TPTP Problem File: SEV141^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV141^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem THM250
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0537 [Bro09]
% : tps_0538 [Bro09]
% : tps_1172 [Bro09]
% : THM250 [TPS]
% Status : Theorem
% Rating : 0.62 v9.0.0, 0.60 v8.2.0, 0.69 v8.1.0, 0.64 v7.5.0, 0.71 v7.4.0, 0.56 v7.3.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.71 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.43 v6.1.0, 0.71 v5.5.0, 0.67 v5.4.0, 0.60 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 70 ( 0 ~; 2 |; 8 &; 48 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 12 ( 12 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 30 ( 4 ^; 26 !; 0 ?; 30 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM250_pme,conjecture,
! [R: a > a > $o,S: a > a > $o] :
( ( ^ [Xx1: a,Xy1: a] :
! [Xp1: a > a > $o] :
( ( ! [Xx: a,Xy: a] :
( ( ( R @ Xx @ Xy )
| ( S @ Xx @ Xy ) )
=> ( Xp1 @ Xx @ Xy ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp1 @ Xx @ Xy )
& ( Xp1 @ Xy @ Xz ) )
=> ( Xp1 @ Xx @ Xz ) ) )
=> ( Xp1 @ Xx1 @ Xy1 ) ) )
= ( ^ [Xx1: a,Xy1: a] :
! [Xp1: a > a > $o] :
( ( ! [Xx: a,Xy: a] :
( ( ! [Xp10: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( R @ Xx0 @ Xy0 )
=> ( Xp10 @ Xx0 @ Xy0 ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xp10 @ Xx0 @ Xy0 )
& ( Xp10 @ Xy0 @ Xz ) )
=> ( Xp10 @ Xx0 @ Xz ) ) )
=> ( Xp10 @ Xx @ Xy ) )
| ! [Xp10: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( S @ Xx0 @ Xy0 )
=> ( Xp10 @ Xx0 @ Xy0 ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xp10 @ Xx0 @ Xy0 )
& ( Xp10 @ Xy0 @ Xz ) )
=> ( Xp10 @ Xx0 @ Xz ) ) )
=> ( Xp10 @ Xx @ Xy ) ) )
=> ( Xp1 @ Xx @ Xy ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp1 @ Xx @ Xy )
& ( Xp1 @ Xy @ Xz ) )
=> ( Xp1 @ Xx @ Xz ) ) )
=> ( Xp1 @ Xx1 @ Xy1 ) ) ) ) ).
%------------------------------------------------------------------------------