TPTP Problem File: SEV292^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV292^5 : TPTP v9.0.0. Bugfixed v6.2.0.
% Domain : Set Theory
% Problem : TPS problem BLEDSOE7A
% Version : Especial.
% English :
% Refs : [BF93] Bledsoe & Feng (1993), SET-VAR
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0340 [Bro09]
% : BLEDSOE7A [TPS]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.30 v8.2.0, 0.54 v8.1.0, 0.45 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0
% Syntax : Number of formulae : 10 ( 4 unt; 5 typ; 4 def)
% Number of atoms : 20 ( 5 equ; 0 cnn)
% Maximal formula atoms : 8 ( 4 avg)
% Number of connectives : 27 ( 2 ~; 0 |; 5 &; 17 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 33 ( 33 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 0 con; 1-2 aty)
% Number of variables : 11 ( 6 ^; 2 !; 3 ?; 11 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v6.2.0 - Reordered definitions.
%------------------------------------------------------------------------------
thf(cP_type,type,
cP: ( ( $i > $o ) > $o ) > $o ).
thf(cONE_type,type,
cONE: ( $i > $o ) > $o ).
thf(cSUCC_type,type,
cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o ).
thf(cZERO_type,type,
cZERO: ( $i > $o ) > $o ).
thf(c_less__eq__type,type,
c_less__eq_: ( ( $i > $o ) > $o ) > ( ( $i > $o ) > $o ) > $o ).
thf(cZERO_def,definition,
( cZERO
= ( ^ [Xp: $i > $o] :
~ ? [Xx: $i] : ( Xp @ Xx ) ) ) ).
thf(cSUCC_def,definition,
( cSUCC
= ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
? [Xx: $i] :
( ( Xp @ Xx )
& ( Xn
@ ^ [Xt: $i] :
( ( Xt != Xx )
& ( Xp @ Xt ) ) ) ) ) ) ).
thf(cONE_def,definition,
( cONE
= ( cSUCC @ cZERO ) ) ).
thf(c_less__eq__def,definition,
( c_less__eq_
= ( ^ [Xx: ( $i > $o ) > $o,Xy: ( $i > $o ) > $o] :
! [Xp: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp @ Xx )
& ! [Xz: ( $i > $o ) > $o] :
( ( Xp @ Xz )
=> ( Xp @ ( cSUCC @ Xz ) ) ) )
=> ( Xp @ Xy ) ) ) ) ).
thf(cBLEDSOE7A,conjecture,
( ( cP @ cONE )
=> ? [Xx: ( $i > $o ) > $o] :
( ( c_less__eq_ @ cZERO @ Xx )
& ( c_less__eq_ @ Xx @ ( cSUCC @ cONE ) )
& ( cP @ Xx ) ) ) ).
%------------------------------------------------------------------------------