TPTP Problem File: SEV318^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV318^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem THM145-B
% Version : Especial.
% English : Related to the Knaster-Tarski theorem.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0518 [Bro09]
% : THM145-B [TPS]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.92 v8.2.0, 0.91 v8.1.0, 0.92 v7.5.0, 1.00 v5.3.0, 0.75 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 53 ( 0 ~; 0 |; 6 &; 38 @)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 14 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 16 ( 0 ^; 15 !; 1 ?; 16 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM145_B_pme,conjecture,
! [R: a > a > $o,U: ( a > $o ) > a] :
( ( ! [Xx: a,Xy: a,Xz: a] :
( ( ( R @ Xx @ Xy )
& ( R @ Xy @ Xz ) )
=> ( R @ Xx @ Xz ) )
& ! [Xs: a > $o] :
( ! [Xz: a] :
( ( Xs @ Xz )
=> ( R @ Xz @ ( U @ Xs ) ) )
& ! [Xz: a] :
( ( Xs @ Xz )
=> ( R @ Xz @ ( U @ Xs ) ) )
& ! [Xj: a] :
( ! [Xk: a] :
( ( Xs @ Xk )
=> ( R @ Xk @ Xj ) )
=> ( R @ ( U @ Xs ) @ Xj ) ) ) )
=> ! [Xf: a > a] :
( ( ! [Xx: a,Xy: a] :
( ( R @ Xx @ Xy )
=> ( R @ ( Xf @ Xx ) @ ( Xf @ Xy ) ) )
& ! [Xx: a,Xy: a] :
( ( R @ Xx @ Xy )
=> ( R @ ( Xf @ Xx ) @ ( Xf @ Xy ) ) ) )
=> ? [Xw: a] :
( ( R @ Xw @ ( Xf @ Xw ) )
& ( R @ ( Xf @ Xw ) @ Xw ) ) ) ) ).
%------------------------------------------------------------------------------