TPTP Problem File: SEV237^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV237^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Sets of sets)
% Problem  : TPS problem THM616
% Version  : Especial.
% English  :

% Refs     : [BF93]  Bledsoe & Feng (1993), SET-VAR
%          : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0470 [Bro09]
%          : THM616 [TPS]

% Status   : Theorem
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   21 (   0 equality;  17 variable)
%            Maximal formula depth :   12 (   8 average)
%            Number of connectives :   20 (   0   ~;   0   |;   3   &;  11   @)
%                                         (   0 <=>;   6  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    8 (   8   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :    8 (   0 sgn;   5   !;   2   ?;   1   ^)
%                                         (   8   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(cOPEN,type,(
    cOPEN: ( $i > $o ) > $o )).

thf(cTHM616_pme,conjecture,
    ( ! [G: ( $i > $o ) > $o] :
        ( ! [Xx: $i > $o] :
            ( ( G @ Xx )
           => ( cOPEN @ Xx ) )
       => ( cOPEN
          @ ^ [Xx: $i] :
            ? [S: $i > $o] :
              ( ( G @ S )
              & ( S @ Xx ) ) ) )
   => ! [B: $i > $o] :
        ( ! [Xx: $i] :
            ( ( B @ Xx )
           => ? [D: $i > $o] :
                ( ( cOPEN @ D )
                & ( D @ Xx )
                & ! [Xx0: $i] :
                    ( ( D @ Xx0 )
                   => ( B @ Xx0 ) ) ) )
       => ( cOPEN @ B ) ) )).

%------------------------------------------------------------------------------