## TPTP Problem File: SEV229^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV229^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Sets of sets)
% Problem  : TPS problem X5209
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0304 [Bro09]
%          : X5209 [TPS]

% Status   : Theorem
% Rating   : 0.09 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax   : Number of formulae    :    4 (   0 unit;   3 type;   0 defn)
%            Number of atoms       :   15 (   1 equality;  10 variable)
%            Maximal formula depth :    7 (   4 average)
%            Number of connectives :   12 (   0   ~;   0   |;   2   &;   7   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    4 (   4   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    5 (   3   :;   0   =)
%            Number of variables   :    5 (   0 sgn;   3   !;   0   ?;   2   ^)
%                                         (   5   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(cE,type,(
cE: a > \$o )).

thf(cD,type,(
cD: a > \$o )).

thf(cX5209_pme,conjecture,
( ( ^ [R: a > \$o] :
! [Xx: a] :
( ( R @ Xx )
=> ( ( cD @ Xx )
& ( cE @ Xx ) ) ) )
= ( ^ [Xx: a > \$o] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( cD @ Xx0 ) )
& ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( cE @ Xx0 ) ) ) ) )).

%------------------------------------------------------------------------------
```