TPTP Problem File: SEV303^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV303^5 : TPTP v9.0.0. Bugfixed v6.2.0.
% Domain : Set Theory
% Problem : TPS problem from TTTP-NATS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1084 [Bro09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.40 v8.2.0, 0.46 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0
% Syntax : Number of formulae : 7 ( 3 unt; 3 typ; 3 def)
% Number of atoms : 23 ( 4 equ; 0 cnn)
% Maximal formula atoms : 14 ( 5 avg)
% Number of connectives : 65 ( 2 ~; 0 |; 12 &; 37 @)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 45 ( 45 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 19 ( 5 ^; 12 !; 2 ?; 19 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v6.2.0 - Reordered definitions.
%------------------------------------------------------------------------------
thf(cNAT_type,type,
cNAT: ( ( $i > $o ) > $o ) > $o ).
thf(cSUCC_type,type,
cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o ).
thf(cZERO_type,type,
cZERO: ( $i > $o ) > $o ).
thf(cZERO_def,definition,
( cZERO
= ( ^ [Xp: $i > $o] :
~ ? [Xx: $i] : ( Xp @ Xx ) ) ) ).
thf(cSUCC_def,definition,
( cSUCC
= ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
? [Xx: $i] :
( ( Xp @ Xx )
& ( Xn
@ ^ [Xt: $i] :
( ( Xt != Xx )
& ( Xp @ Xt ) ) ) ) ) ) ).
thf(cNAT_def,definition,
( cNAT
= ( ^ [Xn: ( $i > $o ) > $o] :
! [Xp: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp @ cZERO )
& ! [Xx: ( $i > $o ) > $o] :
( ( Xp @ Xx )
=> ( Xp @ ( cSUCC @ Xx ) ) ) )
=> ( Xp @ Xn ) ) ) ) ).
thf(cX6102_C,conjecture,
! [Xp: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp @ cZERO )
& ! [Xx: ( $i > $o ) > $o] :
( ( cNAT @ Xx )
=> ( ( Xp @ Xx )
=> ( Xp @ ( cSUCC @ Xx ) ) ) ) )
=> ! [Xm: ( $i > $o ) > $o] :
( ( ( ! [Xp0: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp0 @ cZERO )
& ! [Xx: ( $i > $o ) > $o] :
( ( Xp0 @ Xx )
=> ( Xp0 @ ( cSUCC @ Xx ) ) ) )
=> ( Xp0 @ cZERO ) )
& ( Xp @ cZERO )
& ! [Xx: ( $i > $o ) > $o] :
( ( ! [Xp0: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp0 @ cZERO )
& ! [Xx0: ( $i > $o ) > $o] :
( ( Xp0 @ Xx0 )
=> ( Xp0 @ ( cSUCC @ Xx0 ) ) ) )
=> ( Xp0 @ Xx ) )
& ( Xp @ Xx ) )
=> ( ! [Xp0: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp0 @ cZERO )
& ! [Xx0: ( $i > $o ) > $o] :
( ( Xp0 @ Xx0 )
=> ( Xp0 @ ( cSUCC @ Xx0 ) ) ) )
=> ( Xp0 @ ( cSUCC @ Xx ) ) )
& ( Xp @ ( cSUCC @ Xx ) ) ) ) )
=> ( ( cNAT @ Xm )
& ( Xp @ Xm ) ) )
=> ( Xp @ Xm ) ) ) ).
%------------------------------------------------------------------------------