TPTP Problem File: SEV260^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV260^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem CLOSED-THM1
% Version : Especial.
% English : The inverse image of a closed set under a continuous function is
% closed.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0474 [Bro09]
% : CLOSED-THM1 [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.54 v8.1.0, 0.45 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.40 v6.2.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 16 ( 12 equ; 0 cnn)
% Maximal formula atoms : 12 ( 16 avg)
% Number of connectives : 73 ( 4 ~; 0 |; 18 &; 34 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 20 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 31 ( 31 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 0 usr; 1 con; 0-2 aty)
% Number of variables : 39 ( 12 ^; 25 !; 2 ?; 39 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(cCLOSED_THM1_pme,conjecture,
! [T: ( a > $o ) > $o,S: ( b > $o ) > $o,Xf: a > b] :
( ( ! [R: a > $o] :
( ( R
= ( ^ [Xx: a] : $false ) )
=> ( T @ R ) )
& ! [R: a > $o] :
( ( R
= ( ^ [Xx: a] : ~ $false ) )
=> ( T @ R ) )
& ! [K: ( a > $o ) > $o,R: a > $o] :
( ( ! [Xx: a > $o] :
( ( K @ Xx )
=> ( T @ Xx ) )
& ( R
= ( ^ [Xx: a] :
? [S0: a > $o] :
( ( K @ S0 )
& ( S0 @ Xx ) ) ) ) )
=> ( T @ R ) )
& ! [Y: a > $o,Z: a > $o,S0: a > $o] :
( ( ( T @ Y )
& ( T @ Z )
& ( S0
= ( ^ [Xx: a] :
( ( Y @ Xx )
& ( Z @ Xx ) ) ) ) )
=> ( T @ S0 ) )
& ! [R: b > $o] :
( ( R
= ( ^ [Xx: b] : $false ) )
=> ( S @ R ) )
& ! [R: b > $o] :
( ( R
= ( ^ [Xx: b] : ~ $false ) )
=> ( S @ R ) )
& ! [K: ( b > $o ) > $o,R: b > $o] :
( ( ! [Xx: b > $o] :
( ( K @ Xx )
=> ( S @ Xx ) )
& ( R
= ( ^ [Xx: b] :
? [S0: b > $o] :
( ( K @ S0 )
& ( S0 @ Xx ) ) ) ) )
=> ( S @ R ) )
& ! [Y: b > $o,Z: b > $o,S0: b > $o] :
( ( ( S @ Y )
& ( S @ Z )
& ( S0
= ( ^ [Xx: b] :
( ( Y @ Xx )
& ( Z @ Xx ) ) ) ) )
=> ( S @ S0 ) )
& ! [X: b > $o] :
( ( S @ X )
=> ! [Y: a > $o] :
( ( Y
= ( ^ [Xb: a] : ( X @ ( Xf @ Xb ) ) ) )
=> ( T @ Y ) ) ) )
=> ! [X: b > $o] :
( ! [R: b > $o] :
( ( R
= ( ^ [Xx: b] :
~ ( X @ Xx ) ) )
=> ( S @ R ) )
=> ! [Y: a > $o] :
( ( Y
= ( ^ [Xb: a] : ( X @ ( Xf @ Xb ) ) ) )
=> ! [R: a > $o] :
( ( R
= ( ^ [Xx: a] :
~ ( Y @ Xx ) ) )
=> ( T @ R ) ) ) ) ) ).
%------------------------------------------------------------------------------