## TPTP Problem File: SEV498^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV498^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Analysis
% Problem  : ITERATE_EQ_NEUTRAL
% Version  : Especial.
% English  :

% Refs     : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source   : [Kal16]
% Names    : ITERATE_EQ_NEUTRAL_.p [Kal16]

% Status   : Theorem
% Rating   : 0.50 v7.5.0, 0.00 v7.3.0, 0.33 v7.2.0, 0.25 v7.1.0
% Syntax   : Number of formulae    :   19 (   0 unit;  10 type;   0 defn)
%            Number of atoms       :  145 (  11 equality; 101 variable)
%            Maximal formula depth :   19 (   8 average)
%            Number of connectives :  116 (   2   ~;   0   |;   2   &; 106   @)
%                                         (   0 <=>;   6  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   55 (  55   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   12 (  10   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   :   49 (   0 sgn;  37   !;   0   ?;   0   ^)
%                                         (  49   :;  12  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH1_THM_EQU_NAR

% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_const_const/trivia/I',type,(
'const/trivia/I':
!>[A: \$tType] :
( A > A ) )).

thf('thf_const_const/sets/INSERT',type,(
'const/sets/INSERT':
!>[A: \$tType] :
( A > ( A > \$o ) > A > \$o ) )).

thf('thf_const_const/sets/IN',type,(
'const/sets/IN':
!>[A: \$tType] :
( A > ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/FINITE',type,(
'const/sets/FINITE':
!>[A: \$tType] :
( ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/EMPTY',type,(
'const/sets/EMPTY':
!>[A: \$tType] :
( A > \$o ) )).

thf('thf_const_const/iterate/support',type,(
'const/iterate/support':
!>[B: \$tType,A: \$tType] :
( ( B > B > B ) > ( A > B ) > ( A > \$o ) > A > \$o ) )).

thf('thf_const_const/iterate/neutral',type,(
'const/iterate/neutral':
!>[A: \$tType] :
( ( A > A > A ) > A ) )).

thf('thf_const_const/iterate/monoidal',type,(
'const/iterate/monoidal':
!>[A: \$tType] :
( ( A > A > A ) > \$o ) )).

thf('thf_const_const/iterate/iterate',type,(
'const/iterate/iterate':
!>[A: \$tType,A0: \$tType] :
( ( A0 > A0 > A0 ) > ( A > \$o ) > ( A > A0 ) > A0 ) )).

thf('thf_const_const/class/COND',type,(
'const/class/COND':
!>[A: \$tType] :
( \$o > A > A > A ) )).

thf('thm/trivia/I_THM_',axiom,(
! [A: \$tType,A0: A] :
( ( 'const/trivia/I' @ A @ A0 )
= A0 ) )).

thf('thm/iterate/IN_SUPPORT_',axiom,(
! [A: \$tType,A0: \$tType,A1: A0 > A0 > A0,A2: A > A0,A3: A,A4: A > \$o] :
( ( 'const/sets/IN' @ A @ A3 @ ( 'const/iterate/support' @ A0 @ A @ A1 @ A2 @ A4 ) )
= ( ( 'const/sets/IN' @ A @ A3 @ A4 )
& ( ( A2 @ A3 )
!= ( 'const/iterate/neutral' @ A0 @ A1 ) ) ) ) )).

thf('thm/sets/NOT_IN_EMPTY_',axiom,(
! [A: \$tType,A0: A] :
~ ( 'const/sets/IN' @ A @ A0 @ ( 'const/sets/EMPTY' @ A ) ) )).

thf('thm/sets/EXTENSION_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o] :
( ( A0 = A1 )
= ( ! [A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ A0 )
= ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ) )).

thf('thm/iterate/ITERATE_SUPPORT_',axiom,(
! [A: \$tType,A0: \$tType,A1: A0 > A0 > A0,A2: A > A0,A3: A > \$o] :
( ( 'const/iterate/iterate' @ A @ A0 @ A1 @ ( 'const/iterate/support' @ A0 @ A @ A1 @ A2 @ A3 ) @ A2 )
= ( 'const/iterate/iterate' @ A @ A0 @ A1 @ A3 @ A2 ) ) )).

thf('thm/sets/FINITE_RULES_1',axiom,(
! [A: \$tType,A0: A,A1: A > \$o] :
( ( 'const/sets/FINITE' @ A @ A1 )
=> ( 'const/sets/FINITE' @ A @ ( 'const/sets/INSERT' @ A @ A0 @ A1 ) ) ) )).

thf('thm/sets/FINITE_RULES_0',axiom,(
! [A: \$tType] :
( 'const/sets/FINITE' @ A @ ( 'const/sets/EMPTY' @ A ) ) )).

thf('thm/iterate/ITERATE_CLAUSES_',axiom,(
! [A: \$tType,A0: \$tType,A1: \$tType,A2: A1 > A1 > A1] :
( ( 'const/iterate/monoidal' @ A1 @ A2 )
=> ( ! [A3: A > A1] :
( ( 'const/iterate/iterate' @ A @ A1 @ A2 @ ( 'const/sets/EMPTY' @ A ) @ A3 )
= ( 'const/iterate/neutral' @ A1 @ A2 ) )
& ! [A3: A0 > A1,A4: A0,A5: A0 > \$o] :
( ( 'const/sets/FINITE' @ A0 @ A5 )
=> ( ( 'const/iterate/iterate' @ A0 @ A1 @ A2 @ ( 'const/sets/INSERT' @ A0 @ A4 @ A5 ) @ A3 )
= ( 'const/class/COND' @ A1 @ ( 'const/sets/IN' @ A0 @ A4 @ A5 ) @ ( 'const/iterate/iterate' @ A0 @ A1 @ A2 @ A5 @ A3 ) @ ( A2 @ ( A3 @ A4 ) @ ( 'const/iterate/iterate' @ A0 @ A1 @ A2 @ A5 @ A3 ) ) ) ) ) ) ) )).

thf('thm/iterate/ITERATE_EQ_NEUTRAL_',conjecture,(
! [A: \$tType,B: \$tType,A0: B > B > B] :
( ( 'const/iterate/monoidal' @ B @ A0 )
=> ! [A1: A > B,A2: A > \$o] :
( ! [A3: A] :
( ( 'const/sets/IN' @ A @ A3 @ A2 )
=> ( ( A1 @ A3 )
= ( 'const/iterate/neutral' @ B @ A0 ) ) )
=> ( ( 'const/iterate/iterate' @ A @ B @ A0 @ A2 @ A1 )
= ( 'const/iterate/neutral' @ B @ A0 ) ) ) ) )).

%------------------------------------------------------------------------------
```