## TPTP Problem File: SEV480^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV480^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Analysis
% Problem  : CARD_UNION_LE
% Version  : Especial.
% English  :

% Refs     : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source   : [Kal16]
% Names    : CARD_UNION_LE_.p [Kal16]

% Status   : Theorem
% Rating   : 1.00 v7.1.0
% Syntax   : Number of formulae    :   25 (   0 unit;  11 type;   0 defn)
%            Number of atoms       :  176 (  11 equality; 113 variable)
%            Maximal formula depth :   11 (   7 average)
%            Number of connectives :  142 (   2   ~;   1   |;   7   &; 126   @)
%                                         (   0 <=>;   6  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   50 (  50   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   13 (  11   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   :   52 (   0 sgn;  44   !;   0   ?;   0   ^)
%                                         (  52   :;   8  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH1_THM_EQU_NAR

% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/nums/num',type,(
'type/nums/num': \$tType )).

thf('thf_const_const/sets/UNION',type,(
'const/sets/UNION':
!>[A: \$tType] :
( ( A > \$o ) > ( A > \$o ) > A > \$o ) )).

thf('thf_const_const/sets/SUBSET',type,(
'const/sets/SUBSET':
!>[A: \$tType] :
( ( A > \$o ) > ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/INTER',type,(
'const/sets/INTER':
!>[A: \$tType] :
( ( A > \$o ) > ( A > \$o ) > A > \$o ) )).

thf('thf_const_const/sets/IN',type,(
'const/sets/IN':
!>[A: \$tType] :
( A > ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/FINITE',type,(
'const/sets/FINITE':
!>[A: \$tType] :
( ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/EMPTY',type,(
'const/sets/EMPTY':
!>[A: \$tType] :
( A > \$o ) )).

thf('thf_const_const/sets/DIFF',type,(
'const/sets/DIFF':
!>[A: \$tType] :
( ( A > \$o ) > ( A > \$o ) > A > \$o ) )).

thf('thf_const_const/sets/CARD',type,(
'const/sets/CARD':
!>[A: \$tType] :
( ( A > \$o ) > 'type/nums/num' ) )).

thf('thf_const_const/arith/+',type,(
'const/arith/+': 'type/nums/num' > 'type/nums/num' > 'type/nums/num' )).

thf('thf_const_const/arith/<=',type,(
'const/arith/<=': 'type/nums/num' > 'type/nums/num' > \$o )).

thf('thm/arith/LE_TRANS_',axiom,(
! [A: 'type/nums/num',A0: 'type/nums/num',A1: 'type/nums/num'] :
( ( ( 'const/arith/<=' @ A @ A0 )
& ( 'const/arith/<=' @ A0 @ A1 ) )
=> ( 'const/arith/<=' @ A @ A1 ) ) )).

thf('thm/arith/EQ_IMP_LE_',axiom,(
! [A: 'type/nums/num',A0: 'type/nums/num'] :
( ( A = A0 )
=> ( 'const/arith/<=' @ A @ A0 ) ) )).

thf('thm/sets/CARD_UNION_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o] :
( ( ( 'const/sets/FINITE' @ A @ A0 )
& ( 'const/sets/FINITE' @ A @ A1 )
& ( ( 'const/sets/INTER' @ A @ A0 @ A1 )
= ( 'const/sets/EMPTY' @ A ) ) )
=> ( ( 'const/sets/CARD' @ A @ ( 'const/sets/UNION' @ A @ A0 @ A1 ) )
= ( 'const/arith/+' @ ( 'const/sets/CARD' @ A @ A0 ) @ ( 'const/sets/CARD' @ A @ A1 ) ) ) ) )).

thf('thm/sets/NOT_IN_EMPTY_',axiom,(
! [A: \$tType,A0: A] :
~ ( 'const/sets/IN' @ A @ A0 @ ( 'const/sets/EMPTY' @ A ) ) )).

thf('thm/sets/IN_',axiom,(
! [A: \$tType,P: A > \$o,A0: A] :
( ( 'const/sets/IN' @ A @ A0 @ P )
= ( P @ A0 ) ) )).

thf('thm/sets/IN_DIFF_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o,A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ ( 'const/sets/DIFF' @ A @ A0 @ A1 ) )
= ( ( 'const/sets/IN' @ A @ A2 @ A0 )
& ~ ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) )).

thf('thm/sets/IN_INTER_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o,A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ ( 'const/sets/INTER' @ A @ A0 @ A1 ) )
= ( ( 'const/sets/IN' @ A @ A2 @ A0 )
& ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) )).

thf('thm/sets/EXTENSION_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o] :
( ( A0 = A1 )
= ( ! [A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ A0 )
= ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ) )).

thf('thm/sets/FINITE_DIFF_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o] :
( ( 'const/sets/FINITE' @ A @ A0 )
=> ( 'const/sets/FINITE' @ A @ ( 'const/sets/DIFF' @ A @ A0 @ A1 ) ) ) )).

thf('thm/sets/IN_UNION_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o,A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ ( 'const/sets/UNION' @ A @ A0 @ A1 ) )
= ( ( 'const/sets/IN' @ A @ A2 @ A0 )
| ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) )).

thf('thm/sets/CARD_SUBSET_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o] :
( ( ( 'const/sets/SUBSET' @ A @ A0 @ A1 )
& ( 'const/sets/FINITE' @ A @ A1 ) )
=> ( 'const/arith/<=' @ ( 'const/sets/CARD' @ A @ A0 ) @ ( 'const/sets/CARD' @ A @ A1 ) ) ) )).

thf('thm/sets/SUBSET_DIFF_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o] :
( 'const/sets/SUBSET' @ A @ ( 'const/sets/DIFF' @ A @ A0 @ A1 ) @ A0 ) )).