TPTP Problem File: SEV418^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV418^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem from SETS-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1009 [Bro09]

% Status   : Unknown
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    5 (   0 unit;   4 type;   0 defn)
%            Number of atoms       :   32 (   0 equality;  24 variable)
%            Maximal formula depth :   11 (   5 average)
%            Number of connectives :   31 (   0   ~;   0   |;   2   &;  20   @)
%                                         (   2 <=>;   7  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   12 (  12   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    6 (   4   :;   0   =)
%            Number of variables   :   12 (   0 sgn;  12   !;   0   ?;   0   ^)
%                                         (  12   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_UNK_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%------------------------------------------------------------------------------
thf(b_type,type,(
b: \$tType )).

thf(a_type,type,(
a: \$tType )).

thf(cG,type,(
cG: ( b > \$o ) > a > \$o )).

thf(cF,type,(
cF: ( a > \$o ) > b > \$o )).

thf(cTHM592_pme,conjecture,
( ( ! [Xy: b,Y: b > \$o] :
( ( cF @ ( cG @ Y ) @ Xy )
<=> ( Y @ Xy ) )
& ! [Xx: a,X: a > \$o] :
( ( cG @ ( cF @ X ) @ Xx )
<=> ( X @ Xx ) )
& ! [U: a > \$o,V: a > \$o] :
( ! [Xx: a] :
( ( U @ Xx )
=> ( V @ Xx ) )
=> ! [Xx: b] :
( ( cF @ U @ Xx )
=> ( cF @ V @ Xx ) ) ) )
=> ! [M: b > \$o,N: b > \$o] :
( ! [Xx: b] :
( ( M @ Xx )
=> ( N @ Xx ) )
=> ! [Xx: a] :
( ( cG @ M @ Xx )
=> ( cG @ N @ Xx ) ) ) )).

%------------------------------------------------------------------------------
```