TPTP Problem File: SEV208^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV208^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from S-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1209 [Bro09]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.30 v8.2.0, 0.23 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v5.2.0, 0.80 v4.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 8 ( 0 unt; 7 typ; 0 def)
% Number of atoms : 24 ( 21 equ; 0 cnn)
% Maximal formula atoms : 24 ( 24 avg)
% Number of connectives : 95 ( 0 ~; 6 |; 22 &; 60 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 25 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 6 usr; 6 con; 0-2 aty)
% Number of variables : 30 ( 0 ^; 12 !; 18 ?; 30 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(z,type,
z: a ).
thf(y,type,
y: a ).
thf(cP,type,
cP: a > a > a ).
thf(w,type,
w: a ).
thf(x,type,
x: a ).
thf(c0,type,
c0: a ).
thf(cS_INCL_LEM1_pme,conjecture,
( ( ! [R: a > a > a > $o] :
( ( $true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = c0 )
& ( Xb = Xc ) )
| ( ( Xb = c0 )
& ( Xa = Xc ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ x @ y @ y ) )
& ! [R: a > a > a > $o] :
( ( $true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = c0 )
& ( Xb = Xc ) )
| ( ( Xb = c0 )
& ( Xa = Xc ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ w @ z @ z ) ) )
=> ! [R: a > a > a > $o] :
( ( $true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = c0 )
& ( Xb = Xc ) )
| ( ( Xb = c0 )
& ( Xa = Xc ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ ( cP @ x @ w ) @ ( cP @ y @ z ) @ ( cP @ y @ z ) ) ) ) ).
%------------------------------------------------------------------------------