TPTP Problem File: SEV261^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV261^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem INDISCRETE-TOPOLOGY
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0539 [Bro09]
% : INDISCRETE-TOPOLOGY [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 34 ( 18 equ; 0 cnn)
% Maximal formula atoms : 18 ( 34 avg)
% Number of connectives : 33 ( 8 ~; 7 |; 8 &; 5 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 11 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 0 usr; 1 con; 0-2 aty)
% Number of variables : 27 ( 18 ^; 8 !; 1 ?; 27 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cINDISCRETE_TOPOLOGY_pme,conjecture,
( ! [R: a > $o] :
( ( R
= ( ^ [Xx: a] : $false ) )
=> ( ( R
= ( ^ [Xy: a] : $false ) )
| ( R
= ( ^ [Xy: a] : ~ $false ) ) ) )
& ! [R: a > $o] :
( ( R
= ( ^ [Xx: a] : ~ $false ) )
=> ( ( R
= ( ^ [Xy: a] : $false ) )
| ( R
= ( ^ [Xy: a] : ~ $false ) ) ) )
& ! [K: ( a > $o ) > $o,R: a > $o] :
( ( ! [Xx: a > $o] :
( ( K @ Xx )
=> ( ( Xx
= ( ^ [Xy: a] : $false ) )
| ( Xx
= ( ^ [Xy: a] : ~ $false ) ) ) )
& ( R
= ( ^ [Xx: a] :
? [S: a > $o] :
( ( K @ S )
& ( S @ Xx ) ) ) ) )
=> ( ( R
= ( ^ [Xy: a] : $false ) )
| ( R
= ( ^ [Xy: a] : ~ $false ) ) ) )
& ! [Y: a > $o,Z: a > $o,S: a > $o] :
( ( ( ( Y
= ( ^ [Xy: a] : $false ) )
| ( Y
= ( ^ [Xy: a] : ~ $false ) ) )
& ( ( Z
= ( ^ [Xy: a] : $false ) )
| ( Z
= ( ^ [Xy: a] : ~ $false ) ) )
& ( S
= ( ^ [Xx: a] :
( ( Y @ Xx )
& ( Z @ Xx ) ) ) ) )
=> ( ( S
= ( ^ [Xy: a] : $false ) )
| ( S
= ( ^ [Xy: a] : ~ $false ) ) ) ) ) ).
%------------------------------------------------------------------------------