TPTP Problem File: SEV305^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV305^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem THM2
% Version : Especial.
% English : This is a fixed point theorem for sets. Assume K is a monotonic
% operator on sets with respect to inclusion and conclude that K
% has a fixed point. Taken from [Kol67]. Related to the Knaster-
% Tarski theorem.
% Refs : [Kol67] Kolodner (1967), A Simple Proof of the Schroder-Bernst
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0252 [Bro09]
% : THM2 [TPS]
% Status : Theorem
% Rating : 0.88 v9.0.0, 0.92 v8.2.0, 0.91 v8.1.0, 0.92 v7.4.0, 0.89 v7.3.0, 0.90 v7.2.0, 0.88 v7.1.0, 0.86 v7.0.0, 0.88 v6.4.0, 0.86 v6.3.0, 0.83 v5.5.0, 0.80 v5.4.0, 0.75 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 14 ( 0 ~; 0 |; 0 &; 9 @)
% ( 1 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 10 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 7 ( 0 ^; 6 !; 1 ?; 7 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(cTHM2_pme,conjecture,
! [K: ( $i > $o ) > $i > $o] :
( ! [Xx: $i > $o,Xy: $i > $o] :
( ! [Xx0: $i] :
( ( Xx @ Xx0 )
=> ( Xy @ Xx0 ) )
=> ! [Xx0: $i] :
( ( K @ Xx @ Xx0 )
=> ( K @ Xy @ Xx0 ) ) )
=> ? [Xu: $i > $o] :
! [Xx: $i] :
( ( K @ Xu @ Xx )
<=> ( Xu @ Xx ) ) ) ).
%------------------------------------------------------------------------------