TPTP Problem File: SEV481^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV481^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Analysis
% Problem  : FINITE_PRODUCT
% Version  : Especial.
% English  :

% Refs     : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source   : [Kal16]
% Names    : FINITE_PRODUCT_.p [Kal16]

% Status   : Theorem
% Rating   : 0.00 v7.1.0
% Syntax   : Number of formulae    :    8 (   0 unit;   6 type;   0 defn)
%            Number of atoms       :   62 (   0 equality;  43 variable)
%            Maximal formula depth :   19 (   9 average)
%            Number of connectives :   64 (   0   ~;   0   |;   4   &;  57   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   22 (  22   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    8 (   6   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   :   23 (   0 sgn;  11   !;   4   ?;   2   ^)
%                                         (  23   :;   6  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH1_THM_NEQ_NAR

% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/pair/prod',type,(
'type/pair/prod': \$tType > \$tType > \$tType )).

thf('thf_const_const/sets/SETSPEC',type,(
'const/sets/SETSPEC':
!>[A: \$tType] :
( A > \$o > A > \$o ) )).

thf('thf_const_const/sets/IN',type,(
'const/sets/IN':
!>[A: \$tType] :
( A > ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/GSPEC',type,(
'const/sets/GSPEC':
!>[A: \$tType] :
( ( A > \$o ) > A > \$o ) )).

thf('thf_const_const/sets/FINITE',type,(
'const/sets/FINITE':
!>[A: \$tType] :
( ( A > \$o ) > \$o ) )).

thf('thf_const_const/pair/,',type,(
'const/pair/,':
!>[A: \$tType,B: \$tType] :
( A > B > ( 'type/pair/prod' @ A @ B ) ) )).

thf('thm/sets/FINITE_PRODUCT_DEPENDENT_',axiom,(
! [C: \$tType,A: \$tType,B: \$tType,A0: A > B > C,A1: A > \$o,A2: A > B > \$o] :
( ( ( 'const/sets/FINITE' @ A @ A1 )
& ! [A3: A] :
( ( 'const/sets/IN' @ A @ A3 @ A1 )
=> ( 'const/sets/FINITE' @ B @ ( A2 @ A3 ) ) ) )
=> ( 'const/sets/FINITE' @ C
@ ( 'const/sets/GSPEC' @ C
@ ^ [A3: C] :
? [A4: A,A5: B] :
( 'const/sets/SETSPEC' @ C @ A3
@ ( ( 'const/sets/IN' @ A @ A4 @ A1 )
& ( 'const/sets/IN' @ B @ A5 @ ( A2 @ A4 ) ) )
@ ( A0 @ A4 @ A5 ) ) ) ) ) )).

thf('thm/sets/FINITE_PRODUCT_',conjecture,(
! [A: \$tType,B: \$tType,A0: A > \$o,A1: B > \$o] :
( ( ( 'const/sets/FINITE' @ A @ A0 )
& ( 'const/sets/FINITE' @ B @ A1 ) )
=> ( 'const/sets/FINITE' @ ( 'type/pair/prod' @ A @ B )
@ ( 'const/sets/GSPEC' @ ( 'type/pair/prod' @ A @ B )
@ ^ [A2: 'type/pair/prod' @ A @ B] :
? [A3: A,A4: B] :
( 'const/sets/SETSPEC' @ ( 'type/pair/prod' @ A @ B ) @ A2
@ ( ( 'const/sets/IN' @ A @ A3 @ A0 )
& ( 'const/sets/IN' @ B @ A4 @ A1 ) )
@ ( 'const/pair/,' @ A @ B @ A3 @ A4 ) ) ) ) ) )).

%------------------------------------------------------------------------------
```