TPTP Problem File: SEV424_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV424_1 : TPTP v9.0.0. Released v5.0.0.
% Domain : Set Theory
% Problem : Allocating and inserting three objects
% Version : Especial.
% English : Allocating and inserting three objects into a container data
% structure.
% Refs : [KNR07] Kuncak et al. (2007), Deciding Boolean Algebra with Pr
% : [KR07] Kuncak & Rinard (2007), Towards Efficient Satisfiabili
% Source : [KR07]
% Names : VC#4 [KR07]
% Status : Theorem
% Rating : 0.75 v8.2.0, 0.88 v7.5.0, 0.90 v7.4.0, 0.75 v7.3.0, 0.83 v7.1.0, 1.00 v5.0.0
% Syntax : Number of formulae : 24 ( 0 unt; 11 typ; 0 def)
% Number of atoms : 33 ( 13 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 26 ( 6 ~; 1 |; 5 &)
% ( 12 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 6 ( 2 avg)
% Number arithmetic : 7 ( 0 atm; 3 fun; 4 num; 0 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 13 ( 8 >; 5 *; 0 +; 0 <<)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 32 ( 32 !; 0 ?; 32 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(set_type,type,
set: $tType ).
tff(element_type,type,
element: $tType ).
tff(empty_set_type,type,
empty_set: set ).
tff(singleton_type,type,
singleton: element > set ).
tff(member_type,type,
member: ( element * set ) > $o ).
tff(subset_type,type,
subset: ( set * set ) > $o ).
tff(intersection_type,type,
intersection: ( set * set ) > set ).
tff(union_type,type,
union: ( set * set ) > set ).
tff(difference_type,type,
difference: ( set * set ) > set ).
tff(complement_type,type,
complement: set > set ).
tff(cardinality_type,type,
cardinality: set > $int ).
tff(empty_set,axiom,
! [S: set] :
( ! [X: element] : ~ member(X,S)
<=> ( S = empty_set ) ) ).
tff(singleton,axiom,
! [X: element,A: element] :
( member(X,singleton(A))
<=> ( X = A ) ) ).
tff(subset,axiom,
! [A: set,B: set] :
( subset(A,B)
<=> ! [X: element] :
( member(X,A)
=> member(X,B) ) ) ).
tff(intersection,axiom,
! [X: element,A: set,B: set] :
( member(X,intersection(A,B))
<=> ( member(X,A)
& member(X,B) ) ) ).
tff(union,axiom,
! [X: element,A: set,B: set] :
( member(X,union(A,B))
<=> ( member(X,A)
| member(X,B) ) ) ).
tff(difference,axiom,
! [B: element,A: set,E: set] :
( member(B,difference(E,A))
<=> ( member(B,E)
& ~ member(B,A) ) ) ).
tff(complement,axiom,
! [X: element,S: set] :
( member(X,S)
<=> ~ member(X,complement(S)) ) ).
%----From Swen (combined two of his)
tff(cardinality_empty_set,axiom,
! [S: set] :
( ( cardinality(S) = 0 )
<=> ( S = empty_set ) ) ).
tff(cardinality_intersection_1,axiom,
! [X: element,S: set] :
( ( intersection(singleton(X),S) = singleton(X) )
<=> ( cardinality(union(singleton(X),S)) = cardinality(S) ) ) ).
tff(cardinality_intersection_2,axiom,
! [X: element,S: set] :
( ( intersection(singleton(X),S) = empty_set )
<=> ( cardinality(union(singleton(X),S)) = $sum(cardinality(S),1) ) ) ).
tff(cardinality_intersection_3,axiom,
! [S: set,T: set] :
( ( cardinality(intersection(S,T)) = 0 )
<=> ( intersection(S,T) = empty_set ) ) ).
%----From Swen, modified to <=>
tff(cardinality_union,axiom,
! [A: set,B: set] :
( ( intersection(A,B) = empty_set )
<=> ( cardinality(union(A,B)) = $sum(cardinality(A),cardinality(B)) ) ) ).
tff(vc4,conjecture,
! [C: set,A: set,X1: element,X2: element,X3: element] :
( ( subset(C,A)
& ~ member(X1,A)
& ~ member(X2,union(A,singleton(X1)))
& ~ member(X3,union(union(A,singleton(X1)),singleton(X2))) )
=> ( cardinality(union(union(union(C,singleton(X1)),singleton(X2)),singleton(X3))) = $sum(cardinality(C),3) ) ) ).
%------------------------------------------------------------------------------