TPTP Problem File: SEV206^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV206^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from S-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1203 [Bro09]
% Status : Theorem
% Rating : 0.88 v9.0.0, 0.90 v8.2.0, 1.00 v8.1.0, 0.91 v7.5.0, 1.00 v4.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 6 typ; 0 def)
% Number of atoms : 20 ( 18 equ; 0 cnn)
% Maximal formula atoms : 20 ( 20 avg)
% Number of connectives : 88 ( 1 ~; 4 |; 19 &; 55 @)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 25 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 5 usr; 5 con; 0-2 aty)
% Number of variables : 30 ( 0 ^; 18 !; 12 ?; 30 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(iS_type,type,
iS: $tType ).
thf(y,type,
y: iS ).
thf(z,type,
z: iS ).
thf(cP,type,
cP: iS > iS > iS ).
thf(x,type,
x: iS ).
thf(c0,type,
c0: iS ).
thf(cS_INCL_LEM8_pme,conjecture,
( ( ! [Xx0: iS,Xy0: iS] :
( ( cP @ Xx0 @ Xy0 )
!= c0 )
& ! [Xx0: iS,Xy0: iS,Xu: iS,Xv: iS] :
( ( ( cP @ Xx0 @ Xu )
= ( cP @ Xy0 @ Xv ) )
=> ( ( Xx0 = Xy0 )
& ( Xu = Xv ) ) )
& ! [X: iS > $o] :
( ( ( X @ c0 )
& ! [Xx0: iS,Xy0: iS] :
( ( ( X @ Xx0 )
& ( X @ Xy0 ) )
=> ( X @ ( cP @ Xx0 @ Xy0 ) ) ) )
=> ! [Xx0: iS] : ( X @ Xx0 ) ) )
=> ( ! [R: iS > iS > iS > $o] :
( ( $true
& ! [Xa: iS,Xb: iS,Xc: iS] :
( ( ( ( Xa = c0 )
& ( Xb = Xc ) )
| ( ( Xb = c0 )
& ( Xa = Xc ) )
| ? [Xx1: iS,Xx2: iS,Xy1: iS,Xy2: iS,Xz1: iS,Xz2: iS] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ x @ y @ y ) )
=> ! [R: iS > iS > iS > $o] :
( ( $true
& ! [Xa: iS,Xb: iS,Xc: iS] :
( ( ( ( Xa = c0 )
& ( Xb = Xc ) )
| ( ( Xb = c0 )
& ( Xa = Xc ) )
| ? [Xx1: iS,Xx2: iS,Xy1: iS,Xy2: iS,Xz1: iS,Xz2: iS] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ ( cP @ z @ x ) @ ( cP @ z @ y ) @ ( cP @ z @ y ) ) ) ) ) ).
%------------------------------------------------------------------------------