TPTP Problem File: SEV228^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV228^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Sets of sets)
% Problem  : TPS problem THM91A
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0187 [Bro09]
%          : THM91A [TPS]

% Status   : Theorem
% Rating   : 0.17 v7.4.0, 0.11 v7.3.0, 0.20 v7.2.0, 0.25 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.2.0, 0.33 v6.1.0, 0.00 v4.0.0
% Syntax   : Number of formulae    :    3 (   0 unit;   2 type;   0 defn)
%            Number of atoms       :    8 (   0 equality;   6 variable)
%            Maximal formula depth :    8 (   4 average)
%            Number of connectives :    7 (   0   ~;   0   |;   1   &;   4   @)
%                                         (   0 <=>;   2  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    2 (   2   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    4 (   2   :;   0   =)
%            Number of variables   :    3 (   0 sgn;   2   !;   1   ?;   0   ^)
%                                         (   3   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,(
    a: $tType )).

thf(cS,type,(
    cS: a > $o )).

thf(cTHM91A_pme,conjecture,(
    ! [Xx: a] :
      ( ( cS @ Xx )
     => ? [S_11: a > $o] :
          ( ! [Xx0: a] :
              ( ( S_11 @ Xx0 )
             => ( cS @ Xx0 ) )
          & ( S_11 @ Xx ) ) ) )).

%------------------------------------------------------------------------------