TPTP Problem File: SEV241^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV241^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Sets of sets)
% Problem  : TPS problem from SETS-OF-SETS-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0779 [Bro09]

% Status   : Theorem
% Rating   : 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.0
% Syntax   : Number of formulae    :    4 (   0 unit;   3 type;   0 defn)
%            Number of atoms       :   12 (   2 equality;   6 variable)
%            Maximal formula depth :    7 (   4 average)
%            Number of connectives :    7 (   0   ~;   1   |;   1   &;   3   @)
%                                         (   0 <=>;   2  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    3 (   3   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    5 (   3   :;   0   =)
%            Number of variables   :    2 (   0 sgn;   2   !;   0   ?;   0   ^)
%                                         (   2   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,(
    a: $tType )).

thf(cW,type,(
    cW: a > $o )).

thf(cU,type,(
    cU: a > $o )).

thf(cX5201A_pme,conjecture,(
    ! [Xx: a] :
      ( ( ( cU @ Xx )
        & ( cW @ Xx ) )
     => ! [S: a > $o] :
          ( ( ( S = cU )
            | ( S = cW ) )
         => ( S @ Xx ) ) ) )).

%------------------------------------------------------------------------------