TPTP Problem File: SEV252^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV252^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from SETS-OF-SETS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1051 [Bro09]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.50 v8.2.0, 0.45 v8.1.0, 0.67 v7.5.0, 0.58 v7.4.0, 0.56 v7.3.0, 0.60 v7.2.0, 0.62 v7.1.0, 0.57 v7.0.0, 0.62 v6.4.0, 0.71 v6.3.0, 0.83 v6.2.0, 0.67 v6.1.0, 0.83 v6.0.0, 0.67 v5.5.0, 0.60 v5.4.0, 0.50 v5.2.0, 0.75 v4.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 35 ( 0 ~; 0 |; 3 &; 22 @)
% ( 1 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 14 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 15 ( 1 ^; 12 !; 2 ?; 15 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cTHM2A_EXPANDED_pme,conjecture,
! [K: ( $i > $o ) > $i > $o] :
( ( ! [Xx: $i > $o,Xy: $i > $o] :
( ! [Xx0: $i] :
( ( Xx @ Xx0 )
=> ( Xy @ Xx0 ) )
=> ! [Xx0: $i] :
( ( K @ Xx @ Xx0 )
=> ( K @ Xy @ Xx0 ) ) )
& ! [Xx: $i > $o,Xy: $i > $o] :
( ! [Xx0: $i] :
( ( Xx @ Xx0 )
=> ( Xy @ Xx0 ) )
=> ! [Xx0: $i] :
( ( K @ Xx @ Xx0 )
=> ( K @ Xy @ Xx0 ) ) ) )
=> ! [Xx: $i] :
( ( K
@ ^ [Xx0: $i] :
? [S: $i > $o] :
( ! [Xx1: $i] :
( ( S @ Xx1 )
=> ( K @ S @ Xx1 ) )
& ( S @ Xx0 ) )
@ Xx )
<=> ? [S: $i > $o] :
( ! [Xx0: $i] :
( ( S @ Xx0 )
=> ( K @ S @ Xx0 ) )
& ( S @ Xx ) ) ) ) ).
%------------------------------------------------------------------------------