TPTP Problem File: SEV193^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV193^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Sets of sets)
% Problem  : TPS problem from S-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0896 [Bro09]

% Status   : Unknown
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   18 (   0 equality;  13 variable)
%            Maximal formula depth :    9 (   6 average)
%            Number of connectives :   17 (   0   ~;   1   |;   2   &;  10   @)
%                                         (   0 <=>;   4  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    8 (   8   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :    7 (   0 sgn;   4   !;   1   ?;   2   ^)
%                                         (   7   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_UNK_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cT,type,(
    cT: ( $i > $o ) > $o )).

thf(cTHM501_pme,conjecture,
    ( ! [S: ( $i > $o ) > $o] :
        ( ! [Xx: $i > $o] :
            ( ( S @ Xx )
           => ( cT @ Xx ) )
       => ( cT
          @ ^ [Xx: $i] :
            ? [S0: $i > $o] :
              ( ( S @ S0 )
              & ( S0 @ Xx ) ) ) )
   => ! [U: $i > $o,V: $i > $o] :
        ( ( ( cT @ U )
          & ( cT @ V ) )
       => ( cT
          @ ^ [Xz: $i] :
              ( ( U @ Xz )
              | ( V @ Xz ) ) ) ) )).

%------------------------------------------------------------------------------