TPTP Problem File: SEV420^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV420^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Set Theory
% Problem : Size of disjoint sets' union
% Version : Especial.
% English : If |A|=|A'| & |B|=|B'| & |A' ^ B'|=0, then |A U B| =< |A' U B'|
% Refs : [Kun10] Kuncak (2009), Email to Geoff Sutcliffe
% Source : [Kun10]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.40 v8.2.0, 0.62 v8.1.0, 0.45 v7.5.0, 0.14 v7.4.0, 0.11 v7.3.0, 0.22 v7.2.0, 0.25 v7.1.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.40 v5.2.0, 0.20 v4.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 41 ( 20 unt; 20 typ; 20 def)
% Number of atoms : 64 ( 28 equ; 0 cnn)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 88 ( 5 ~; 3 |; 12 &; 61 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 124 ( 124 >; 0 *; 0 +; 0 <<)
% Number of symbols : 25 ( 23 usr; 4 con; 0-3 aty)
% Number of variables : 62 ( 48 ^; 9 !; 5 ?; 62 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
include('Axioms/SET008^0.ax').
%------------------------------------------------------------------------------
thf(is_function_type,type,
is_function: ( $i > $o ) > ( $i > $i ) > ( $i > $o ) > $o ).
thf(is_function,definition,
( is_function
= ( ^ [X: $i > $o,F: $i > $i,Y: $i > $o] :
! [E: $i] :
( ( X @ E )
=> ( Y @ ( F @ E ) ) ) ) ) ).
thf(injection_type,type,
injection: ( $i > $o ) > ( $i > $i ) > ( $i > $o ) > $o ).
thf(injection,definition,
( injection
= ( ^ [X: $i > $o,F: $i > $i,Y: $i > $o] :
( ( is_function @ X @ F @ Y )
=> ! [E1: $i,E2: $i] :
( ( ( X @ E1 )
& ( X @ E2 )
& ( ( F @ E1 )
= ( F @ E2 ) ) )
=> ( E1 = E2 ) ) ) ) ) ).
thf(surjection_type,type,
surjection: ( $i > $o ) > ( $i > $i ) > ( $i > $o ) > $o ).
thf(surjection,definition,
( surjection
= ( ^ [X: $i > $o,F: $i > $i,Y: $i > $o] :
( ( is_function @ X @ F @ Y )
=> ! [E1: $i] :
( ( Y @ E1 )
=> ? [E2: $i] :
( ( X @ E2 )
& ( ( F @ E2 )
= E1 ) ) ) ) ) ) ).
thf(bijection_type,type,
bijection: ( $i > $o ) > ( $i > $i ) > ( $i > $o ) > $o ).
thf(bijection,definition,
( bijection
= ( ^ [X: $i > $o,F: $i > $i,Y: $i > $o] :
( ( injection @ X @ F @ Y )
& ( surjection @ X @ F @ Y ) ) ) ) ).
thf(equinumerous_type,type,
equinumerous: ( $i > $o ) > ( $i > $o ) > $o ).
thf(equinumerous,definition,
( equinumerous
= ( ^ [X: $i > $o,Y: $i > $o] :
? [F: $i > $i] : ( bijection @ X @ F @ Y ) ) ) ).
thf(embedding_type,type,
embedding: ( $i > $o ) > ( $i > $o ) > $o ).
thf(embedding,definition,
( embedding
= ( ^ [X: $i > $o,Y: $i > $o] :
? [F: $i > $i] : ( injection @ X @ F @ Y ) ) ) ).
thf(prove,conjecture,
! [A: $i > $o,Ap: $i > $o,B: $i > $o,Bp: $i > $o] :
( ( ( equinumerous @ A @ Ap )
& ( equinumerous @ B @ Bp )
& ( ( intersection @ Ap @ Bp )
= emptyset ) )
=> ( embedding @ ( union @ A @ B ) @ ( union @ Ap @ Bp ) ) ) ).
%------------------------------------------------------------------------------