TPTP Problem File: SEV315^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV315^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem from CLOS-SYS-FP-THMS
% Version  : Especial.
% English  : Related to the Knaster-Tarski theorem.

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1121 [Bro09]

% Status   : Unknown
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    6 (   0 unit;   5 type;   0 defn)
%            Number of atoms       :   58 (   2 equality;  43 variable)
%            Maximal formula depth :   16 (   6 average)
%            Number of connectives :   53 (   0   ~;   0   |;   7   &;  36   @)
%                                         (   0 <=>;  10  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   36 (  36   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    7 (   5   :;   0   =)
%            Number of variables   :   20 (   0 sgn;  16   !;   1   ?;   3   ^)
%                                         (  20   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_UNK_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,(
    a: $tType )).

thf(b_type,type,(
    b: $tType )).

thf(c_type,type,(
    c: $tType )).

thf(cF,type,(
    cF: ( a > b > c > $o ) > a > b > c > $o )).

thf(cCL,type,(
    cCL: ( a > b > c > $o ) > $o )).

thf(cFP_THM3_pme,conjecture,
    ( ( ! [S: ( a > b > c > $o ) > $o] :
          ( ! [Xx: a > b > c > $o] :
              ( ( S @ Xx )
             => ( cCL @ Xx ) )
         => ( cCL
            @ ^ [Xa: a,Xb: b,Xc: c] :
              ! [R: a > b > c > $o] :
                ( ( S @ R )
               => ( R @ Xa @ Xb @ Xc ) ) ) )
      & ! [R: a > b > c > $o] :
          ( ( cCL @ R )
         => ( cCL @ ( cF @ R ) ) )
      & ! [R: a > b > c > $o,S: a > b > c > $o] :
          ( ( ( cCL @ R )
            & ( cCL @ S )
            & ! [Xa: a,Xb: b,Xc: c] :
                ( ( R @ Xa @ Xb @ Xc )
               => ( S @ Xa @ Xb @ Xc ) ) )
         => ! [Xa: a,Xb: b,Xc: c] :
              ( ( cF @ R @ Xa @ Xb @ Xc )
             => ( cF @ S @ Xa @ Xb @ Xc ) ) ) )
   => ? [X: a > b > c > $o] :
        ( ( cCL @ X )
        & ( ( cF @ X )
          = X )
        & ! [Y: a > b > c > $o] :
            ( ( ( cCL @ Y )
              & ( ( cF @ Y )
                = Y ) )
           => ! [Xa: a,Xb: b,Xc: c] :
                ( ( X @ Xa @ Xb @ Xc )
               => ( Y @ Xa @ Xb @ Xc ) ) ) ) )).

%------------------------------------------------------------------------------