## TPTP Problem File: SEV471^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV471^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Analysis
% Problem  : BIJECTIVE_ON_LEFT_RIGHT_INVERSE
% Version  : Especial.
% English  :

% Refs     : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source   : [Kal16]
% Names    : BIJECTIVE_ON_LEFT_RIGHT_INVERSE_.p [Kal16]

% Status   : Theorem
% Rating   : 1.00 v7.5.0, 0.67 v7.3.0, 1.00 v7.1.0
% Syntax   : Number of formulae    :    6 (   0 unit;   2 type;   0 defn)
%            Number of atoms       :  123 (  14 equality;  91 variable)
%            Maximal formula depth :   17 (  10 average)
%            Number of connectives :   91 (   0   ~;   0   |;  10   &;  70   @)
%                                         (   0 <=>;  11  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   15 (  15   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    4 (   2   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   :   35 (   0 sgn;  28   !;   5   ?;   0   ^)
%                                         (  35   :;   2  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH1_THM_EQU_NAR

% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_const_const/trivia/I',type,(
'const/trivia/I':
!>[A: \$tType] :
( A > A ) )).

thf('thf_const_const/sets/IN',type,(
'const/sets/IN':
!>[A: \$tType] :
( A > ( A > \$o ) > \$o ) )).

thf('thm/trivia/I_THM_',axiom,(
! [A: \$tType,A0: A] :
( ( 'const/trivia/I' @ A @ A0 )
= A0 ) )).

thf('thm/sets/SURJECTIVE_ON_RIGHT_INVERSE_',axiom,(
! [A: \$tType,A0: \$tType,A1: A > \$o,A2: A > A0,A3: A0 > \$o] :
( ( ! [A4: A0] :
( ( 'const/sets/IN' @ A0 @ A4 @ A3 )
=> ? [A5: A] :
( ( 'const/sets/IN' @ A @ A5 @ A1 )
& ( ( A2 @ A5 )
= A4 ) ) ) )
= ( ? [A4: A0 > A] :
! [A5: A0] :
( ( 'const/sets/IN' @ A0 @ A5 @ A3 )
=> ( ( 'const/sets/IN' @ A @ ( A4 @ A5 ) @ A1 )
& ( ( A2 @ ( A4 @ A5 ) )
= A5 ) ) ) ) ) )).

thf('thm/sets/INJECTIVE_ON_LEFT_INVERSE_',axiom,(
! [A: \$tType,A0: \$tType,A1: A0 > A,A2: A0 > \$o] :
( ( ! [A3: A0,A4: A0] :
( ( ( 'const/sets/IN' @ A0 @ A3 @ A2 )
& ( 'const/sets/IN' @ A0 @ A4 @ A2 )
& ( ( A1 @ A3 )
= ( A1 @ A4 ) ) )
=> ( A3 = A4 ) ) )
= ( ? [A3: A > A0] :
! [A4: A0] :
( ( 'const/sets/IN' @ A0 @ A4 @ A2 )
=> ( ( A3 @ ( A1 @ A4 ) )
= A4 ) ) ) ) )).

thf('thm/sets/BIJECTIVE_ON_LEFT_RIGHT_INVERSE_',conjecture,(
! [A: \$tType,A0: \$tType,A1: A0 > A,A2: A0 > \$o,A3: A > \$o] :
( ! [A4: A0] :
( ( 'const/sets/IN' @ A0 @ A4 @ A2 )
=> ( 'const/sets/IN' @ A @ ( A1 @ A4 ) @ A3 ) )
=> ( ( ! [A4: A0,A5: A0] :
( ( ( 'const/sets/IN' @ A0 @ A4 @ A2 )
& ( 'const/sets/IN' @ A0 @ A5 @ A2 )
& ( ( A1 @ A4 )
= ( A1 @ A5 ) ) )
=> ( A4 = A5 ) )
& ! [A4: A] :
( ( 'const/sets/IN' @ A @ A4 @ A3 )
=> ? [A5: A0] :
( ( 'const/sets/IN' @ A0 @ A5 @ A2 )
& ( ( A1 @ A5 )
= A4 ) ) ) )
= ( ? [A4: A > A0] :
( ! [A5: A] :
( ( 'const/sets/IN' @ A @ A5 @ A3 )
=> ( 'const/sets/IN' @ A0 @ ( A4 @ A5 ) @ A2 ) )
& ! [A5: A] :
( ( 'const/sets/IN' @ A @ A5 @ A3 )
=> ( ( A1 @ ( A4 @ A5 ) )
= A5 ) )
& ! [A5: A0] :
( ( 'const/sets/IN' @ A0 @ A5 @ A2 )
=> ( ( A4 @ ( A1 @ A5 ) )
= A5 ) ) ) ) ) ) )).

%------------------------------------------------------------------------------
```