TPTP Problem File: SEV295^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV295^5 : TPTP v9.0.0. Bugfixed v6.2.0.
% Domain : Set Theory
% Problem : TPS problem THM130-NAT
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0548 [Bro09]
% : THM130-NAT [TPS]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.90 v8.2.0, 0.92 v8.1.0, 0.82 v7.5.0, 0.71 v7.4.0, 0.67 v7.2.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0
% Syntax : Number of formulae : 10 ( 4 unt; 5 typ; 4 def)
% Number of atoms : 24 ( 5 equ; 0 cnn)
% Maximal formula atoms : 10 ( 4 avg)
% Number of connectives : 42 ( 2 ~; 0 |; 6 &; 26 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 42 ( 42 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 16 ( 5 ^; 8 !; 3 ?; 16 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v6.2.0 - Reordered definitions.
%------------------------------------------------------------------------------
thf(r_type,type,
r: ( ( $i > $o ) > $o ) > ( ( $i > $o ) > $o ) > $o ).
thf(cINDUCTION_type,type,
cINDUCTION: $o ).
thf(cNAT_type,type,
cNAT: ( ( $i > $o ) > $o ) > $o ).
thf(cSUCC_type,type,
cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o ).
thf(cZERO_type,type,
cZERO: ( $i > $o ) > $o ).
thf(cZERO_def,definition,
( cZERO
= ( ^ [Xp: $i > $o] :
~ ? [Xx: $i] : ( Xp @ Xx ) ) ) ).
thf(cSUCC_def,definition,
( cSUCC
= ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
? [Xx: $i] :
( ( Xp @ Xx )
& ( Xn
@ ^ [Xt: $i] :
( ( Xt != Xx )
& ( Xp @ Xt ) ) ) ) ) ) ).
thf(cNAT_def,definition,
( cNAT
= ( ^ [Xn: ( $i > $o ) > $o] :
! [Xp: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp @ cZERO )
& ! [Xx: ( $i > $o ) > $o] :
( ( Xp @ Xx )
=> ( Xp @ ( cSUCC @ Xx ) ) ) )
=> ( Xp @ Xn ) ) ) ) ).
thf(cINDUCTION_def,definition,
( cINDUCTION
= ( ! [P: ( ( $i > $o ) > $o ) > $o] :
( ( ( P @ cZERO )
& ! [X: ( $i > $o ) > $o] :
( ( P @ X )
=> ( P @ ( cSUCC @ X ) ) ) )
=> ! [M: ( $i > $o ) > $o] :
( ( cNAT @ M )
=> ( P @ M ) ) ) ) ) ).
thf(cTHM130_NAT,conjecture,
( ( cINDUCTION
& ( r @ cZERO @ cZERO )
& ! [Xx: ( $i > $o ) > $o,Xy: ( $i > $o ) > $o] :
( ( r @ Xx @ Xy )
=> ( r @ ( cSUCC @ Xx ) @ ( cSUCC @ Xy ) ) ) )
=> ! [Xx: ( $i > $o ) > $o] :
( ( cNAT @ Xx )
=> ? [Xy: ( $i > $o ) > $o] : ( r @ Xx @ Xy ) ) ) ).
%------------------------------------------------------------------------------