## TPTP Problem File: SEV428^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV428^1 : TPTP v7.5.0. Released v5.2.0.
% Domain   : Set Theory
% Problem  : If a union is nonempty we can choose a nonempty set in the set.
% Version  : Especial.
% English  :

% Refs     : [Bro11] Brown (2011), Email to Geoff Sutcliffe
% Source   : [Bro11]
% Names    : CHOICE34 [Bro11]

% Status   : Theorem
% Rating   : 0.27 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0
% Syntax   : Number of formulae    :   12 (   0 unit;   6 type;   2 defn)
%            Number of atoms       :   33 (   2 equality;  17 variable)
%            Maximal formula depth :    8 (   5 average)
%            Number of connectives :   23 (   0   ~;   0   |;   3   &;  18   @)
%                                         (   0 <=>;   2  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   26 (  26   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    8 (   6   :;   0   =)
%            Number of variables   :   10 (   0 sgn;   2   !;   4   ?;   4   ^)
%                                         (  10   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : Assume eps is a choice function on \$i and epsio is a choice
%            function on \$i>\$o. If the union of a collection C of sets is
%            nonempty, then choosenonempty C := epsio (^ Y . C Y /\ Y (eps Y))
%            gives a nonempty set in C.
%------------------------------------------------------------------------------
thf(eps,type,(
eps: ( \$i > \$o ) > \$i )).

thf(choiceax,axiom,(
! [P: \$i > \$o] :
( ? [X: \$i] :
( P @ X )
=> ( P @ ( eps @ P ) ) ) )).

thf(epsio,type,(
epsio: ( ( \$i > \$o ) > \$o ) > \$i > \$o )).

thf(choiceaxio,axiom,(
! [P: ( \$i > \$o ) > \$o] :
( ? [X: \$i > \$o] :
( P @ X )
=> ( P @ ( epsio @ P ) ) ) )).

thf(setunion,type,(
setunion: ( ( \$i > \$o ) > \$o ) > \$i > \$o )).

thf(setuniond,definition,
( setunion
= ( ^ [C: ( \$i > \$o ) > \$o,X: \$i] :
? [Y: \$i > \$o] :
( ( C @ Y )
& ( Y @ X ) ) ) )).

thf(choosenonempty,type,(
choosenonempty: ( ( \$i > \$o ) > \$o ) > \$i > \$o )).

thf(choosenonemptyd,definition,
( choosenonempty
= ( ^ [C: ( \$i > \$o ) > \$o] :
( epsio
@ ^ [Y: \$i > \$o] :
( ( C @ Y )
& ( Y @ ( eps @ Y ) ) ) ) ) )).

thf(c,type,(
c: ( \$i > \$o ) > \$o )).

thf(a,type,(
a: \$i )).

thf(ca,axiom,
( setunion @ c @ a )).

thf(conj,conjecture,
( ( c @ ( choosenonempty @ c ) )
& ? [X: \$i] :
( choosenonempty @ c @ X ) )).

%------------------------------------------------------------------------------
```