## TPTP Problem File: SEV424=1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV424=1 : TPTP v7.5.0. Released v5.0.0.
% Domain   : Set Theory
% Problem  : Allocating and inserting three objects
% Version  : Especial.
% English  : Allocating and inserting three objects into a container data
%            structure.

% Refs     : [KNR07] Kuncak et al. (2007), Deciding Boolean Algebra with Pr
%          : [KR07]  Kuncak & Rinard (2007), Towards Efficient Satisfiabili
% Source   : [KR07]
% Names    : VC#4 [KR07]

% Status   : Theorem
% Rating   : 0.88 v7.5.0, 0.90 v7.4.0, 0.75 v7.3.0, 0.83 v7.1.0, 1.00 v5.0.0
% Syntax   : Number of formulae    :   24 (   0 unit;  11 type)
%            Number of atoms       :   33 (  13 equality)
%            Maximal formula depth :   11 (   4 average)
%            Number of connectives :   26 (   6   ~;   1   |;   5   &)
%                                         (  12 <=>;   2  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   13 (   8   >;   5   *;   0   +;   0  <<)
%            Number of predicates  :   17 (  14 propositional; 0-2 arity)
%            Number of functors    :   11 (   4 constant; 0-2 arity)
%            Number of variables   :   32 (   0 sgn;  32   !;   0   ?)
%                                         (  32   :;   0  !>;   0  ?*)
%            Maximal term depth    :    6 (   2 average)
%            Arithmetic symbols    :    4 (   0 prd;   1 fun;   3 num;   0 var)
% SPC      : TF0_THM_EQU_ARI

%------------------------------------------------------------------------------
tff(set_type,type,(
set: \$tType )).

tff(element_type,type,(
element: \$tType )).

tff(empty_set_type,type,(
empty_set: set )).

tff(singleton_type,type,(
singleton: element > set )).

tff(member_type,type,(
member: ( element * set ) > \$o )).

tff(subset_type,type,(
subset: ( set * set ) > \$o )).

tff(intersection_type,type,(
intersection: ( set * set ) > set )).

tff(union_type,type,(
union: ( set * set ) > set )).

tff(difference_type,type,(
difference: ( set * set ) > set )).

tff(complement_type,type,(
complement: set > set )).

tff(cardinality_type,type,(
cardinality: set > \$int )).

tff(empty_set,axiom,(
! [S: set] :
( ! [X: element] : ~ member(X,S)
<=> S = empty_set ) )).

tff(singleton,axiom,(
! [X: element,A: element] :
( member(X,singleton(A))
<=> X = A ) )).

tff(subset,axiom,(
! [A: set,B: set] :
( subset(A,B)
<=> ! [X: element] :
( member(X,A)
=> member(X,B) ) ) )).

tff(intersection,axiom,(
! [X: element,A: set,B: set] :
( member(X,intersection(A,B))
<=> ( member(X,A)
& member(X,B) ) ) )).

tff(union,axiom,(
! [X: element,A: set,B: set] :
( member(X,union(A,B))
<=> ( member(X,A)
| member(X,B) ) ) )).

tff(difference,axiom,(
! [B: element,A: set,E: set] :
( member(B,difference(E,A))
<=> ( member(B,E)
& ~ member(B,A) ) ) )).

tff(complement,axiom,(
! [X: element,S: set] :
( member(X,S)
<=> ~ member(X,complement(S)) ) )).

%----From Swen (combined two of his)
tff(cardinality_empty_set,axiom,(
! [S: set] :
( cardinality(S) = 0
<=> S = empty_set ) )).

tff(cardinality_intersection_1,axiom,(
! [X: element,S: set] :
( intersection(singleton(X),S) = singleton(X)
<=> cardinality(union(singleton(X),S)) = cardinality(S) ) )).

tff(cardinality_intersection_2,axiom,(
! [X: element,S: set] :
( intersection(singleton(X),S) = empty_set
<=> cardinality(union(singleton(X),S)) = \$sum(cardinality(S),1) ) )).

tff(cardinality_intersection_3,axiom,(
! [S: set,T: set] :
( cardinality(intersection(S,T)) = 0
<=> intersection(S,T) = empty_set ) )).

%----From Swen, modified to <=>
tff(cardinality_union,axiom,(
! [A: set,B: set] :
( intersection(A,B) = empty_set
<=> cardinality(union(A,B)) = \$sum(cardinality(A),cardinality(B)) ) )).

tff(vc4,conjecture,(
! [C: set,A: set,X1: element,X2: element,X3: element] :
( ( subset(C,A)
& ~ member(X1,A)
& ~ member(X2,union(A,singleton(X1)))
& ~ member(X3,union(union(A,singleton(X1)),singleton(X2))) )
=> cardinality(union(union(union(C,singleton(X1)),singleton(X2)),singleton(X3))) = \$sum(cardinality(C),3) ) )).

%------------------------------------------------------------------------------
```