TPTP Problem File: SEV516+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV516+1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Set Theory
% Problem : Condition for no universal set
% Version : Especial.
% English : The antecedent says that for every set z there is a subset of
% it y containing just those elements x of z that are not elements
% of themselves. The consequent says that there is no universal set.
% Refs : [Pel16] Pelletier (2016), Email to Geoff Sutcliffe
% : [PSH17] Pelletier et al. (2017), Automated Reasoning for the D
% Source : [Pel16]
% Names : 16 [PSH17]
% : n02.p [Pel16]
% Status : CounterSatisfiable
% Rating : 0.40 v9.0.0, 0.33 v8.2.0, 0.00 v7.4.0, 0.33 v7.3.0, 0.00 v7.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 0 def)
% Number of atoms : 84 ( 0 equ)
% Maximal formula atoms : 72 ( 16 avg)
% Number of connectives : 100 ( 21 ~; 34 |; 42 &)
% ( 3 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 27 ( 13 !; 14 ?)
% SPC : FOF_CSA_RFO_NEQ
% Comments : Translated from RM3 using the truth evaluation approach [PSH17].
%------------------------------------------------------------------------------
fof(nc2,conjecture,
( ? [A] :
! [B] :
? [C] :
( ( g_true_only(C,B)
& ( ( ( g_both(C,A)
| g_both(C,C) )
& ~ g_false_only(C,A)
& ~ g_true_only(C,C) )
| g_false_only(C,A)
| g_true_only(C,C) ) )
| ( g_both(C,B)
& ( ( g_true_only(C,A)
& g_false_only(C,C) )
| g_false_only(C,A)
| g_true_only(C,C) ) )
| ( g_false_only(C,B)
& ( ( g_true_only(C,A)
& g_false_only(C,C) )
| ( ( g_both(C,A)
| g_both(C,C) )
& ~ g_false_only(C,A)
& ~ g_true_only(C,C) ) ) ) )
| ! [D] :
? [E] : g_false_only(E,D)
| ( ? [A] :
( ? [B] :
( ? [C] :
( g_both(C,B)
& ( g_both(C,A)
| g_both(C,C) )
& ~ g_false_only(C,A)
& ~ g_true_only(C,C) )
& ~ ? [C] :
( ( g_true_only(C,B)
& ( ( ( g_both(C,A)
| g_both(C,C) )
& ~ g_false_only(C,A)
& ~ g_true_only(C,C) )
| g_false_only(C,A)
| g_true_only(C,C) ) )
| ( g_both(C,B)
& ( ( g_true_only(C,A)
& g_false_only(C,C) )
| g_false_only(C,A)
| g_true_only(C,C) ) )
| ( g_false_only(C,B)
& ( ( g_true_only(C,A)
& g_false_only(C,C) )
| ( ( g_both(C,A)
| g_both(C,C) )
& ~ g_false_only(C,A)
& ~ g_true_only(C,C) ) ) ) ) )
& ~ ? [B] :
! [C] :
( ( g_true_only(C,B)
& g_true_only(C,A)
& g_false_only(C,C) )
| ( g_false_only(C,B)
& ( g_false_only(C,A)
| g_true_only(C,C) ) ) ) )
& ~ ? [A] :
! [B] :
? [C] :
( ( g_true_only(C,B)
& ( ( ( g_both(C,A)
| g_both(C,C) )
& ~ g_false_only(C,A)
& ~ g_true_only(C,C) )
| g_false_only(C,A)
| g_true_only(C,C) ) )
| ( g_both(C,B)
& ( ( g_true_only(C,A)
& g_false_only(C,C) )
| g_false_only(C,A)
| g_true_only(C,C) ) )
| ( g_false_only(C,B)
& ( ( g_true_only(C,A)
& g_false_only(C,C) )
| ( ( g_both(C,A)
| g_both(C,C) )
& ~ g_false_only(C,A)
& ~ g_true_only(C,C) ) ) ) )
& ? [D] :
( ? [E] : g_both(E,D)
& ~ ? [E] : g_false_only(E,D) )
& ~ ? [D] :
! [E] : g_true_only(E,D) ) ) ).
fof(true_only_g,axiom,
! [X_2,X_1] :
( g_true_only(X_2,X_1)
<=> ( g_true(X_2,X_1)
& ~ g_false(X_2,X_1) ) ) ).
fof(both_g,axiom,
! [X_2,X_1] :
( g_both(X_2,X_1)
<=> ( g_true(X_2,X_1)
& g_false(X_2,X_1) ) ) ).
fof(false_only_g,axiom,
! [X_2,X_1] :
( g_false_only(X_2,X_1)
<=> ( g_false(X_2,X_1)
& ~ g_true(X_2,X_1) ) ) ).
fof(exhaustion_g,axiom,
! [X_2,X_1] :
( g_true_only(X_2,X_1)
| g_both(X_2,X_1)
| g_false_only(X_2,X_1) ) ).
%------------------------------------------------------------------------------