## TPTP Problem File: SEV316^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV316^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem from CLOS-SYS-FP-THMS
% Version  : Especial.
% English  : Related to the Knaster-Tarski theorem.

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1206 [Bro09]

% Status   : CounterSatisfiable
% Rating   : 1.00 v5.4.0, 0.67 v5.2.0, 1.00 v4.0.0
% Syntax   : Number of formulae    :    6 (   0 unit;   5 type;   0 defn)
%            Number of atoms       :  111 (   2 equality;  88 variable)
%            Maximal formula depth :   21 (   6 average)
%            Number of connectives :  106 (   0   ~;   0   |;  11   &;  77   @)
%                                         (   0 <=>;  18  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   45 (  45   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    7 (   5   :;   0   =)
%            Number of variables   :   44 (   0 sgn;  32   !;   0   ?;  12   ^)
%                                         (  44   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_CSA_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(b_type,type,(
b: \$tType )).

thf(c_type,type,(
c: \$tType )).

thf(cF,type,(
cF: ( a > b > c > \$o ) > a > b > c > \$o )).

thf(cCL,type,(
cCL: ( a > b > c > \$o ) > \$o )).

thf(cFP_THM3_INST_pme,conjecture,
( ( ! [S: ( a > b > c > \$o ) > \$o] :
( ! [Xx: a > b > c > \$o] :
( ( S @ Xx )
=> ( cCL @ Xx ) )
=> ( cCL
@ ^ [Xa: a,Xb: b,Xc: c] :
! [R: a > b > c > \$o] :
( ( S @ R )
=> ( R @ Xa @ Xb @ Xc ) ) ) )
& ! [R: a > b > c > \$o] :
( ( cCL @ R )
=> ( cCL @ ( cF @ R ) ) )
& ! [R: a > b > c > \$o,S: a > b > c > \$o] :
( ( ( cCL @ R )
& ( cCL @ S )
& ! [Xa: a,Xb: b,Xc: c] :
( ( R @ Xa @ Xb @ Xc )
=> ( S @ Xa @ Xb @ Xc ) ) )
=> ! [Xa: a,Xb: b,Xc: c] :
( ( cF @ R @ Xa @ Xb @ Xc )
=> ( cF @ S @ Xa @ Xb @ Xc ) ) ) )
=> ( ( cCL
@ ^ [Xa: a,Xb: b,Xc: c] :
! [R: a > b > c > \$o] :
( ( ( cCL @ R )
& ! [Xa0: a,Xb0: b,Xc0: c] :
( ( cF @ R @ Xa0 @ Xb0 @ Xc0 )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
& ( ( cF
@ ^ [Xa: a,Xb: b,Xc: c] :
! [R: a > b > c > \$o] :
( ( ( cCL @ R )
& ! [Xa0: a,Xb0: b,Xc0: c] :
( ( cF @ R @ Xa0 @ Xb0 @ Xc0 )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
= ( ^ [Xa: a,Xb: b,Xc: c] :
! [R: a > b > c > \$o] :
( ( ( cCL @ R )
& ! [Xa0: a,Xb0: b,Xc0: c] :
( ( cF @ R @ Xa0 @ Xb0 @ Xc0 )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) ) )
& ! [Y: a > b > c > \$o] :
( ( ( cCL @ Y )
& ( ( cF @ Y )
= Y ) )
=> ! [Xa: a,Xb: b,Xc: c] :
( ! [R: a > b > c > \$o] :
( ( ( cCL @ R )
& ! [Xa0: a,Xb0: b,Xc0: c] :
( ( cF @ R @ Xa0 @ Xb0 @ Xc0 )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) )
=> ( Y @ Xa @ Xb @ Xc ) ) ) ) )).

%------------------------------------------------------------------------------
```