TPTP Problem File: SEV290^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV290^5 : TPTP v7.5.0. Bugfixed v5.2.0.
% Domain   : Set Theory
% Problem  : TPS problem BLEDSOE1
% Version  : Especial.
% English  :

% Refs     : [BF93]  Bledsoe & Feng (1993), SET-VAR
%          : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0170 [Bro09]
%          : BLEDSOE1 [TPS]

% Status   : Theorem
% Rating   : 0.18 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.2.0
% Syntax   : Number of formulae    :    6 (   0 unit;   3 type;   2 defn)
%            Number of atoms       :   26 (   3 equality;  18 variable)
%            Maximal formula depth :   11 (   7 average)
%            Number of connectives :   18 (   1   ~;   0   |;   3   &;  11   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   30 (  30   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    5 (   3   :;   0   =)
%            Number of variables   :   10 (   0 sgn;   3   !;   2   ?;   5   ^)
%                                         (  10   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c0_type,type,(
    c0: ( $i > $o ) > $o )).

thf(cSUCC_type,type,(
    cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o )).

thf(c_less__eq__type,type,(
    c_less__eq_: ( ( $i > $o ) > $o ) > ( ( $i > $o ) > $o ) > $o )).

thf(cSUCC_def,definition,
    ( cSUCC
    = ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
        ? [Xx: $i] :
          ( ( Xp @ Xx )
          & ( Xn
            @ ^ [Xt: $i] :
                ( ( Xt != Xx )
                & ( Xp @ Xt ) ) ) ) ) )).

thf(c_less__eq__def,definition,
    ( c_less__eq_
    = ( ^ [Xx: ( $i > $o ) > $o,Xy: ( $i > $o ) > $o] :
        ! [Xp: ( ( $i > $o ) > $o ) > $o] :
          ( ( ( Xp @ Xx )
            & ! [Xz: ( $i > $o ) > $o] :
                ( ( Xp @ Xz )
               => ( Xp @ ( cSUCC @ Xz ) ) ) )
         => ( Xp @ Xy ) ) ) )).

thf(cBLEDSOE1,conjecture,(
    ? [A: ( ( $i > $o ) > $o ) > $o] :
    ! [Xx: ( $i > $o ) > $o] :
      ( ( A @ Xx )
     => ( c_less__eq_ @ Xx @ c0 ) ) )).

%------------------------------------------------------------------------------