TPTP Problem File: SEV397^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV397^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem THM59
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0381 [Bro09]
%          : THM58 [TPS]
%          : THM59 [TPS]

% Status   : Theorem
% Rating   : 0.00 v6.2.0, 0.17 v6.0.0, 0.00 v4.0.0
% Syntax   : Number of formulae    :    5 (   0 unit;   4 type;   0 defn)
%            Number of atoms       :   14 (   0 equality;   7 variable)
%            Maximal formula depth :    6 (   3 average)
%            Number of connectives :   13 (   0   ~;   3   |;   2   &;   7   @)
%                                         (   1 <=>;   0  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    3 (   3   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    6 (   4   :;   0   =)
%            Number of variables   :    1 (   0 sgn;   1   !;   0   ?;   0   ^)
%                                         (   1   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,(
    a: $tType )).

thf(cZ,type,(
    cZ: a > $o )).

thf(cY,type,(
    cY: a > $o )).

thf(cX,type,(
    cX: a > $o )).

thf(cTHM59_pme,conjecture,(
    ! [Xx: a] :
      ( ( ( ( cX @ Xx )
          & ( cY @ Xx ) )
        | ( cZ @ Xx ) )
    <=> ( ( ( cX @ Xx )
          | ( cZ @ Xx ) )
        & ( ( cY @ Xx )
          | ( cZ @ Xx ) ) ) ) )).

%------------------------------------------------------------------------------