## TPTP Problem File: SEV492^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV492^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Analysis
% Problem  : SUP_UNIQUE_FINITE
% Version  : Especial.
% English  :

% Refs     : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source   : [Kal16]
% Names    : SUP_UNIQUE_FINITE_.p [Kal16]

% Status   : Theorem
% Rating   : 0.00 v7.1.0
% Syntax   : Number of formulae    :   12 (   0 unit;   6 type;   0 defn)
%            Number of atoms       :   83 (   9 equality;  40 variable)
%            Maximal formula depth :   11 (   6 average)
%            Number of connectives :   62 (   3   ~;   0   |;   7   &;  46   @)
%                                         (   0 <=>;   6  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   13 (  13   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    8 (   6   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   :   18 (   0 sgn;  14   !;   1   ?;   0   ^)
%                                         (  18   :;   3  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH1_THM_EQU_NAR

% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/realax/real',type,(
'type/realax/real': \$tType )).

thf('thf_const_const/sets/sup',type,(
'const/sets/sup': ( 'type/realax/real' > \$o ) > 'type/realax/real' )).

thf('thf_const_const/sets/IN',type,(
'const/sets/IN':
!>[A: \$tType] :
( A > ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/FINITE',type,(
'const/sets/FINITE':
!>[A: \$tType] :
( ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/EMPTY',type,(
'const/sets/EMPTY':
!>[A: \$tType] :
( A > \$o ) )).

thf('thf_const_const/realax/real_le',type,(
'const/realax/real_le': 'type/realax/real' > 'type/realax/real' > \$o )).

thf('thm/realax/REAL_LE_ANTISYM_',axiom,(
! [A: 'type/realax/real',A0: 'type/realax/real'] :
( ( ( 'const/realax/real_le' @ A @ A0 )
& ( 'const/realax/real_le' @ A0 @ A ) )
= ( A = A0 ) ) )).

thf('thm/realax/REAL_LE_TRANS_',axiom,(
! [A: 'type/realax/real',A0: 'type/realax/real',A1: 'type/realax/real'] :
( ( ( 'const/realax/real_le' @ A @ A0 )
& ( 'const/realax/real_le' @ A0 @ A1 ) )
=> ( 'const/realax/real_le' @ A @ A1 ) ) )).

thf('thm/realax/REAL_LE_REFL_',axiom,(
! [A: 'type/realax/real'] :
( 'const/realax/real_le' @ A @ A ) )).

thf('thm/sets/REAL_LE_SUP_FINITE_',axiom,(
! [A: 'type/realax/real' > \$o,A0: 'type/realax/real'] :
( ( ( 'const/sets/FINITE' @ 'type/realax/real' @ A )
& ( A
!= ( 'const/sets/EMPTY' @ 'type/realax/real' ) ) )
=> ( ( 'const/realax/real_le' @ A0 @ ( 'const/sets/sup' @ A ) )
= ( ? [A1: 'type/realax/real'] :
( ( 'const/sets/IN' @ 'type/realax/real' @ A1 @ A )
& ( 'const/realax/real_le' @ A0 @ A1 ) ) ) ) ) )).

thf('thm/sets/REAL_SUP_LE_FINITE_',axiom,(
! [A: 'type/realax/real' > \$o,A0: 'type/realax/real'] :
( ( ( 'const/sets/FINITE' @ 'type/realax/real' @ A )
& ( A
!= ( 'const/sets/EMPTY' @ 'type/realax/real' ) ) )
=> ( ( 'const/realax/real_le' @ ( 'const/sets/sup' @ A ) @ A0 )
= ( ! [A1: 'type/realax/real'] :
( ( 'const/sets/IN' @ 'type/realax/real' @ A1 @ A )
=> ( 'const/realax/real_le' @ A1 @ A0 ) ) ) ) ) )).

thf('thm/sets/SUP_UNIQUE_FINITE_',conjecture,(
! [A: 'type/realax/real',A0: 'type/realax/real' > \$o] :
( ( ( 'const/sets/FINITE' @ 'type/realax/real' @ A0 )
& ( A0
!= ( 'const/sets/EMPTY' @ 'type/realax/real' ) ) )
=> ( ( ( 'const/sets/sup' @ A0 )
= A )
= ( ( 'const/sets/IN' @ 'type/realax/real' @ A @ A0 )
& ! [A1: 'type/realax/real'] :
( ( 'const/sets/IN' @ 'type/realax/real' @ A1 @ A0 )
=> ( 'const/realax/real_le' @ A1 @ A ) ) ) ) ) )).

%------------------------------------------------------------------------------
```