TPTP Problem File: SEV272^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV272^5 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem X6007A
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0393 [Bro09]
% : X6007A [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.00 v6.2.0, 0.14 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.2.0
% Syntax : Number of formulae : 5 ( 3 unt; 2 typ; 2 def)
% Number of atoms : 10 ( 4 equ; 0 cnn)
% Maximal formula atoms : 1 ( 3 avg)
% Number of connectives : 24 ( 2 ~; 0 |; 4 &; 14 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 25 ( 25 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 12 ( 6 ^; 4 !; 2 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(cSUCC_type,type,
cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o ).
thf(cZERO_type,type,
cZERO: ( $i > $o ) > $o ).
thf(cSUCC_def,definition,
( cSUCC
= ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
? [Xx: $i] :
( ( Xp @ Xx )
& ( Xn
@ ^ [Xt: $i] :
( ( Xt != Xx )
& ( Xp @ Xt ) ) ) ) ) ) ).
thf(cZERO_def,definition,
( cZERO
= ( ^ [Xp: $i > $o] :
~ ? [Xx: $i] : ( Xp @ Xx ) ) ) ).
thf(cX6007A_pme,conjecture,
( ( ^ [N: ( $i > $o ) > $o] :
! [P: ( ( $i > $o ) > $o ) > $o] :
( ( ( P @ cZERO )
& ! [X: ( $i > $o ) > $o] :
( ( P @ X )
=> ( P @ ( cSUCC @ X ) ) ) )
=> ( P @ N ) ) )
= ( ^ [Xx: ( $i > $o ) > $o] :
! [S: ( ( $i > $o ) > $o ) > $o] :
( ( ( S @ cZERO )
& ! [X: ( $i > $o ) > $o] :
( ( S @ X )
=> ( S @ ( cSUCC @ X ) ) ) )
=> ( S @ Xx ) ) ) ) ).
%------------------------------------------------------------------------------