TPTP Problem File: SEV253^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV253^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from SETS-OF-SETS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1102 [Bro09]
% Status : Theorem
% Rating : 1.00 v9.0.0, 0.92 v8.2.0, 1.00 v5.2.0, 0.75 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 9 ( 0 equ; 0 cnn)
% Maximal formula atoms : 9 ( 9 avg)
% Number of connectives : 44 ( 2 ~; 0 |; 9 &; 23 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 12 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 24 ( 24 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 3 usr; 0 con; 1-1 aty)
% Number of variables : 19 ( 3 ^; 11 !; 5 ?; 19 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cL,type,
cL: ( $i > $o ) > $o ).
thf(cG,type,
cG: ( $i > $o ) > $o ).
thf(cF,type,
cF: ( ( $i > $o ) > $o ) > $o ).
thf(cTHM630_pme,conjecture,
( ( ! [C: ( $i > $o ) > $o] :
( ( ! [Xx: $i > $o] :
( ( C @ Xx )
=> ( cG @ Xx ) )
& ! [Xx: $i] :
? [Y: $i > $o] :
( ( C @ Y )
& ( Y @ Xx ) ) )
=> ? [D: ( $i > $o ) > $o] :
( ( cF @ D )
& ! [Xx: $i > $o] :
( ( D @ Xx )
=> ( C @ Xx ) )
& ! [Xx: $i] :
? [Y: $i > $o] :
( ( D @ Y )
& ( Y @ Xx ) ) ) )
& ! [C: ( $i > $o ) > $o] :
( ( cF @ C )
=> ( cF
@ ^ [U: $i > $o] :
( C
@ ^ [Xx: $i] :
~ ( U @ Xx ) ) ) )
& ! [B: ( $i > $o ) > $o] :
( ( ( cF @ B )
& ! [Xx: $i > $o] :
( ( B @ Xx )
=> ( cL @ Xx ) ) )
=> ? [Xm: $i] :
! [Z: $i > $o] :
( ( B @ Z )
=> ( Z @ Xm ) ) )
& ! [Z: $i > $o] :
( ( cL @ Z )
=> ( cG
@ ^ [Xx: $i] :
~ ( Z @ Xx ) ) ) )
=> ? [Xa: $i] :
! [Z: $i > $o] :
( ( cL @ Z )
=> ( Z @ Xa ) ) ) ).
%------------------------------------------------------------------------------