## TPTP Problem File: SEV403^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV403^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem THM598
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0534 [Bro09]
%          : THM598 [TPS]

% Status   : Theorem
% Rating   : 1.00 v5.5.0, 0.83 v5.4.0, 0.80 v5.3.0, 1.00 v4.0.0
% Syntax   : Number of formulae    :    1 (   0 unit;   0 type;   0 defn)
%            Number of atoms       :   28 (   1 equality;  27 variable)
%            Maximal formula depth :   12 (  12 average)
%            Number of connectives :   25 (   0   ~;   1   |;   1   &;  16   @)
%                                         (   0 <=>;   7  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   11 (  11   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    2 (   0   :;   0   =)
%            Number of variables   :   12 (   0 sgn;  10   !;   1   ?;   1   ^)
%                                         (  12   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(cTHM598_pme,conjecture,(
! [K: ( \$i > \$o ) > \$i > \$o,L: ( \$i > \$o ) > \$i > \$o] :
( ( ! [Xu: \$i > \$o,Xv: \$i > \$o] :
( ! [Xx: \$i] :
( ( Xu @ Xx )
=> ( Xv @ Xx ) )
=> ! [Xx: \$i] :
( ( K @ Xu @ Xx )
=> ( K @ Xv @ Xx ) ) )
& ! [Xu: \$i > \$o,Xv: \$i > \$o] :
( ! [Xx: \$i] :
( ( Xu @ Xx )
=> ( Xv @ Xx ) )
=> ! [Xx: \$i] :
( ( L @ Xu @ Xx )
=> ( L @ Xv @ Xx ) ) ) )
=> ? [Xw: \$i > \$o] :
( ( ^ [Xz: \$i] :
( ( K @ Xw @ Xz )
| ( L @ Xw @ Xz ) ) )
= Xw ) ) )).

%------------------------------------------------------------------------------
```