## TPTP Problem File: SEV386^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV386^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem TTTP5306A
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0467 [Bro09]
%          : TTTP5306A [TPS]

% Status   : Theorem
% Rating   : 0.00 v7.4.0, 0.22 v7.2.0, 0.12 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.57 v6.1.0, 0.43 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% Syntax   : Number of formulae    :    3 (   0 unit;   2 type;   0 defn)
%            Number of atoms       :   13 (   3 equality;   7 variable)
%            Maximal formula depth :    8 (   4 average)
%            Number of connectives :    6 (   0   ~;   0   |;   1   &;   3   @)
%                                         (   1 <=>;   1  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    1 (   1   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    4 (   2   :;   0   =)
%            Number of variables   :    5 (   0 sgn;   1   !;   2   ?;   2   ^)
%                                         (   5   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(p,type,(
p: a > \$o )).

thf(cTTTP5306A_pme,conjecture,
( ? [Xy: a] :
( p
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy ) )
<=> ? [Xy: a] :
( ( p @ Xy )
& ! [Xz: a] :
( ( p @ Xz )
=> ( Xy = Xz ) ) ) )).

%------------------------------------------------------------------------------
```