## TPTP Problem File: SEV506^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV506^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Analysis
% Problem  : NSUM_EQ_0_IFF_NUMSEG
% Version  : Especial.
% English  :

% Refs     : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source   : [Kal16]
% Names    : NSUM_EQ_0_IFF_NUMSEG_.p [Kal16]

% Status   : Theorem
% Rating   : 0.00 v7.1.0
% Syntax   : Number of formulae    :   12 (   0 unit;   8 type;   0 defn)
%            Number of atoms       :   59 (   7 equality;  28 variable)
%            Maximal formula depth :   11 (   6 average)
%            Number of connectives :   41 (   0   ~;   0   |;   2   &;  36   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   18 (  18   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   10 (   8   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   :   16 (   0 sgn;  13   !;   0   ?;   0   ^)
%                                         (  16   :;   3  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH1_THM_EQU_NAR

% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/nums/num',type,(
'type/nums/num': \$tType )).

thf('thf_const_const/sets/IN',type,(
'const/sets/IN':
!>[A: \$tType] :
( A > ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/FINITE',type,(
'const/sets/FINITE':
!>[A: \$tType] :
( ( A > \$o ) > \$o ) )).

thf('thf_const_const/nums/NUMERAL',type,(
'const/nums/NUMERAL': 'type/nums/num' > 'type/nums/num' )).

thf('thf_const_const/nums/_0',type,(
'const/nums/_0': 'type/nums/num' )).

thf('thf_const_const/iterate/nsum',type,(
'const/iterate/nsum':
!>[A: \$tType] :
( ( A > \$o ) > ( A > 'type/nums/num' ) > 'type/nums/num' ) )).

thf('thf_const_const/iterate/..',type,(
'const/iterate/..': 'type/nums/num' > 'type/nums/num' > 'type/nums/num' > \$o )).

thf('thf_const_const/arith/<=',type,(
'const/arith/<=': 'type/nums/num' > 'type/nums/num' > \$o )).

thf('thm/iterate/IN_NUMSEG_',axiom,(
! [A: 'type/nums/num',A0: 'type/nums/num',A1: 'type/nums/num'] :
( ( 'const/sets/IN' @ 'type/nums/num' @ A1 @ ( 'const/iterate/..' @ A @ A0 ) )
= ( ( 'const/arith/<=' @ A @ A1 )
& ( 'const/arith/<=' @ A1 @ A0 ) ) ) )).

thf('thm/iterate/NSUM_EQ_0_IFF_',axiom,(
! [A: \$tType,A0: A > 'type/nums/num',A1: A > \$o] :
( ( 'const/sets/FINITE' @ A @ A1 )
=> ( ( ( 'const/iterate/nsum' @ A @ A1 @ A0 )
= ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) )
= ( ! [A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ A1 )
=> ( ( A0 @ A2 )
= ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) ) ) ) ) ) )).

thf('thm/iterate/FINITE_NUMSEG_',axiom,(
! [A: 'type/nums/num',A0: 'type/nums/num'] :
( 'const/sets/FINITE' @ 'type/nums/num' @ ( 'const/iterate/..' @ A @ A0 ) ) )).

thf('thm/iterate/NSUM_EQ_0_IFF_NUMSEG_',conjecture,(
! [A: 'type/nums/num' > 'type/nums/num',A0: 'type/nums/num',A1: 'type/nums/num'] :
( ( ( 'const/iterate/nsum' @ 'type/nums/num' @ ( 'const/iterate/..' @ A0 @ A1 ) @ A )
= ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) )
= ( ! [A2: 'type/nums/num'] :
( ( ( 'const/arith/<=' @ A0 @ A2 )
& ( 'const/arith/<=' @ A2 @ A1 ) )
=> ( ( A @ A2 )
= ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) ) ) ) ) )).

%------------------------------------------------------------------------------
```