TPTP Problem File: SEV521+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV521+1 : TPTP v9.0.0. Released v7.3.0.
% Domain : Set Theory
% Problem : A non-empty set is a partition of itself
% Version : [Pas99] axioms
% English :
% ends up in an element of a partition of A, but not in an element
% of the partition of B.
% Refs : [Cam15] Caminati (2015), Email to G. Sutcliffe
% : [CK+15] Caminati et al. (2015), Sound Auction Specification an
% Source : [Cam15]
% Names : set_partitions_itself [Cam15]
% Status : Theorem
% Rating : 0.61 v9.0.0, 0.64 v8.2.0, 0.69 v8.1.0, 0.67 v7.5.0, 0.66 v7.4.0, 0.60 v7.3.0
% Syntax : Number of formulae : 20 ( 2 unt; 0 def)
% Number of atoms : 77 ( 7 equ)
% Maximal formula atoms : 13 ( 3 avg)
% Number of connectives : 61 ( 4 ~; 2 |; 22 &)
% ( 18 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 12 ( 12 usr; 1 con; 0-3 aty)
% Number of variables : 67 ( 61 !; 6 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem extracted from the Auction Theory Toolbox.
%------------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%----Include partition axioms
include('Axioms/SET006+2.ax').
%------------------------------------------------------------------------------
fof(non_overlapping,axiom,
! [X] :
( non_overlapping(X)
<=> ? [U] : partition(X,U) ) ).
fof(insertIntoMember,axiom,
! [A,B,C] : insertIntoMember(A,B,C) = union(union(B,singleton(A)),difference(C,singleton(B))) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = unaryUnion(A)
<=> ! [C] :
( member(C,B)
<=> ? [D] :
( member(C,D)
& member(D,A) ) ) ) ).
fof(set_partitions_itself,conjecture,
! [E] :
( E != empty_set
=> partition(singleton(E),E) ) ).
%------------------------------------------------------------------------------