TPTP Problem File: SEV265^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV265^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Sets of sets)
% Problem  : TPS problem from TOPOLOGY-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0989 [Bro09]

% Status   : Unknown
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    1 (   0 unit;   0 type;   0 defn)
%            Number of atoms       :   27 (   0 equality;  27 variable)
%            Maximal formula depth :   11 (  11 average)
%            Number of connectives :   26 (   0   ~;   1   |;   5   &;  15   @)
%                                         (   0 <=>;   5  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   10 (  10   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    2 (   0   :;   0   =)
%            Number of variables   :   11 (   0 sgn;   7   !;   1   ?;   3   ^)
%                                         (  11   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_UNK_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cTHM614_pme,conjecture,(
    ! [T: ( $i > $o ) > $o] :
      ( ( ! [S: ( $i > $o ) > $o] :
            ( ! [Xx: $i > $o] :
                ( ( S @ Xx )
               => ( T @ Xx ) )
           => ( T
              @ ^ [Xx: $i] :
                ? [S0: $i > $o] :
                  ( ( S @ S0 )
                  & ( S0 @ Xx ) ) ) )
        & ! [P: $i > $o,Q: $i > $o] :
            ( ( ( T @ P )
              & ( T @ Q ) )
           => ( T
              @ ^ [Xx: $i] :
                  ( ( P @ Xx )
                  & ( Q @ Xx ) ) ) ) )
     => ! [U: $i > $o,V: $i > $o] :
          ( ( ( T @ U )
            & ( T @ V ) )
         => ( T
            @ ^ [Xz: $i] :
                ( ( U @ Xz )
                | ( V @ Xz ) ) ) ) ) )).

%------------------------------------------------------------------------------