## TPTP Problem File: SEV472^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV472^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Analysis
% Problem  : FINITE_RESTRICT
% Version  : Especial.
% English  :

% Refs     : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source   : [Kal16]
% Names    : FINITE_RESTRICT_.p [Kal16]

% Status   : Theorem
% Rating   : 0.00 v7.1.0
% Syntax   : Number of formulae    :   10 (   0 unit;   6 type;   0 defn)
%            Number of atoms       :   47 (   1 equality;  33 variable)
%            Maximal formula depth :   15 (   8 average)
%            Number of connectives :   41 (   0   ~;   0   |;   3   &;  36   @)
%                                         (   0 <=>;   2  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   22 (  22   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    8 (   6   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   :   21 (   0 sgn;  11   !;   2   ?;   2   ^)
%                                         (  21   :;   6  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH1_THM_EQU_NAR

% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_const_const/trivia/I',type,(
'const/trivia/I':
!>[A: \$tType] :
( A > A ) )).

thf('thf_const_const/sets/SUBSET',type,(
'const/sets/SUBSET':
!>[A: \$tType] :
( ( A > \$o ) > ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/SETSPEC',type,(
'const/sets/SETSPEC':
!>[A: \$tType] :
( A > \$o > A > \$o ) )).

thf('thf_const_const/sets/IN',type,(
'const/sets/IN':
!>[A: \$tType] :
( A > ( A > \$o ) > \$o ) )).

thf('thf_const_const/sets/GSPEC',type,(
'const/sets/GSPEC':
!>[A: \$tType] :
( ( A > \$o ) > A > \$o ) )).

thf('thf_const_const/sets/FINITE',type,(
'const/sets/FINITE':
!>[A: \$tType] :
( ( A > \$o ) > \$o ) )).

thf('thm/trivia/I_THM_',axiom,(
! [A: \$tType,A0: A] :
( ( 'const/trivia/I' @ A @ A0 )
= A0 ) )).

thf('thm/sets/FINITE_SUBSET_',axiom,(
! [A: \$tType,A0: A > \$o,A1: A > \$o] :
( ( ( 'const/sets/FINITE' @ A @ A1 )
& ( 'const/sets/SUBSET' @ A @ A0 @ A1 ) )
=> ( 'const/sets/FINITE' @ A @ A0 ) ) )).

thf('thm/sets/SUBSET_RESTRICT_',axiom,(
! [A: \$tType,A0: A > \$o,P: A > \$o] :
( 'const/sets/SUBSET' @ A
@ ( 'const/sets/GSPEC' @ A
@ ^ [A1: A] :
? [A2: A] :
( 'const/sets/SETSPEC' @ A @ A1
@ ( ( 'const/sets/IN' @ A @ A2 @ A0 )
& ( P @ A2 ) )
@ A2 ) )
@ A0 ) )).

thf('thm/sets/FINITE_RESTRICT_',conjecture,(
! [A: \$tType,A0: A > \$o,P: A > \$o] :
( ( 'const/sets/FINITE' @ A @ A0 )
=> ( 'const/sets/FINITE' @ A
@ ( 'const/sets/GSPEC' @ A
@ ^ [A1: A] :
? [A2: A] :
( 'const/sets/SETSPEC' @ A @ A1
@ ( ( 'const/sets/IN' @ A @ A2 @ A0 )
& ( P @ A2 ) )
@ A2 ) ) ) ) )).

%------------------------------------------------------------------------------
```