TPTP Problem File: SEV199^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV199^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from S-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1143 [Bro09]
% : tps_1146 [Bro09]
% : tps_1147 [Bro09]
% : tps_0804 [Bro09]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.50 v8.2.0, 0.69 v8.1.0, 0.64 v7.5.0, 0.57 v7.4.0, 0.67 v7.2.0, 0.62 v7.0.0, 0.71 v6.4.0, 0.67 v6.3.0, 0.80 v6.2.0, 0.86 v6.1.0, 0.71 v5.5.0, 1.00 v4.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 12 ( 11 equ; 0 cnn)
% Maximal formula atoms : 12 ( 12 avg)
% Number of connectives : 52 ( 1 ~; 2 |; 12 &; 31 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 24 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 3 usr; 3 con; 0-2 aty)
% Number of variables : 20 ( 0 ^; 14 !; 6 ?; 20 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(iS_type,type,
iS: $tType ).
thf(x,type,
x: iS ).
thf(cP,type,
cP: iS > iS > iS ).
thf(c0,type,
c0: iS ).
thf(cS_INCL_LEM3_pme,conjecture,
( ( ! [Xx0: iS,Xy: iS] :
( ( cP @ Xx0 @ Xy )
!= c0 )
& ! [Xx0: iS,Xy: iS,Xu: iS,Xv: iS] :
( ( ( cP @ Xx0 @ Xu )
= ( cP @ Xy @ Xv ) )
=> ( ( Xx0 = Xy )
& ( Xu = Xv ) ) )
& ! [X: iS > $o] :
( ( ( X @ c0 )
& ! [Xx0: iS,Xy: iS] :
( ( ( X @ Xx0 )
& ( X @ Xy ) )
=> ( X @ ( cP @ Xx0 @ Xy ) ) ) )
=> ! [Xx0: iS] : ( X @ Xx0 ) ) )
=> ! [R: iS > iS > iS > $o] :
( ( $true
& ! [Xa: iS,Xb: iS,Xc: iS] :
( ( ( ( Xa = c0 )
& ( Xb = Xc ) )
| ( ( Xb = c0 )
& ( Xa = Xc ) )
| ? [Xx1: iS,Xx2: iS,Xy1: iS,Xy2: iS,Xz1: iS,Xz2: iS] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ x @ x @ x ) ) ) ).
%------------------------------------------------------------------------------