TPTP Problem File: SEV428^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV428^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Set Theory
% Problem : If a union is nonempty we can choose a nonempty set in the set.
% Version : Especial.
% English :
% Refs : [Bro11] Brown (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE34 [Bro11]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0
% Syntax : Number of formulae : 12 ( 3 unt; 6 typ; 2 def)
% Number of atoms : 13 ( 2 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 23 ( 0 ~; 0 |; 3 &; 18 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 26 ( 26 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 10 ( 4 ^; 2 !; 4 ?; 10 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Assume eps is a choice function on $i and epsio is a choice
% function on $i>$o. If the union of a collection C of sets is
% nonempty, then choosenonempty C := epsio (^ Y . C Y /\ Y (eps Y))
% gives a nonempty set in C.
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(epsio,type,
epsio: ( ( $i > $o ) > $o ) > $i > $o ).
thf(choiceaxio,axiom,
! [P: ( $i > $o ) > $o] :
( ? [X: $i > $o] : ( P @ X )
=> ( P @ ( epsio @ P ) ) ) ).
thf(setunion,type,
setunion: ( ( $i > $o ) > $o ) > $i > $o ).
thf(setuniond,definition,
( setunion
= ( ^ [C: ( $i > $o ) > $o,X: $i] :
? [Y: $i > $o] :
( ( C @ Y )
& ( Y @ X ) ) ) ) ).
thf(choosenonempty,type,
choosenonempty: ( ( $i > $o ) > $o ) > $i > $o ).
thf(choosenonemptyd,definition,
( choosenonempty
= ( ^ [C: ( $i > $o ) > $o] :
( epsio
@ ^ [Y: $i > $o] :
( ( C @ Y )
& ( Y @ ( eps @ Y ) ) ) ) ) ) ).
thf(c,type,
c: ( $i > $o ) > $o ).
thf(a,type,
a: $i ).
thf(ca,axiom,
setunion @ c @ a ).
thf(conj,conjecture,
( ( c @ ( choosenonempty @ c ) )
& ? [X: $i] : ( choosenonempty @ c @ X ) ) ).
%------------------------------------------------------------------------------