TPTP Problem File: SEV250^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV250^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Sets of sets)
% Problem  : TPS problem from SETS-OF-SETS-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0999 [Bro09]

% Status   : Unknown
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   28 (   1 equality;  23 variable)
%            Maximal formula depth :   12 (   8 average)
%            Number of connectives :   25 (   0   ~;   0   |;   5   &;  13   @)
%                                         (   0 <=>;   7  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   10 (  10   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :   11 (   0 sgn;   8   !;   2   ?;   1   ^)
%                                         (  11   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_UNK_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cOPEN,type,(
    cOPEN: ( $i > $o ) > $o )).

thf(cEXISTS_INTERIOR_pme,conjecture,
    ( ! [D: $i > $o,G: ( $i > $o ) > $o] :
        ( ( ! [Xx: $i > $o] :
              ( ( G @ Xx )
             => ( cOPEN @ Xx ) )
          & ( D
            = ( ^ [Xx: $i] :
                ? [S: $i > $o] :
                  ( ( G @ S )
                  & ( S @ Xx ) ) ) ) )
       => ( cOPEN @ D ) )
   => ! [A: $i > $o] :
      ? [B: $i > $o] :
        ( ( cOPEN @ B )
        & ! [Xx: $i] :
            ( ( B @ Xx )
           => ( A @ Xx ) )
        & ! [C: $i > $o] :
            ( ( ( cOPEN @ C )
              & ! [Xx: $i] :
                  ( ( C @ Xx )
                 => ( A @ Xx ) ) )
           => ! [Xx: $i] :
                ( ( C @ Xx )
               => ( B @ Xx ) ) ) ) )).

%------------------------------------------------------------------------------