195403xt_a_b @ G @ A @ B ) ) ) ).

% properfactorE2
thf(fact_1208_monoid__cancel_Oassoc__l__cancel,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a,B7: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ B7 @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( associ5860276527279195403xt_a_b @ G @ ( mult_a_ring_ext_a_b @ G @ A @ B ) @ ( mult_a_ring_ext_a_b @ G @ A @ B7 ) )
             => ( associ5860276527279195403xt_a_b @ G @ B @ B7 ) ) ) ) ) ) ).

% monoid_cancel.assoc_l_cancel
thf(fact_1209_monoid__cancel_Oassoc__l__cancel,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a,B7: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ B7 @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( associ6879500422977059064t_unit @ G @ ( mult_a_Product_unit @ G @ A @ B ) @ ( mult_a_Product_unit @ G @ A @ B7 ) )
             => ( associ6879500422977059064t_unit @ G @ B @ B7 ) ) ) ) ) ) ).

% monoid_cancel.assoc_l_cancel
thf(fact_1210_monoid__cancel_Oassoc__unit__r,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( member_a @ A @ ( units_a_ring_ext_a_b @ G ) )
       => ( ( associ5860276527279195403xt_a_b @ G @ A @ B )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
           => ( member_a @ B @ ( units_a_ring_ext_a_b @ G ) ) ) ) ) ) ).

% monoid_cancel.assoc_unit_r
thf(fact_1211_monoid__cancel_Oassoc__unit__r,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( member_a @ A @ ( units_a_Product_unit @ G ) )
       => ( ( associ6879500422977059064t_unit @ G @ A @ B )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
           => ( member_a @ B @ ( units_a_Product_unit @ G ) ) ) ) ) ) ).

% monoid_cancel.assoc_unit_r
thf(fact_1212_monoid__cancel_Oassoc__unit__l,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( associ5860276527279195403xt_a_b @ G @ A @ B )
       => ( ( member_a @ B @ ( units_a_ring_ext_a_b @ G ) )
         => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
           => ( member_a @ A @ ( units_a_ring_ext_a_b @ G ) ) ) ) ) ) ).

% monoid_cancel.assoc_unit_l
thf(fact_1213_monoid__cancel_Oassoc__unit__l,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( associ6879500422977059064t_unit @ G @ A @ B )
       => ( ( member_a @ B @ ( units_a_Product_unit @ G ) )
         => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
           => ( member_a @ A @ ( units_a_Product_unit @ G ) ) ) ) ) ) ).

% monoid_cancel.assoc_unit_l
thf(fact_1214_associatedD,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( associ6879500422977059064t_unit @ G @ A @ B )
     => ( factor3040189038382604065t_unit @ G @ A @ B ) ) ).

% associatedD
thf(fact_1215_associatedD,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( associ5860276527279195403xt_a_b @ G @ A @ B )
     => ( factor8216151070175719842xt_a_b @ G @ A @ B ) ) ).

% associatedD
thf(fact_1216_associatedE,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( associ6879500422977059064t_unit @ G @ A @ B )
     => ~ ( ( factor3040189038382604065t_unit @ G @ A @ B )
         => ~ ( factor3040189038382604065t_unit @ G @ B @ A ) ) ) ).

% associatedE
thf(fact_1217_associatedE,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( associ5860276527279195403xt_a_b @ G @ A @ B )
     => ~ ( ( factor8216151070175719842xt_a_b @ G @ A @ B )
         => ~ ( factor8216151070175719842xt_a_b @ G @ B @ A ) ) ) ).

% associatedE
thf(fact_1218_associated__def,axiom,
    ( associ6879500422977059064t_unit
    = ( ^ [G2: partia8223610829204095565t_unit,A4: a,B3: a] :
          ( ( factor3040189038382604065t_unit @ G2 @ A4 @ B3 )
          & ( factor3040189038382604065t_unit @ G2 @ B3 @ A4 ) ) ) ) ).

% associated_def
thf(fact_1219_associated__def,axiom,
    ( associ5860276527279195403xt_a_b
    = ( ^ [G2: partia2175431115845679010xt_a_b,A4: a,B3: a] :
          ( ( factor8216151070175719842xt_a_b @ G2 @ A4 @ B3 )
          & ( factor8216151070175719842xt_a_b @ G2 @ B3 @ A4 ) ) ) ) ).

% associated_def
thf(fact_1220_divides__antisym,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( factor3040189038382604065t_unit @ G @ A @ B )
     => ( ( factor3040189038382604065t_unit @ G @ B @ A )
       => ( associ6879500422977059064t_unit @ G @ A @ B ) ) ) ).

% divides_antisym
thf(fact_1221_divides__antisym,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( factor8216151070175719842xt_a_b @ G @ A @ B )
     => ( ( factor8216151070175719842xt_a_b @ G @ B @ A )
       => ( associ5860276527279195403xt_a_b @ G @ A @ B ) ) ) ).

% divides_antisym
thf(fact_1222_monoid__cancel_Oirreducible__cong,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,A6: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( irredu6211895646901577903xt_a_b @ G @ A )
       => ( ( associ5860276527279195403xt_a_b @ G @ A @ A6 )
         => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( member_a @ A6 @ ( partia707051561876973205xt_a_b @ G ) )
             => ( irredu6211895646901577903xt_a_b @ G @ A6 ) ) ) ) ) ) ).

% monoid_cancel.irreducible_cong
thf(fact_1223_monoid__cancel_Oirreducible__cong,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,A6: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( irredu4023057619401689684t_unit @ G @ A )
       => ( ( associ6879500422977059064t_unit @ G @ A @ A6 )
         => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( member_a @ A6 @ ( partia6735698275553448452t_unit @ G ) )
             => ( irredu4023057619401689684t_unit @ G @ A6 ) ) ) ) ) ) ).

% monoid_cancel.irreducible_cong
thf(fact_1224_monoid__cancel_Oprime__cong,axiom,
    ! [G: partia2175431115845679010xt_a_b,P2: a,P4: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( prime_a_ring_ext_a_b @ G @ P2 )
       => ( ( associ5860276527279195403xt_a_b @ G @ P2 @ P4 )
         => ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ G ) )
           => ( ( member_a @ P4 @ ( partia707051561876973205xt_a_b @ G ) )
             => ( prime_a_ring_ext_a_b @ G @ P4 ) ) ) ) ) ) ).

% monoid_cancel.prime_cong
thf(fact_1225_monoid__cancel_Oprime__cong,axiom,
    ! [G: partia8223610829204095565t_unit,P2: a,P4: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( prime_a_Product_unit @ G @ P2 )
       => ( ( associ6879500422977059064t_unit @ G @ P2 @ P4 )
         => ( ( member_a @ P2 @ ( partia6735698275553448452t_unit @ G ) )
           => ( ( member_a @ P4 @ ( partia6735698275553448452t_unit @ G ) )
             => ( prime_a_Product_unit @ G @ P4 ) ) ) ) ) ) ).

% monoid_cancel.prime_cong
thf(fact_1226_divides__irreducible__condition,axiom,
    ! [G: partia2175431115845679010xt_a_b,R2: a,A: a] :
      ( ( irredu6211895646901577903xt_a_b @ G @ R2 )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( factor8216151070175719842xt_a_b @ G @ A @ R2 )
         => ( ( member_a @ A @ ( units_a_ring_ext_a_b @ G ) )
            | ( associ5860276527279195403xt_a_b @ G @ A @ R2 ) ) ) ) ) ).

% divides_irreducible_condition
thf(fact_1227_divides__irreducible__condition,axiom,
    ! [G: partia8223610829204095565t_unit,R2: a,A: a] :
      ( ( irredu4023057619401689684t_unit @ G @ R2 )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( factor3040189038382604065t_unit @ G @ A @ R2 )
         => ( ( member_a @ A @ ( units_a_Product_unit @ G ) )
            | ( associ6879500422977059064t_unit @ G @ A @ R2 ) ) ) ) ) ).

% divides_irreducible_condition
thf(fact_1228_monoid__cancel_OassociatedD2,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( associ5860276527279195403xt_a_b @ G @ A @ B )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
           => ? [X2: a] :
                ( ( member_a @ X2 @ ( units_a_ring_ext_a_b @ G ) )
                & ( A
                  = ( mult_a_ring_ext_a_b @ G @ B @ X2 ) ) ) ) ) ) ) ).

% monoid_cancel.associatedD2
thf(fact_1229_monoid__cancel_OassociatedD2,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( associ6879500422977059064t_unit @ G @ A @ B )
       => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
           => ? [X2: a] :
                ( ( member_a @ X2 @ ( units_a_Product_unit @ G ) )
                & ( A
                  = ( mult_a_Product_unit @ G @ B @ X2 ) ) ) ) ) ) ) ).

% monoid_cancel.associatedD2
thf(fact_1230_monoid__cancel_OassociatedE2,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( associ5860276527279195403xt_a_b @ G @ A @ B )
       => ( ! [U2: a] :
              ( ( A
                = ( mult_a_ring_ext_a_b @ G @ B @ U2 ) )
             => ~ ( member_a @ U2 @ ( units_a_ring_ext_a_b @ G ) ) )
         => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
           => ~ ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) ) ) ) ) ) ).

% monoid_cancel.associatedE2
thf(fact_1231_monoid__cancel_OassociatedE2,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( associ6879500422977059064t_unit @ G @ A @ B )
       => ( ! [U2: a] :
              ( ( A
                = ( mult_a_Product_unit @ G @ B @ U2 ) )
             => ~ ( member_a @ U2 @ ( units_a_Product_unit @ G ) ) )
         => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
           => ~ ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) ) ) ) ) ) ).

% monoid_cancel.associatedE2
thf(fact_1232_monoid__cancel_Oassociated__iff,axiom,
    ! [G: partia2175431115845679010xt_a_b,A: a,B: a] :
      ( ( monoid5798828371819920185xt_a_b @ G )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G ) )
         => ( ( associ5860276527279195403xt_a_b @ G @ A @ B )
            = ( ? [X3: a] :
                  ( ( member_a @ X3 @ ( units_a_ring_ext_a_b @ G ) )
                  & ( A
                    = ( mult_a_ring_ext_a_b @ G @ B @ X3 ) ) ) ) ) ) ) ) ).

% monoid_cancel.associated_iff
thf(fact_1233_monoid__cancel_Oassociated__iff,axiom,
    ! [G: partia8223610829204095565t_unit,A: a,B: a] :
      ( ( monoid1999574367301118026t_unit @ G )
     => ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G ) )
       => ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G ) )
         => ( ( associ6879500422977059064t_unit @ G @ A @ B )
            = ( ? [X3: a] :
                  ( ( member_a @ X3 @ ( units_a_Product_unit @ G ) )
                  & ( A
                    = ( mult_a_Product_unit @ G @ B @ X3 ) ) ) ) ) ) ) ) ).

% monoid_cancel.associated_iff
thf(fact_1234_mult__of_Ounits__comm__group,axiom,
    comm_g1850867397131805039t_unit @ ( units_7501539392726747778t_unit @ ( ring_mult_of_a_b @ r ) ) ).

% mult_of.units_comm_group
thf(fact_1235_telescopic__base__aux,axiom,
    ! [K: set_a,F: set_a,N: nat,E: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( ( subfield_a_b @ F @ r )
       => ( ( embedd2795209813406577254on_a_b @ r @ N @ K @ F )
         => ( ( embedd2795209813406577254on_a_b @ r @ one_one_nat @ F @ E )
           => ( embedd2795209813406577254on_a_b @ r @ N @ K @ E ) ) ) ) ) ).

% telescopic_base_aux
thf(fact_1236_associated__sym,axiom,
    ! [A: a,B: a] :
      ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
     => ( associ5860276527279195403xt_a_b @ r @ B @ A ) ) ).

% associated_sym
thf(fact_1237_associated__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
     => ( ( associ5860276527279195403xt_a_b @ r @ B @ C )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
           => ( associ5860276527279195403xt_a_b @ r @ A @ C ) ) ) ) ) ).

% associated_trans
thf(fact_1238_assoc__subst,axiom,
    ! [A: a,B: a,F2: a > a] :
      ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
     => ( ! [A2: a,B2: a] :
            ( ( ( member_a @ A2 @ ( partia707051561876973205xt_a_b @ r ) )
              & ( member_a @ B2 @ ( partia707051561876973205xt_a_b @ r ) )
              & ( associ5860276527279195403xt_a_b @ r @ A2 @ B2 ) )
           => ( ( member_a @ ( F2 @ A2 ) @ ( partia707051561876973205xt_a_b @ r ) )
              & ( member_a @ ( F2 @ B2 ) @ ( partia707051561876973205xt_a_b @ r ) )
              & ( associ5860276527279195403xt_a_b @ r @ ( F2 @ A2 ) @ ( F2 @ B2 ) ) ) )
       => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
           => ( associ5860276527279195403xt_a_b @ r @ ( F2 @ A ) @ ( F2 @ B ) ) ) ) ) ) ).

% assoc_subst
thf(fact_1239_Units__assoc,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) )
       => ( associ5860276527279195403xt_a_b @ r @ A @ B ) ) ) ).

% Units_assoc
thf(fact_1240_mult__cong__r,axiom,
    ! [B: a,B7: a,A: a] :
      ( ( associ5860276527279195403xt_a_b @ r @ B @ B7 )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B7 @ ( partia707051561876973205xt_a_b @ r ) )
           => ( associ5860276527279195403xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A @ B7 ) ) ) ) ) ) ).

% mult_cong_r
thf(fact_1241_mult__cong__l,axiom,
    ! [A: a,A6: a,B: a] :
      ( ( associ5860276527279195403xt_a_b @ r @ A @ A6 )
     => ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( member_a @ A6 @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
           => ( associ5860276527279195403xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A6 @ B ) ) ) ) ) ) ).

% mult_cong_l
thf(fact_1242_Units__cong,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ).

% Units_cong
thf(fact_1243_divides__cong__r,axiom,
    ! [X: a,Y: a,Y2: a] :
      ( ( factor8216151070175719842xt_a_b @ r @ X @ Y )
     => ( ( associ5860276527279195403xt_a_b @ r @ Y @ Y2 )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( factor8216151070175719842xt_a_b @ r @ X @ Y2 ) ) ) ) ).

% divides_cong_r
thf(fact_1244_divides__cong__l,axiom,
    ! [X: a,X6: a,Y: a] :
      ( ( associ5860276527279195403xt_a_b @ r @ X @ X6 )
     => ( ( factor8216151070175719842xt_a_b @ r @ X6 @ Y )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( factor8216151070175719842xt_a_b @ r @ X @ Y ) ) ) ) ).

% divides_cong_l
thf(fact_1245_properfactor__cong__r,axiom,
    ! [X: a,Y: a,Y2: a] :
      ( ( proper19828929941537682xt_a_b @ r @ X @ Y )
     => ( ( associ5860276527279195403xt_a_b @ r @ Y @ Y2 )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( member_a @ Y2 @ ( partia707051561876973205xt_a_b @ r ) )
             => ( proper19828929941537682xt_a_b @ r @ X @ Y2 ) ) ) ) ) ) ).

% properfactor_cong_r
thf(fact_1246_properfactor__cong__l,axiom,
    ! [X6: a,X: a,Y: a] :
      ( ( associ5860276527279195403xt_a_b @ r @ X6 @ X )
     => ( ( proper19828929941537682xt_a_b @ r @ X @ Y )
       => ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
         => ( ( member_a @ X6 @ ( partia707051561876973205xt_a_b @ r ) )
           => ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
             => ( proper19828929941537682xt_a_b @ r @ X6 @ Y ) ) ) ) ) ) ).

% properfactor_cong_l
thf(fact_1247_associated__iff__same__ideal,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
          = ( ( cgenid547466209912283029xt_a_b @ r @ A )
            = ( cgenid547466209912283029xt_a_b @ r @ B ) ) ) ) ) ).

% associated_iff_same_ideal
thf(fact_1248_assoc__iff__assoc__mult,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
          = ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ).

% assoc_iff_assoc_mult
thf(fact_1249_ring__associated__iff,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
       => ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
          = ( ? [X3: a] :
                ( ( member_a @ X3 @ ( units_a_ring_ext_a_b @ r ) )
                & ( A
                  = ( mult_a_ring_ext_a_b @ r @ X3 @ B ) ) ) ) ) ) ) ).

% ring_associated_iff
thf(fact_1250_associatedI2_H,axiom,
    ! [A: a,B: a,U: a] :
      ( ( A
        = ( mult_a_ring_ext_a_b @ r @ B @ U ) )
     => ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( associ5860276527279195403xt_a_b @ r @ A @ B ) ) ) ) ).

% associatedI2'
thf(fact_1251_associatedI2,axiom,
    ! [U: a,A: a,B: a] :
      ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
     => ( ( A
          = ( mult_a_ring_ext_a_b @ r @ B @ U ) )
       => ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
         => ( associ5860276527279195403xt_a_b @ r @ A @ B ) ) ) ) ).

% associatedI2
thf(fact_1252_units__comm__group,axiom,
    comm_g1850867397131805039t_unit @ ( units_8174867845824275201xt_a_b @ r ) ).

% units_comm_group
thf(fact_1253_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_1254_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_1255_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_1256_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_1257_associated__refl,axiom,
    ! [A: a] :
      ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
     => ( associ5860276527279195403xt_a_b @ r @ A @ A ) ) ).

% associated_refl
thf(fact_1258_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_1259_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_1260_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_1261_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_1262_nat__pow__eone,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
     => ( ( pow_a_1026414303147256608_b_nat @ r @ X @ one_one_nat )
        = X ) ) ).

% nat_pow_eone
thf(fact_1263_dimension__one,axiom,
    ! [K: set_a] :
      ( ( subfield_a_b @ K @ r )
     => ( embedd2795209813406577254on_a_b @ r @ one_one_nat @ K @ K ) ) ).

% dimension_one
thf(fact_1264_mult__of_Onat__pow__eone,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
     => ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ one_one_nat )
        = X ) ) ).

% mult_of.nat_pow_eone
thf(fact_1265_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_1266_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1267_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_1268_square__eq__1__iff,axiom,
    ! [X: int] :
      ( ( ( times_times_int @ X @ X )
        = one_one_int )
      = ( ( X = one_one_int )
        | ( X
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% square_eq_1_iff
thf(fact_1269_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1270_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1271_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_1272_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_1273_comm__group_Oaxioms_I2_J,axiom,
    ! [G: partia2175431115845679010xt_a_b] :
      ( ( comm_g837948081586602452xt_a_b @ G )
     => ( group_a_ring_ext_a_b @ G ) ) ).

% comm_group.axioms(2)
thf(fact_1274_comm__group_Oaxioms_I2_J,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( comm_g1850867397131805039t_unit @ G )
     => ( group_a_Product_unit @ G ) ) ).

% comm_group.axioms(2)
thf(fact_1275_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_1276_comm__groupE_I2_J,axiom,
    ! [G: partia8223610829204095565t_unit] :
      ( ( comm_g1850867397131805039t_unit @ G )
     => ( member_a @ ( one_a_Product_unit @ G ) @ ( partia6735698275553448452t_unit @ G ) ) ) ).

% comm_groupE(2)

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( mult_a_ring_ext_a_b @ r @ a2 @ ( a_inv_a_b @ r @ r1 ) )
    = ( a_inv_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ a2 @ r1 ) ) ) ).

%------------------------------------------------------------------------------