## TPTP Problem File: SEV342^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV342^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (GvNB)
% Problem  : TPS problem from GVB-MB-AXIOMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0723 [Bro09]

% Status   : CounterSatisfiable
% Rating   : 0.00 v5.4.0, 0.67 v5.0.0, 0.00 v4.0.0
% Syntax   : Number of formulae    :    7 (   0 unit;   6 type;   0 defn)
%            Number of atoms       :   13 (   2 equality;   0 variable)
%            Maximal formula depth :    5 (   3 average)
%            Number of connectives :    8 (   0   ~;   1   |;   1   &;   5   @)
%                                         (   1 <=>;   0  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    5 (   5   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    8 (   6   :;   0   =)
%            Number of variables   :    0 (   0 sgn;   0   !;   0   ?;   0   ^)
%                                         (   0   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_CSA_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%------------------------------------------------------------------------------
thf(y,type,(
y: \$i )).

thf(u,type,(
u: \$i )).

thf(x,type,(
x: \$i )).

thf(cGVB_M,type,(
cGVB_M: \$i > \$o )).

thf(cGVB_NOP,type,(
cGVB_NOP: \$i > \$i > \$i )).

thf(cGVB_IN,type,(
cGVB_IN: \$i > \$i > \$o )).

thf(cGVB_A4,conjecture,
( ( cGVB_IN @ u @ ( cGVB_NOP @ x @ y ) )
<=> ( ( cGVB_M @ u )
& ( ( u = x )
| ( u = y ) ) ) )).

%------------------------------------------------------------------------------
```